Commit af63b7ab authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #251 from MMp131316/stereoBranch

Stereo branch
parents 77e22261 2c86cf23
......@@ -51,3 +51,5 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -D BUILD_opencv_re
21. **opencv_xobjdetect**: Integral Channel Features Detector Framework.
22. **opencv_xphoto**: Additional photo processing algorithms: Color balance / Denoising / Inpainting.
23. **opencv_stereo**: Stereo Correspondence done with different descriptors: Census / CS-Census / MCT / BRIEF / MV / RT.
set(the_description "Stereo Correspondence")
ocv_define_module(stereo opencv_imgproc opencv_features2d opencv_core opencv_highgui opencv_calib3d)
Stereo Correspondence with different descriptors
================================================
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STEREO_HPP__
#define __OPENCV_STEREO_HPP__
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/affine.hpp"
/**
@defgroup stereo Stereo Correspondance Algorithms
*/
namespace cv
{
namespace stereo
{
//! @addtogroup stereo
//! @{
// void correctMatches( InputArray F, InputArray points1, InputArray points2,
// OutputArray newPoints1, OutputArray newPoints2 );
/** @brief Filters off small noise blobs (speckles) in the disparity map
@param img The input 16-bit signed disparity image
@param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
*/
/** @brief The base class for stereo correspondence algorithms.
*/
class StereoMatcher : public Algorithm
{
public:
enum { DISP_SHIFT = 4,
DISP_SCALE = (1 << DISP_SHIFT)
};
/** @brief Computes disparity map for the specified stereo pair
@param left Left 8-bit single-channel image.
@param right Right image of the same size and the same type as the left one.
@param disparity Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
*/
virtual void compute( InputArray left, InputArray right,
OutputArray disparity ) = 0;
virtual int getMinDisparity() const = 0;
virtual void setMinDisparity(int minDisparity) = 0;
virtual int getNumDisparities() const = 0;
virtual void setNumDisparities(int numDisparities) = 0;
virtual int getBlockSize() const = 0;
virtual void setBlockSize(int blockSize) = 0;
virtual int getSpeckleWindowSize() const = 0;
virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
virtual int getSpeckleRange() const = 0;
virtual void setSpeckleRange(int speckleRange) = 0;
virtual int getDisp12MaxDiff() const = 0;
virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
*/
class StereoBinaryBM : public StereoMatcher
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
PREFILTER_XSOBEL = 1
};
virtual int getPreFilterType() const = 0;
virtual void setPreFilterType(int preFilterType) = 0;
virtual int getPreFilterSize() const = 0;
virtual void setPreFilterSize(int preFilterSize) = 0;
virtual int getPreFilterCap() const = 0;
virtual void setPreFilterCap(int preFilterCap) = 0;
virtual int getTextureThreshold() const = 0;
virtual void setTextureThreshold(int textureThreshold) = 0;
virtual int getUniquenessRatio() const = 0;
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
virtual int getSmallerBlockSize() const = 0;
virtual void setSmallerBlockSize(int blockSize) = 0;
virtual Rect getROI1() const = 0;
virtual void setROI1(Rect roi1) = 0;
virtual Rect getROI2() const = 0;
virtual void setROI2(Rect roi2) = 0;
/** @brief Creates StereoBM object
@param numDisparities the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.
The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
*/
CV_EXPORTS static Ptr< cv::stereo::StereoBinaryBM > create(int numDisparities = 0, int blockSize = 21);
};
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:
- By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).
@note
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
at opencv_source_code/samples/python2/stereo_match.py
*/
class StereoBinarySGBM : public StereoMatcher
{
public:
enum
{
MODE_SGBM = 0,
MODE_HH = 1
};
virtual int getPreFilterCap() const = 0;
virtual void setPreFilterCap(int preFilterCap) = 0;
virtual int getUniquenessRatio() const = 0;
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
virtual int getP1() const = 0;
virtual void setP1(int P1) = 0;
virtual int getP2() const = 0;
virtual void setP2(int P2) = 0;
virtual int getMode() const = 0;
virtual void setMode(int mode) = 0;
/** @brief Creates StereoSGBM object
@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
@param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
zero. In the current implementation, this parameter must be divisible by 16.
@param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
somewhere in the 3..11 range.
@param P1 The first parameter controlling the disparity smoothness. See below.
@param P2 The second parameter controlling the disparity smoothness. The larger the values are,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
The result values are passed to the Birchfield-Tomasi pixel cost function.
@param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.
@param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
50-200 range.
@param speckleRange Maximum disparity variation within each connected component. If you do speckle
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
Normally, 1 or 2 is good enough.
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
huge for HD-size pictures. By default, it is set to false .
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value.
*/
CV_EXPORTS static Ptr<cv::stereo::StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
int preFilterCap = 0, int uniquenessRatio = 0,
int speckleWindowSize = 0, int speckleRange = 0,
int mode = StereoBinarySGBM::MODE_SGBM);
};
//! @}
}//stereo
} // cv
#ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/stereo/stereo_c.h"
#endif
#endif
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef __OPENCV_BUILD
#error this is a compatibility header which should not be used inside the OpenCV library
#endif
#include "opencv2/stereo.hpp"
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STEREO_PRECOMP_H__
#define __OPENCV_STEREO_PRECOMP_H__
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#include <algorithm>
#include <cmath>
#endif
//M*//////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/****************************************************************************************\
* Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm. *
* Contributed by Kurt Konolige *
\****************************************************************************************/
#include "precomp.hpp"
#include <stdio.h>
#include <limits>
namespace cv
{
namespace stereo
{
struct StereoBinaryBMParams
{
StereoBinaryBMParams(int _numDisparities = 64, int _SADWindowSize = 9)
{
preFilterType = StereoBinaryBM::PREFILTER_XSOBEL;
preFilterSize = 9;
preFilterCap = 31;
SADWindowSize = _SADWindowSize;
minDisparity = 0;
numDisparities = _numDisparities > 0 ? _numDisparities : 64;
textureThreshold = 10;
uniquenessRatio = 15;
speckleRange = speckleWindowSize = 0;
roi1 = roi2 = Rect(0, 0, 0, 0);
disp12MaxDiff = -1;
dispType = CV_16S;
}
int preFilterType;
int preFilterSize;
int preFilterCap;
int SADWindowSize;
int minDisparity;
int numDisparities;
int textureThreshold;
int uniquenessRatio;
int speckleRange;
int speckleWindowSize;
Rect roi1, roi2;
int disp12MaxDiff;
int dispType;
};
static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf)
{
int x, y, wsz2 = winsize / 2;
int* vsum = (int*)alignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32);
int scale_g = winsize*winsize / 8, scale_s = (1024 + scale_g) / (scale_g * 2);
const int OFS = 256 * 5, TABSZ = OFS * 2 + 256;
uchar tab[TABSZ];
const uchar* sptr = src.ptr();
int srcstep = (int)src.step;
Size size = src.size();
scale_g *= scale_s;
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero);
for (x = 0; x < size.width; x++)
vsum[x] = (ushort)(sptr[x] * (wsz2 + 2));
for (y = 1; y < wsz2; y++)
{
for (x = 0; x < size.width; x++)
vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]);
}
for (y = 0; y < size.height; y++)
{
const uchar* top = sptr + srcstep*MAX(y - wsz2 - 1, 0);
const uchar* bottom = sptr + srcstep*MIN(y + wsz2, size.height - 1);
const uchar* prev = sptr + srcstep*MAX(y - 1, 0);
const uchar* curr = sptr + srcstep*y;
const uchar* next = sptr + srcstep*MIN(y + 1, size.height - 1);
uchar* dptr = dst.ptr<uchar>(y);
for (x = 0; x < size.width; x++)
vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]);
for (x = 0; x <= wsz2; x++)
{
vsum[-x - 1] = vsum[0];
vsum[size.width + x] = vsum[size.width - 1];
}
int sum = vsum[0] * (wsz2 + 1);
for (x = 1; x <= wsz2; x++)
sum += vsum[x];
int val = ((curr[0] * 5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10;
dptr[0] = tab[val + OFS];
for (x = 1; x < size.width - 1; x++)
{
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1];
val = ((curr[x] * 4 + curr[x - 1] + curr[x + 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS];
}
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1];
val = ((curr[x] * 5 + curr[x - 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS];
}
}
static void
prefilterXSobel(const Mat& src, Mat& dst, int ftzero)
{
int x, y;
const int OFS = 256 * 4, TABSZ = OFS * 2 + 256;
uchar tab[TABSZ];
Size size = src.size();
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero);
uchar val0 = tab[0 + OFS];
#if CV_SSE2
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
for (y = 0; y < size.height - 1; y += 2)
{
const uchar* srow1 = src.ptr<uchar>(y);
const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1;
const uchar* srow2 = y < size.height - 1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1;
const uchar* srow3 = y < size.height - 2 ? srow1 + src.step * 2 : srow1;
uchar* dptr0 = dst.ptr<uchar>(y);
uchar* dptr1 = dptr0 + dst.step;
dptr0[0] = dptr0[size.width - 1] = dptr1[0] = dptr1[size.width - 1] = val0;
x = 1;
#if CV_SSE2
if (useSIMD)
{
__m128i z = _mm_setzero_si128(), ftz = _mm_set1_epi16((short)ftzero),
ftz2 = _mm_set1_epi8(cv::saturate_cast<uchar>(ftzero * 2));
for (; x <= size.width - 9; x += 8)
{
__m128i c0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x - 1)), z);
__m128i c1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x - 1)), z);
__m128i d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x + 1)), z);
__m128i d1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x + 1)), z);
d0 = _mm_sub_epi16(d0, c0);
d1 = _mm_sub_epi16(d1, c1);
__m128i c2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x - 1)), z);
__m128i c3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x - 1)), z);
__m128i d2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x + 1)), z);
__m128i d3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x + 1)), z);
d2 = _mm_sub_epi16(d2, c2);
d3 = _mm_sub_epi16(d3, c3);
__m128i v0 = _mm_add_epi16(d0, _mm_add_epi16(d2, _mm_add_epi16(d1, d1)));
__m128i v1 = _mm_add_epi16(d1, _mm_add_epi16(d3, _mm_add_epi16(d2, d2)));
v0 = _mm_packus_epi16(_mm_add_epi16(v0, ftz), _mm_add_epi16(v1, ftz));
v0 = _mm_min_epu8(v0, ftz2);
_mm_storel_epi64((__m128i*)(dptr0 + x), v0);
_mm_storel_epi64((__m128i*)(dptr1 + x), _mm_unpackhi_epi64(v0, v0));
}
}
#endif
for (; x < size.width - 1; x++)
{
int d0 = srow0[x + 1] - srow0[x - 1], d1 = srow1[x + 1] - srow1[x - 1],
d2 = srow2[x + 1] - srow2[x - 1], d3 = srow3[x + 1] - srow3[x - 1];
int v0 = tab[d0 + d1 * 2 + d2 + OFS];
int v1 = tab[d1 + d2 * 2 + d3 + OFS];
dptr0[x] = (uchar)v0;
dptr1[x] = (uchar)v1;
}
}
for (; y < size.height; y++)
{
uchar* dptr = dst.ptr<uchar>(y);
for (x = 0; x < size.width; x++)
dptr[x] = val0;
}
}
static const int DISPARITY_SHIFT = 4;
static void
findStereoCorrespondenceBM(const Mat& left, const Mat& right,
Mat& disp, Mat& cost, const StereoBinaryBMParams& state,
uchar* buf, int _dy0, int _dy1)
{
const int ALIGN = 16;
int x, y, d;
int wsz = state.SADWindowSize, wsz2 = wsz / 2;
int dy0 = MIN(_dy0, wsz2 + 1), dy1 = MIN(_dy1, wsz2 + 1);
int ndisp = state.numDisparities;
int mindisp = state.minDisparity;
int lofs = MAX(ndisp - 1 + mindisp, 0);
int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left.cols, height = left.rows;
int width1 = width - rofs - ndisp + 1;
int ftzero = state.preFilterCap;
int textureThreshold = state.textureThreshold;
int uniquenessRatio = state.uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
int *sad, *hsad0, *hsad, *hsad_sub, *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left.ptr() + lofs;
const uchar* rptr0 = right.ptr() + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = disp.ptr<short>();
int sstep = (int)left.step;
int dstep = (int)(disp.step / sizeof(dptr[0]));
int cstep = (height + dy0 + dy1)*ndisp;
int costbuf = 0;
int coststep = cost.data ? (int)(cost.step / sizeof(costbuf)) : 0;
const int TABSZ = 256;
uchar tab[TABSZ];
sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN);
hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
htext = (int*)alignPtr((int*)(hsad0 + (height + dy1)*ndisp) + wsz2 + 2, ALIGN);
cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)std::abs(x - ftzero);
// initialize buffers
memset(hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]));
memset(htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]));
for (x = -wsz2 - 1; x < wsz2; x++)
{
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
lptr = lptr0 + std::min(std::max(x, -lofs), width - lofs - 1) - dy0*sstep;
rptr = rptr0 + std::min(std::max(x, -rofs), width - rofs - 1) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep)
{
int lval = lptr[0];
for (d = 0; d < ndisp; d++)
{
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (int)(hsad[d] + diff);
}
htext[y] += tab[lval];
}
}
// initialize the left and right borders of the disparity map
for (y = 0; y < height; y++)
{
for (x = 0; x < lofs; x++)
dptr[y*dstep + x] = FILTERED;
for (x = lofs + width1; x < width; x++)
dptr[y*dstep + x] = FILTERED;
}
dptr += lofs;
for (x = 0; x < width1; x++, dptr++)
{
int* costptr = cost.data ? cost.ptr<int>() + lofs + x : &costbuf;
int x0 = x - wsz2 - 1, x1 = x + wsz2;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
hsad = hsad0 - dy0*ndisp;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width - 1 - lofs) - dy0*sstep;
lptr = lptr0 + MIN(MAX(x1, -lofs), width - 1 - lofs) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x1, -rofs), width - 1 - rofs) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep)
{
int lval = lptr[0];
for (d = 0; d < ndisp; d++)
{
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = hsad[d] + diff - cbuf_sub[d];
}
htext[y] += tab[lval] - tab[lptr_sub[0]];
}
// fill borders
for (y = dy1; y <= wsz2; y++)
htext[height + y] = htext[height + dy1 - 1];
for (y = -wsz2 - 1; y < -dy0; y++)
htext[y] = htext[-dy0];
// initialize sums
int tsum = 0;
{
for (d = 0; d < ndisp; d++)
sad[d] = (int)(hsad0[d - ndisp*dy0] * (wsz2 + 2 - dy0));
hsad = hsad0 + (1 - dy0)*ndisp;
for (y = 1 - dy0; y < wsz2; y++, hsad += ndisp)
for (d = 0; d < ndisp; d++)
sad[d] = (int)(sad[d] + hsad[d]);
for (y = -wsz2 - 1; y < wsz2; y++)
tsum += htext[y];
}
// finally, start the real processing
{
for (y = 0; y < height; y++)
{
int minsad = INT_MAX, mind = -1;
hsad = hsad0 + MIN(y + wsz2, height + dy1 - 1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
for (d = 0; d < ndisp; d++)
{
int currsad = sad[d] + hsad[d] - hsad_sub[d];
sad[d] = currsad;
if (currsad < minsad)
{
minsad = currsad;
mind = d;
}
}
tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
if (tsum < textureThreshold)
{
dptr[y*dstep] = FILTERED;
continue;
}
if (uniquenessRatio > 0)
{
int thresh = minsad + (minsad * uniquenessRatio / 100);
for (d = 0; d < ndisp; d++)
{
if ((d < mind - 1 || d > mind + 1) && sad[d] <= thresh)
break;
}
if (d < ndisp)
{
dptr[y*dstep] = FILTERED;
continue;
}
}
{
sad[-1] = sad[1];
sad[ndisp] = sad[ndisp - 2];
int p = sad[mind + 1], n = sad[mind - 1];
d = p + n - 2 * sad[mind] + std::abs(p - n);
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp) * 256 + (d != 0 ? (p - n) * 256 / d : 0) + 15) >> 4);
costptr[y*coststep] = sad[mind];
}
}
}
}
}
struct PrefilterInvoker : public ParallelLoopBody
{
PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right,
uchar* buf0, uchar* buf1, StereoBinaryBMParams* _state)
{
imgs0[0] = &left0; imgs0[1] = &right0;
imgs[0] = &left; imgs[1] = &right;
buf[0] = buf0; buf[1] = buf1;
state = _state;
}
void operator()(const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
if (state->preFilterType == StereoBinaryBM::PREFILTER_NORMALIZED_RESPONSE)
prefilterNorm(*imgs0[i], *imgs[i], state->preFilterSize, state->preFilterCap, buf[i]);
else
prefilterXSobel(*imgs0[i], *imgs[i], state->preFilterCap);
}
}
const Mat* imgs0[2];
Mat* imgs[2];
uchar* buf[2];
StereoBinaryBMParams* state;
};
struct FindStereoCorrespInvoker : public ParallelLoopBody
{
FindStereoCorrespInvoker(const Mat& _left, const Mat& _right,
Mat& _disp, StereoBinaryBMParams* _state,
int _nstripes, size_t _stripeBufSize,
bool _useShorts, Rect _validDisparityRect,
Mat& _slidingSumBuf, Mat& _cost)
{
left = &_left; right = &_right;
disp = &_disp; state = _state;
nstripes = _nstripes; stripeBufSize = _stripeBufSize;
useShorts = _useShorts;
validDisparityRect = _validDisparityRect;
slidingSumBuf = &_slidingSumBuf;
cost = &_cost;
}
void operator()(const Range& range) const
{
int cols = left->cols, rows = left->rows;
int _row0 = std::min(cvRound(range.start * rows / nstripes), rows);
int _row1 = std::min(cvRound(range.end * rows / nstripes), rows);
uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize;
int FILTERED = (state->minDisparity - 1) * 16;
Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0);
if (roi.height == 0)
return;
int row0 = roi.y;
int row1 = roi.y + roi.height;
Mat part;
if (row0 > _row0)
{
part = disp->rowRange(_row0, row0);
part = Scalar::all(FILTERED);
}
if (_row1 > row1)
{
part = disp->rowRange(row1, _row1);
part = Scalar::all(FILTERED);
}
Mat left_i = left->rowRange(row0, row1);
Mat right_i = right->rowRange(row0, row1);
Mat disp_i = disp->rowRange(row0, row1);
Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat();
findStereoCorrespondenceBM(left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1);
if (state->disp12MaxDiff >= 0)
validateDisparity(disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff);
if (roi.x > 0)
{
part = disp_i.colRange(0, roi.x);
part = Scalar::all(FILTERED);
}
if (roi.x + roi.width < cols)
{
part = disp_i.colRange(roi.x + roi.width, cols);
part = Scalar::all(FILTERED);
}
}
protected:
const Mat *left, *right;
Mat* disp, *slidingSumBuf, *cost;
StereoBinaryBMParams *state;
int nstripes;
size_t stripeBufSize;
bool useShorts;
Rect validDisparityRect;
};
class StereoBinaryBMImpl : public StereoBinaryBM
{
public:
StereoBinaryBMImpl()
{
params = StereoBinaryBMParams();
}
StereoBinaryBMImpl(int _numDisparities, int _SADWindowSize)
{
params = StereoBinaryBMParams(_numDisparities, _SADWindowSize);
}
void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr)
{
int dtype = disparr.fixedType() ? disparr.type() : params.dispType;
Size leftsize = leftarr.size();
if (leftarr.size() != rightarr.size())
CV_Error(Error::StsUnmatchedSizes, "All the images must have the same size");
if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1)
CV_Error(Error::StsUnsupportedFormat, "Both input images must have CV_8UC1");
if (dtype != CV_16SC1 && dtype != CV_32FC1)
CV_Error(Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format");
if (params.preFilterType != PREFILTER_NORMALIZED_RESPONSE &&
params.preFilterType != PREFILTER_XSOBEL)
CV_Error(Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE");
if (params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0)
CV_Error(Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255");
if (params.preFilterCap < 1 || params.preFilterCap > 63)
CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63");
if (params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 ||
params.SADWindowSize >= std::min(leftsize.width, leftsize.height))
CV_Error(Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height");
if (params.numDisparities <= 0 || params.numDisparities % 16 != 0)
CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16");
if (params.textureThreshold < 0)
CV_Error(Error::StsOutOfRange, "texture threshold must be non-negative");
if (params.uniquenessRatio < 0)
CV_Error(Error::StsOutOfRange, "uniqueness ratio must be non-negative");
int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT;
Mat left0 = leftarr.getMat(), right0 = rightarr.getMat();
disparr.create(left0.size(), dtype);
Mat disp0 = disparr.getMat();
preFilteredImg0.create(left0.size(), CV_8U);
preFilteredImg1.create(left0.size(), CV_8U);
cost.create(left0.size(), CV_16S);
Mat left = preFilteredImg0, right = preFilteredImg1;
int mindisp = params.minDisparity;
int ndisp = params.numDisparities;
int width = left0.cols;
int height = left0.rows;
int lofs = std::max(ndisp - 1 + mindisp, 0);
int rofs = -std::min(ndisp - 1 + mindisp, 0);
int width1 = width - rofs - ndisp + 1;
if (lofs >= width || rofs >= width || width1 < 1)
{
disp0 = Scalar::all(FILTERED * (disp0.type() < CV_32F ? 1 : 1. / (1 << DISPARITY_SHIFT)));
return;
}
Mat disp = disp0;
if (dtype == CV_32F)
{
dispbuf.create(disp0.size(), CV_16S);
disp = dispbuf;
}
int wsz = params.SADWindowSize;
int bufSize0 = (int)((ndisp + 2)*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256);
int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256);
int bufSize2 = 0;
if (params.speckleRange >= 0 && params.speckleWindowSize > 0)
bufSize2 = width*height*(sizeof(Point_<short>) + sizeof(int) + sizeof(uchar));
#if CV_SSE2
bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2);
#else
const bool useShorts = false;
#endif
const double SAD_overhead_coeff = 10.0;
double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread
double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz - 1) * SAD_overhead_coeff), (double)height);
int nstripes = cvCeil(height / maxStripeSize);
int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2));
if (slidingSumBuf.cols < bufSize)
slidingSumBuf.create(1, bufSize, CV_8U);
uchar *_buf = slidingSumBuf.ptr();
parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, &params), 1);
Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2;
validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
params.minDisparity, params.numDisparities,
params.SADWindowSize);
parallel_for_(Range(0, nstripes),
FindStereoCorrespInvoker(left, right, disp, &params, nstripes,
bufSize0, useShorts, validDisparityRect,
slidingSumBuf, cost));
if (params.speckleRange >= 0 && params.speckleWindowSize > 0)
filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf);
if (disp0.data != disp.data)
disp.convertTo(disp0, disp0.type(), 1. / (1 << DISPARITY_SHIFT), 0);
}
int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
int getNumDisparities() const { return params.numDisparities; }
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }
int getBlockSize() const { return params.SADWindowSize; }
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }
int getSpeckleWindowSize() const { return params.speckleWindowSize; }
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }
int getSpeckleRange() const { return params.speckleRange; }
void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }
int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }
int getPreFilterType() const { return params.preFilterType; }
void setPreFilterType(int preFilterType) { params.preFilterType = preFilterType; }
int getPreFilterSize() const { return params.preFilterSize; }
void setPreFilterSize(int preFilterSize) { params.preFilterSize = preFilterSize; }
int getPreFilterCap() const { return params.preFilterCap; }
void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }
int getTextureThreshold() const { return params.textureThreshold; }
void setTextureThreshold(int textureThreshold) { params.textureThreshold = textureThreshold; }
int getUniquenessRatio() const { return params.uniquenessRatio; }
void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }
int getSmallerBlockSize() const { return 0; }
void setSmallerBlockSize(int) {}
Rect getROI1() const { return params.roi1; }
void setROI1(Rect roi1) { params.roi1 = roi1; }
Rect getROI2() const { return params.roi2; }
void setROI2(Rect roi2) { params.roi2 = roi2; }
void write(FileStorage& fs) const
{
fs << "name" << name_
<< "minDisparity" << params.minDisparity
<< "numDisparities" << params.numDisparities
<< "blockSize" << params.SADWindowSize
<< "speckleWindowSize" << params.speckleWindowSize
<< "speckleRange" << params.speckleRange
<< "disp12MaxDiff" << params.disp12MaxDiff
<< "preFilterType" << params.preFilterType
<< "preFilterSize" << params.preFilterSize
<< "preFilterCap" << params.preFilterCap
<< "textureThreshold" << params.textureThreshold
<< "uniquenessRatio" << params.uniquenessRatio;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name_);
params.minDisparity = (int)fn["minDisparity"];
params.numDisparities = (int)fn["numDisparities"];
params.SADWindowSize = (int)fn["blockSize"];
params.speckleWindowSize = (int)fn["speckleWindowSize"];
params.speckleRange = (int)fn["speckleRange"];
params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
params.preFilterType = (int)fn["preFilterType"];
params.preFilterSize = (int)fn["preFilterSize"];
params.preFilterCap = (int)fn["preFilterCap"];
params.textureThreshold = (int)fn["textureThreshold"];
params.uniquenessRatio = (int)fn["uniquenessRatio"];
params.roi1 = params.roi2 = Rect();
}
StereoBinaryBMParams params;
Mat preFilteredImg0, preFilteredImg1, cost, dispbuf;
Mat slidingSumBuf;
static const char* name_;
};
const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM";
Ptr<StereoBinaryBM> StereoBinaryBM::create(int _numDisparities, int _SADWindowSize)
{
return makePtr<StereoBinaryBMImpl>(_numDisparities, _SADWindowSize);
}
}
}
/* End of file. */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
This is a variation of
"Stereo Processing by Semiglobal Matching and Mutual Information"
by Heiko Hirschmuller.
We match blocks rather than individual pixels, thus the algorithm is called
SGBM (Semi-global block matching)
*/
#include "precomp.hpp"
#include <limits.h>
namespace cv
{
namespace stereo
{
typedef uchar PixType;
typedef short CostType;
typedef short DispType;
enum { NR = 16, NR2 = NR/2 };
struct StereoBinarySGBMParams
{
StereoBinarySGBMParams()
{
minDisparity = numDisparities = 0;
SADWindowSize = 0;
P1 = P2 = 0;
disp12MaxDiff = 0;
preFilterCap = 0;
uniquenessRatio = 0;
speckleWindowSize = 0;
speckleRange = 0;
mode = StereoBinarySGBM::MODE_SGBM;
}
StereoBinarySGBMParams( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
int _mode )
{
minDisparity = _minDisparity;
numDisparities = _numDisparities;
SADWindowSize = _SADWindowSize;
P1 = _P1;
P2 = _P2;
disp12MaxDiff = _disp12MaxDiff;
preFilterCap = _preFilterCap;
uniquenessRatio = _uniquenessRatio;
speckleWindowSize = _speckleWindowSize;
speckleRange = _speckleRange;
mode = _mode;
}
int minDisparity;
int numDisparities;
int SADWindowSize;
int preFilterCap;
int uniquenessRatio;
int P1;
int P2;
int speckleWindowSize;
int speckleRange;
int disp12MaxDiff;
int mode;
};
/*
For each pixel row1[x], max(-maxD, 0) <= minX <= x < maxX <= width - max(0, -minD),
and for each disparity minD<=d<maxD the function
computes the cost (cost[(x-minX)*(maxD - minD) + (d - minD)]), depending on the difference between
row1[x] and row2[x-d]. The subpixel algorithm from
"Depth Discontinuities by Pixel-to-Pixel Stereo" by Stan Birchfield and C. Tomasi
is used, hence the suffix BT.
the temporary buffer should contain width2*2 elements
*/
static void calcPixelCostBT( const Mat& img1, const Mat& img2, int y,
int minD, int maxD, CostType* cost,
PixType* buffer, const PixType* tab,
int tabOfs, int )
{
int x, c, width = img1.cols, cn = img1.channels();
int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
int minX2 = std::max(minX1 - maxD, 0), maxX2 = std::min(maxX1 - minD, width);
int D = maxD - minD, width1 = maxX1 - minX1, width2 = maxX2 - minX2;
const PixType *row1 = img1.ptr<PixType>(y), *row2 = img2.ptr<PixType>(y);
PixType *prow1 = buffer + width2*2, *prow2 = prow1 + width*cn*2;
tab += tabOfs;
for( c = 0; c < cn*2; c++ )
{
prow1[width*c] = prow1[width*c + width-1] =
prow2[width*c] = prow2[width*c + width-1] = tab[0];
}
int n1 = y > 0 ? -(int)img1.step : 0, s1 = y < img1.rows-1 ? (int)img1.step : 0;
int n2 = y > 0 ? -(int)img2.step : 0, s2 = y < img2.rows-1 ? (int)img2.step : 0;
if( cn == 1 )
{
for( x = 1; x < width-1; x++ )
{
prow1[x] = tab[(row1[x+1] - row1[x-1])*2 + row1[x+n1+1] - row1[x+n1-1] + row1[x+s1+1] - row1[x+s1-1]];
prow2[width-1-x] = tab[(row2[x+1] - row2[x-1])*2 + row2[x+n2+1] - row2[x+n2-1] + row2[x+s2+1] - row2[x+s2-1]];
prow1[x+width] = row1[x];
prow2[width-1-x+width] = row2[x];
}
}
else
{
for( x = 1; x < width-1; x++ )
{
prow1[x] = tab[(row1[x*3+3] - row1[x*3-3])*2 + row1[x*3+n1+3] - row1[x*3+n1-3] + row1[x*3+s1+3] - row1[x*3+s1-3]];
prow1[x+width] = tab[(row1[x*3+4] - row1[x*3-2])*2 + row1[x*3+n1+4] - row1[x*3+n1-2] + row1[x*3+s1+4] - row1[x*3+s1-2]];
prow1[x+width*2] = tab[(row1[x*3+5] - row1[x*3-1])*2 + row1[x*3+n1+5] - row1[x*3+n1-1] + row1[x*3+s1+5] - row1[x*3+s1-1]];
prow2[width-1-x] = tab[(row2[x*3+3] - row2[x*3-3])*2 + row2[x*3+n2+3] - row2[x*3+n2-3] + row2[x*3+s2+3] - row2[x*3+s2-3]];
prow2[width-1-x+width] = tab[(row2[x*3+4] - row2[x*3-2])*2 + row2[x*3+n2+4] - row2[x*3+n2-2] + row2[x*3+s2+4] - row2[x*3+s2-2]];
prow2[width-1-x+width*2] = tab[(row2[x*3+5] - row2[x*3-1])*2 + row2[x*3+n2+5] - row2[x*3+n2-1] + row2[x*3+s2+5] - row2[x*3+s2-1]];
prow1[x+width*3] = row1[x*3];
prow1[x+width*4] = row1[x*3+1];
prow1[x+width*5] = row1[x*3+2];
prow2[width-1-x+width*3] = row2[x*3];
prow2[width-1-x+width*4] = row2[x*3+1];
prow2[width-1-x+width*5] = row2[x*3+2];
}
}
memset( cost, 0, width1*D*sizeof(cost[0]) );
buffer -= minX2;
cost -= minX1*D + minD; // simplify the cost indices inside the loop
#if CV_SSE2
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
#if 1
for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width )
{
int diff_scale = c < cn ? 0 : 2;
// precompute
// v0 = min(row2[x-1/2], row2[x], row2[x+1/2]) and
// v1 = max(row2[x-1/2], row2[x], row2[x+1/2]) and
for( x = minX2; x < maxX2; x++ )
{
int v = prow2[x];
int vl = x > 0 ? (v + prow2[x-1])/2 : v;
int vr = x < width-1 ? (v + prow2[x+1])/2 : v;
int v0 = std::min(vl, vr); v0 = std::min(v0, v);
int v1 = std::max(vl, vr); v1 = std::max(v1, v);
buffer[x] = (PixType)v0;
buffer[x + width2] = (PixType)v1;
}
for( x = minX1; x < maxX1; x++ )
{
int u = prow1[x];
int ul = x > 0 ? (u + prow1[x-1])/2 : u;
int ur = x < width-1 ? (u + prow1[x+1])/2 : u;
int u0 = std::min(ul, ur); u0 = std::min(u0, u);
int u1 = std::max(ul, ur); u1 = std::max(u1, u);
#if CV_SSE2
if( useSIMD )
{
__m128i _u = _mm_set1_epi8((char)u), _u0 = _mm_set1_epi8((char)u0);
__m128i _u1 = _mm_set1_epi8((char)u1), z = _mm_setzero_si128();
__m128i ds = _mm_cvtsi32_si128(diff_scale);
for( int d = minD; d < maxD; d += 16 )
{
__m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-x-1 + d));
__m128i _v0 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d));
__m128i _v1 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d + width2));
__m128i c0 = _mm_max_epu8(_mm_subs_epu8(_u, _v1), _mm_subs_epu8(_v0, _u));
__m128i c1 = _mm_max_epu8(_mm_subs_epu8(_v, _u1), _mm_subs_epu8(_u0, _v));
__m128i diff = _mm_min_epu8(c0, c1);
c0 = _mm_load_si128((__m128i*)(cost + x*D + d));
c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8));
_mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_srl_epi16(_mm_unpacklo_epi8(diff,z), ds)));
_mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_srl_epi16(_mm_unpackhi_epi8(diff,z), ds)));
}
}
else
#endif
{
for( int d = minD; d < maxD; d++ )
{
int v = prow2[width-x-1 + d];
int v0 = buffer[width-x-1 + d];
int v1 = buffer[width-x-1 + d + width2];
int c0 = std::max(0, u - v1); c0 = std::max(c0, v0 - u);
int c1 = std::max(0, v - u1); c1 = std::max(c1, u0 - v);
cost[x*D + d] = (CostType)(cost[x*D+d] + (std::min(c0, c1) >> diff_scale));
}
}
}
}
#else
for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width )
{
for( x = minX1; x < maxX1; x++ )
{
int u = prow1[x];
#if CV_SSE2
if( useSIMD )
{
__m128i _u = _mm_set1_epi8(u), z = _mm_setzero_si128();
for( int d = minD; d < maxD; d += 16 )
{
__m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-1-x + d));
__m128i diff = _mm_adds_epu8(_mm_subs_epu8(_u,_v), _mm_subs_epu8(_v,_u));
__m128i c0 = _mm_load_si128((__m128i*)(cost + x*D + d));
__m128i c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8));
_mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_unpacklo_epi8(diff,z)));
_mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_unpackhi_epi8(diff,z)));
}
}
else
#endif
{
for( int d = minD; d < maxD; d++ )
{
int v = prow2[width-1-x + d];
cost[x*D + d] = (CostType)(cost[x*D + d] + (CostType)std::abs(u - v));
}
}
}
}
#endif
}
/*
computes disparity for "roi" in img1 w.r.t. img2 and write it to disp1buf.
that is, disp1buf(x, y)=d means that img1(x+roi.x, y+roi.y) ~ img2(x+roi.x-d, y+roi.y).
minD <= d < maxD.
disp2full is the reverse disparity map, that is:
disp2full(x+roi.x,y+roi.y)=d means that img2(x+roi.x, y+roi.y) ~ img1(x+roi.x+d, y+roi.y)
note that disp1buf will have the same size as the roi and
disp2full will have the same size as img1 (or img2).
On exit disp2buf is not the final disparity, it is an intermediate result that becomes
final after all the tiles are processed.
the disparity in disp1buf is written with sub-pixel accuracy
(4 fractional bits, see StereoSGBM::DISP_SCALE),
using quadratic interpolation, while the disparity in disp2buf
is written as is, without interpolation.
disp2cost also has the same size as img1 (or img2).
It contains the minimum current cost, used to find the best disparity, corresponding to the minimal cost.
*/
static void computeDisparityBinarySGBM( const Mat& img1, const Mat& img2,
Mat& disp1, const StereoBinarySGBMParams& params,
Mat& buffer )
{
#if CV_SSE2
static const uchar LSBTab[] =
{
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
const int ALIGN = 16;
const int DISP_SHIFT = StereoMatcher::DISP_SHIFT;
const int DISP_SCALE = (1 << DISP_SHIFT);
const CostType MAX_COST = SHRT_MAX;
int minD = params.minDisparity, maxD = minD + params.numDisparities;
Size SADWindowSize;
SADWindowSize.width = SADWindowSize.height = params.SADWindowSize > 0 ? params.SADWindowSize : 5;
int ftzero = std::max(params.preFilterCap, 15) | 1;
int uniquenessRatio = params.uniquenessRatio >= 0 ? params.uniquenessRatio : 10;
int disp12MaxDiff = params.disp12MaxDiff > 0 ? params.disp12MaxDiff : 1;
int P1 = params.P1 > 0 ? params.P1 : 2, P2 = std::max(params.P2 > 0 ? params.P2 : 5, P1+1);
int k, width = disp1.cols, height = disp1.rows;
int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
int D = maxD - minD, width1 = maxX1 - minX1;
int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE;
int SW2 = SADWindowSize.width/2, SH2 = SADWindowSize.height/2;
bool fullDP = params.mode == StereoBinarySGBM::MODE_HH;
int npasses = fullDP ? 2 : 1;
const int TAB_OFS = 256*4, TAB_SIZE = 256 + TAB_OFS*2;
PixType clipTab[TAB_SIZE];
for( k = 0; k < TAB_SIZE; k++ )
clipTab[k] = (PixType)(std::min(std::max(k - TAB_OFS, -ftzero), ftzero) + ftzero);
if( minX1 >= maxX1 )
{
disp1 = Scalar::all(INVALID_DISP_SCALED);
return;
}
CV_Assert( D % 16 == 0 );
// NR - the number of directions. the loop on x below that computes Lr assumes that NR == 8.
// if you change NR, please, modify the loop as well.
int D2 = D+16, NRD2 = NR2*D2;
// the number of L_r(.,.) and min_k L_r(.,.) lines in the buffer:
// for 8-way dynamic programming we need the current row and
// the previous row, i.e. 2 rows in total
const int NLR = 2;
const int LrBorder = NLR - 1;
// for each possible stereo match (img1(x,y) <=> img2(x-d,y))
// we keep pixel difference cost (C) and the summary cost over NR directions (S).
// we also keep all the partial costs for the previous line L_r(x,d) and also min_k L_r(x, k)
size_t costBufSize = width1*D;
size_t CSBufSize = costBufSize*(fullDP ? height : 1);
size_t minLrSize = (width1 + LrBorder*2)*NR2, LrSize = minLrSize*D2;
int hsumBufNRows = SH2*2 + 2;
size_t totalBufSize = (LrSize + minLrSize)*NLR*sizeof(CostType) + // minLr[] and Lr[]
costBufSize*(hsumBufNRows + 1)*sizeof(CostType) + // hsumBuf, pixdiff
CSBufSize*2*sizeof(CostType) + // C, S
width*16*img1.channels()*sizeof(PixType) + // temp buffer for computing per-pixel cost
width*(sizeof(CostType) + sizeof(DispType)) + 1024; // disp2cost + disp2
if( buffer.empty() || !buffer.isContinuous() ||
buffer.cols*buffer.rows*buffer.elemSize() < totalBufSize )
buffer.create(1, (int)totalBufSize, CV_8U);
// summary cost over different (nDirs) directions
CostType* Cbuf = (CostType*)alignPtr(buffer.ptr(), ALIGN);
CostType* Sbuf = Cbuf + CSBufSize;
CostType* hsumBuf = Sbuf + CSBufSize;
CostType* pixDiff = hsumBuf + costBufSize*hsumBufNRows;
CostType* disp2cost = pixDiff + costBufSize + (LrSize + minLrSize)*NLR;
DispType* disp2ptr = (DispType*)(disp2cost + width);
PixType* tempBuf = (PixType*)(disp2ptr + width);
// add P2 to every C(x,y). it saves a few operations in the inner loops
for( k = 0; k < width1*D; k++ )
Cbuf[k] = (CostType)P2;
for( int pass = 1; pass <= npasses; pass++ )
{
int x1, y1, x2, y2, dx, dy;
if( pass == 1 )
{
y1 = 0; y2 = height; dy = 1;
x1 = 0; x2 = width1; dx = 1;
}
else
{
y1 = height-1; y2 = -1; dy = -1;
x1 = width1-1; x2 = -1; dx = -1;
}
CostType *Lr[NLR]={0}, *minLr[NLR]={0};
for( k = 0; k < NLR; k++ )
{
// shift Lr[k] and minLr[k] pointers, because we allocated them with the borders,
// and will occasionally use negative indices with the arrays
// we need to shift Lr[k] pointers by 1, to give the space for d=-1.
// however, then the alignment will be imperfect, i.e. bad for SSE,
// thus we shift the pointers by 8 (8*sizeof(short) == 16 - ideal alignment)
Lr[k] = pixDiff + costBufSize + LrSize*k + NRD2*LrBorder + 8;
memset( Lr[k] - LrBorder*NRD2 - 8, 0, LrSize*sizeof(CostType) );
minLr[k] = pixDiff + costBufSize + LrSize*NLR + minLrSize*k + NR2*LrBorder;
memset( minLr[k] - LrBorder*NR2, 0, minLrSize*sizeof(CostType) );
}
for( int y = y1; y != y2; y += dy )
{
int x, d;
DispType* disp1ptr = disp1.ptr<DispType>(y);
CostType* C = Cbuf + (!fullDP ? 0 : y*costBufSize);
CostType* S = Sbuf + (!fullDP ? 0 : y*costBufSize);
if( pass == 1 ) // compute C on the first pass, and reuse it on the second pass, if any.
{
int dy1 = y == 0 ? 0 : y + SH2, dy2 = y == 0 ? SH2 : dy1;
for( k = dy1; k <= dy2; k++ )
{
CostType* hsumAdd = hsumBuf + (std::min(k, height-1) % hsumBufNRows)*costBufSize;
if( k < height )
{
calcPixelCostBT( img1, img2, k, minD, maxD, pixDiff, tempBuf, clipTab, TAB_OFS, ftzero );
memset(hsumAdd, 0, D*sizeof(CostType));
for( x = 0; x <= SW2*D; x += D )
{
int scale = x == 0 ? SW2 + 1 : 1;
for( d = 0; d < D; d++ )
hsumAdd[d] = (CostType)(hsumAdd[d] + pixDiff[x + d]*scale);
}
if( y > 0 )
{
const CostType* hsumSub = hsumBuf + (std::max(y - SH2 - 1, 0) % hsumBufNRows)*costBufSize;
const CostType* Cprev = !fullDP || y == 0 ? C : C - costBufSize;
for( x = D; x < width1*D; x += D )
{
const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);
#if CV_SSE2
if( useSIMD )
{
for( d = 0; d < D; d += 8 )
{
__m128i hv = _mm_load_si128((const __m128i*)(hsumAdd + x - D + d));
__m128i Cx = _mm_load_si128((__m128i*)(Cprev + x + d));
hv = _mm_adds_epi16(_mm_subs_epi16(hv,
_mm_load_si128((const __m128i*)(pixSub + d))),
_mm_load_si128((const __m128i*)(pixAdd + d)));
Cx = _mm_adds_epi16(_mm_subs_epi16(Cx,
_mm_load_si128((const __m128i*)(hsumSub + x + d))),
hv);
_mm_store_si128((__m128i*)(hsumAdd + x + d), hv);
_mm_store_si128((__m128i*)(C + x + d), Cx);
}
}
else
#endif
{
for( d = 0; d < D; d++ )
{
int hv = hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
C[x + d] = (CostType)(Cprev[x + d] + hv - hsumSub[x + d]);
}
}
}
}
else
{
for( x = D; x < width1*D; x += D )
{
const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);
for( d = 0; d < D; d++ )
hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
}
}
}
if( y == 0 )
{
int scale = k == 0 ? SH2 + 1 : 1;
for( x = 0; x < width1*D; x++ )
C[x] = (CostType)(C[x] + hsumAdd[x]*scale);
}
}
// also, clear the S buffer
for( k = 0; k < width1*D; k++ )
S[k] = 0;
}
// clear the left and the right borders
memset( Lr[0] - NRD2*LrBorder - 8, 0, NRD2*LrBorder*sizeof(CostType) );
memset( Lr[0] + width1*NRD2 - 8, 0, NRD2*LrBorder*sizeof(CostType) );
memset( minLr[0] - NR2*LrBorder, 0, NR2*LrBorder*sizeof(CostType) );
memset( minLr[0] + width1*NR2, 0, NR2*LrBorder*sizeof(CostType) );
/*
[formula 13 in the paper]
compute L_r(p, d) = C(p, d) +
min(L_r(p-r, d),
L_r(p-r, d-1) + P1,
L_r(p-r, d+1) + P1,
min_k L_r(p-r, k) + P2) - min_k L_r(p-r, k)
where p = (x,y), r is one of the directions.
we process all the directions at once:
0: r=(-dx, 0)
1: r=(-1, -dy)
2: r=(0, -dy)
3: r=(1, -dy)
4: r=(-2, -dy)
5: r=(-1, -dy*2)
6: r=(1, -dy*2)
7: r=(2, -dy)
*/
for( x = x1; x != x2; x += dx )
{
int xm = x*NR2, xd = xm*D2;
int delta0 = minLr[0][xm - dx*NR2] + P2, delta1 = minLr[1][xm - NR2 + 1] + P2;
int delta2 = minLr[1][xm + 2] + P2, delta3 = minLr[1][xm + NR2 + 3] + P2;
CostType* Lr_p0 = Lr[0] + xd - dx*NRD2;
CostType* Lr_p1 = Lr[1] + xd - NRD2 + D2;
CostType* Lr_p2 = Lr[1] + xd + D2*2;
CostType* Lr_p3 = Lr[1] + xd + NRD2 + D2*3;
Lr_p0[-1] = Lr_p0[D] = Lr_p1[-1] = Lr_p1[D] =
Lr_p2[-1] = Lr_p2[D] = Lr_p3[-1] = Lr_p3[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x*D;
CostType* Sp = S + x*D;
#if CV_SSE2
if( useSIMD )
{
__m128i _P1 = _mm_set1_epi16((short)P1);
__m128i _delta0 = _mm_set1_epi16((short)delta0);
__m128i _delta1 = _mm_set1_epi16((short)delta1);
__m128i _delta2 = _mm_set1_epi16((short)delta2);
__m128i _delta3 = _mm_set1_epi16((short)delta3);
__m128i _minL0 = _mm_set1_epi16((short)MAX_COST);
for( d = 0; d < D; d += 8 )
{
__m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d));
__m128i L0, L1, L2, L3;
L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
L1 = _mm_load_si128((const __m128i*)(Lr_p1 + d));
L2 = _mm_load_si128((const __m128i*)(Lr_p2 + d));
L3 = _mm_load_si128((const __m128i*)(Lr_p3 + d));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d - 1)), _P1));
L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d + 1)), _P1));
L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d - 1)), _P1));
L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d + 1)), _P1));
L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d - 1)), _P1));
L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d + 1)), _P1));
L0 = _mm_min_epi16(L0, _delta0);
L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);
L1 = _mm_min_epi16(L1, _delta1);
L1 = _mm_adds_epi16(_mm_subs_epi16(L1, _delta1), Cpd);
L2 = _mm_min_epi16(L2, _delta2);
L2 = _mm_adds_epi16(_mm_subs_epi16(L2, _delta2), Cpd);
L3 = _mm_min_epi16(L3, _delta3);
L3 = _mm_adds_epi16(_mm_subs_epi16(L3, _delta3), Cpd);
_mm_store_si128( (__m128i*)(Lr_p + d), L0);
_mm_store_si128( (__m128i*)(Lr_p + d + D2), L1);
_mm_store_si128( (__m128i*)(Lr_p + d + D2*2), L2);
_mm_store_si128( (__m128i*)(Lr_p + d + D2*3), L3);
__m128i t0 = _mm_min_epi16(_mm_unpacklo_epi16(L0, L2), _mm_unpackhi_epi16(L0, L2));
__m128i t1 = _mm_min_epi16(_mm_unpacklo_epi16(L1, L3), _mm_unpackhi_epi16(L1, L3));
t0 = _mm_min_epi16(_mm_unpacklo_epi16(t0, t1), _mm_unpackhi_epi16(t0, t1));
_minL0 = _mm_min_epi16(_minL0, t0);
__m128i Sval = _mm_load_si128((const __m128i*)(Sp + d));
L0 = _mm_adds_epi16(L0, L1);
L2 = _mm_adds_epi16(L2, L3);
Sval = _mm_adds_epi16(Sval, L0);
Sval = _mm_adds_epi16(Sval, L2);
_mm_store_si128((__m128i*)(Sp + d), Sval);
}
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
_mm_storel_epi64((__m128i*)&minLr[0][xm], _minL0);
}
else
#endif
{
int minL0 = MAX_COST, minL1 = MAX_COST, minL2 = MAX_COST, minL3 = MAX_COST;
for( d = 0; d < D; d++ )
{
int Cpd = Cp[d], L0, L1, L2, L3;
L0 = Cpd + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
L1 = Cpd + std::min((int)Lr_p1[d], std::min(Lr_p1[d-1] + P1, std::min(Lr_p1[d+1] + P1, delta1))) - delta1;
L2 = Cpd + std::min((int)Lr_p2[d], std::min(Lr_p2[d-1] + P1, std::min(Lr_p2[d+1] + P1, delta2))) - delta2;
L3 = Cpd + std::min((int)Lr_p3[d], std::min(Lr_p3[d-1] + P1, std::min(Lr_p3[d+1] + P1, delta3))) - delta3;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
Lr_p[d + D2] = (CostType)L1;
minL1 = std::min(minL1, L1);
Lr_p[d + D2*2] = (CostType)L2;
minL2 = std::min(minL2, L2);
Lr_p[d + D2*3] = (CostType)L3;
minL3 = std::min(minL3, L3);
Sp[d] = saturate_cast<CostType>(Sp[d] + L0 + L1 + L2 + L3);
}
minLr[0][xm] = (CostType)minL0;
minLr[0][xm+1] = (CostType)minL1;
minLr[0][xm+2] = (CostType)minL2;
minLr[0][xm+3] = (CostType)minL3;
}
}
if( pass == npasses )
{
for( x = 0; x < width; x++ )
{
disp1ptr[x] = disp2ptr[x] = (DispType)INVALID_DISP_SCALED;
disp2cost[x] = MAX_COST;
}
for( x = width1 - 1; x >= 0; x-- )
{
CostType* Sp = S + x*D;
int minS = MAX_COST, bestDisp = -1;
if( npasses == 1 )
{
int xm = x*NR2, xd = xm*D2;
int minL0 = MAX_COST;
int delta0 = minLr[0][xm + NR2] + P2;
CostType* Lr_p0 = Lr[0] + xd + NRD2;
Lr_p0[-1] = Lr_p0[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x*D;
#if CV_SSE2
if( useSIMD )
{
__m128i _P1 = _mm_set1_epi16((short)P1);
__m128i _delta0 = _mm_set1_epi16((short)delta0);
__m128i _minL0 = _mm_set1_epi16((short)minL0);
__m128i _minS = _mm_set1_epi16(MAX_COST), _bestDisp = _mm_set1_epi16(-1);
__m128i _d8 = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7), _8 = _mm_set1_epi16(8);
for( d = 0; d < D; d += 8 )
{
__m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d)), L0;
L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
L0 = _mm_min_epi16(L0, _delta0);
L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);
_mm_store_si128((__m128i*)(Lr_p + d), L0);
_minL0 = _mm_min_epi16(_minL0, L0);
L0 = _mm_adds_epi16(L0, *(__m128i*)(Sp + d));
_mm_store_si128((__m128i*)(Sp + d), L0);
__m128i mask = _mm_cmpgt_epi16(_minS, L0);
_minS = _mm_min_epi16(_minS, L0);
_bestDisp = _mm_xor_si128(_bestDisp, _mm_and_si128(_mm_xor_si128(_bestDisp,_d8), mask));
_d8 = _mm_adds_epi16(_d8, _8);
}
short CV_DECL_ALIGNED(16) bestDispBuf[8];
_mm_store_si128((__m128i*)bestDispBuf, _bestDisp);
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 4));
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 2));
__m128i qS = _mm_min_epi16(_minS, _mm_srli_si128(_minS, 8));
qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 4));
qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 2));
minLr[0][xm] = (CostType)_mm_cvtsi128_si32(_minL0);
minS = (CostType)_mm_cvtsi128_si32(qS);
qS = _mm_shuffle_epi32(_mm_unpacklo_epi16(qS, qS), 0);
qS = _mm_cmpeq_epi16(_minS, qS);
int idx = _mm_movemask_epi8(_mm_packs_epi16(qS, qS)) & 255;
bestDisp = bestDispBuf[LSBTab[idx]];
}
else
#endif
{
for( d = 0; d < D; d++ )
{
int L0 = Cp[d] + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
int Sval = Sp[d] = saturate_cast<CostType>(Sp[d] + L0);
if( Sval < minS )
{
minS = Sval;
bestDisp = d;
}
}
minLr[0][xm] = (CostType)minL0;
}
}
else
{
for( d = 0; d < D; d++ )
{
int Sval = Sp[d];
if( Sval < minS )
{
minS = Sval;
bestDisp = d;
}
}
}
for( d = 0; d < D; d++ )
{
if( Sp[d]*(100 - uniquenessRatio) < minS*100 && std::abs(bestDisp - d) > 1 )
break;
}
if( d < D )
continue;
d = bestDisp;
int _x2 = x + minX1 - d - minD;
if( disp2cost[_x2] > minS )
{
disp2cost[_x2] = (CostType)minS;
disp2ptr[_x2] = (DispType)(d + minD);
}
if( 0 < d && d < D-1 )
{
// do subpixel quadratic interpolation:
// fit parabola into (x1=d-1, y1=Sp[d-1]), (x2=d, y2=Sp[d]), (x3=d+1, y3=Sp[d+1])
// then find minimum of the parabola.
int denom2 = std::max(Sp[d-1] + Sp[d+1] - 2*Sp[d], 1);
d = d*DISP_SCALE + ((Sp[d-1] - Sp[d+1])*DISP_SCALE + denom2)/(denom2*2);
}
else
d *= DISP_SCALE;
disp1ptr[x + minX1] = (DispType)(d + minD*DISP_SCALE);
}
for( x = minX1; x < maxX1; x++ )
{
// we round the computed disparity both towards -inf and +inf and check
// if either of the corresponding disparities in disp2 is consistent.
// This is to give the computed disparity a chance to look valid if it is.
int d1 = disp1ptr[x];
if( d1 == INVALID_DISP_SCALED )
continue;
int _d = d1 >> DISP_SHIFT;
int d_ = (d1 + DISP_SCALE-1) >> DISP_SHIFT;
int _x = x - _d, x_ = x - d_;
if( 0 <= _x && _x < width && disp2ptr[_x] >= minD && std::abs(disp2ptr[_x] - _d) > disp12MaxDiff &&
0 <= x_ && x_ < width && disp2ptr[x_] >= minD && std::abs(disp2ptr[x_] - d_) > disp12MaxDiff )
disp1ptr[x] = (DispType)INVALID_DISP_SCALED;
}
}
// now shift the cyclic buffers
std::swap( Lr[0], Lr[1] );
std::swap( minLr[0], minLr[1] );
}
}
}
class StereoBinarySGBMImpl : public StereoBinarySGBM
{
public:
StereoBinarySGBMImpl()
{
params = StereoBinarySGBMParams();
}
StereoBinarySGBMImpl( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
int _mode )
{
params = StereoBinarySGBMParams( _minDisparity, _numDisparities, _SADWindowSize,
_P1, _P2, _disp12MaxDiff, _preFilterCap,
_uniquenessRatio, _speckleWindowSize, _speckleRange,
_mode );
}
void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
{
Mat left = leftarr.getMat(), right = rightarr.getMat();
CV_Assert( left.size() == right.size() && left.type() == right.type() &&
left.depth() == CV_8U );
disparr.create( left.size(), CV_16S );
Mat disp = disparr.getMat();
computeDisparityBinarySGBM( left, right, disp, params, buffer );
medianBlur(disp, disp, 3);
if( params.speckleWindowSize > 0 )
filterSpeckles(disp, (params.minDisparity - 1)*StereoMatcher::DISP_SCALE, params.speckleWindowSize,
StereoMatcher::DISP_SCALE*params.speckleRange, buffer);
}
int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
int getNumDisparities() const { return params.numDisparities; }
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }
int getBlockSize() const { return params.SADWindowSize; }
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }
int getSpeckleWindowSize() const { return params.speckleWindowSize; }
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }
int getSpeckleRange() const { return params.speckleRange; }
void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }
int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }
int getPreFilterCap() const { return params.preFilterCap; }
void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }
int getUniquenessRatio() const { return params.uniquenessRatio; }
void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }
int getP1() const { return params.P1; }
void setP1(int P1) { params.P1 = P1; }
int getP2() const { return params.P2; }
void setP2(int P2) { params.P2 = P2; }
int getMode() const { return params.mode; }
void setMode(int mode) { params.mode = mode; }
void write(FileStorage& fs) const
{
fs << "name" << name_
<< "minDisparity" << params.minDisparity
<< "numDisparities" << params.numDisparities
<< "blockSize" << params.SADWindowSize
<< "speckleWindowSize" << params.speckleWindowSize
<< "speckleRange" << params.speckleRange
<< "disp12MaxDiff" << params.disp12MaxDiff
<< "preFilterCap" << params.preFilterCap
<< "uniquenessRatio" << params.uniquenessRatio
<< "P1" << params.P1
<< "P2" << params.P2
<< "mode" << params.mode;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert( n.isString() && String(n) == name_ );
params.minDisparity = (int)fn["minDisparity"];
params.numDisparities = (int)fn["numDisparities"];
params.SADWindowSize = (int)fn["blockSize"];
params.speckleWindowSize = (int)fn["speckleWindowSize"];
params.speckleRange = (int)fn["speckleRange"];
params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
params.preFilterCap = (int)fn["preFilterCap"];
params.uniquenessRatio = (int)fn["uniquenessRatio"];
params.P1 = (int)fn["P1"];
params.P2 = (int)fn["P2"];
params.mode = (int)fn["mode"];
}
StereoBinarySGBMParams params;
Mat buffer;
static const char* name_;
};
const char* StereoBinarySGBMImpl::name_ = "StereoMatcher.SGBM";
Ptr<StereoBinarySGBM> StereoBinarySGBM::create(int minDisparity, int numDisparities, int SADWindowSize,
int P1, int P2, int disp12MaxDiff,
int preFilterCap, int uniquenessRatio,
int speckleWindowSize, int speckleRange,
int mode)
{
return Ptr<StereoBinarySGBM>(
new StereoBinarySGBMImpl(minDisparity, numDisparities, SADWindowSize,
P1, P2, disp12MaxDiff,
preFilterCap, uniquenessRatio,
speckleWindowSize, speckleRange,
mode));
}
typedef cv::Point_<short> Point2s;
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
CV_TEST_MAIN("cv")
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include <iostream>
#include "opencv2/ts.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include <algorithm>
#include <cmath>
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment