Commit addeb493 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #73 from shahurik/adas

xobjdetect documentation
parents c16edac3 1695ee7c
.. highlight:: cpp
Integral Channel Features Detector
==================================
This section describes classes for object detection using WaldBoost and Integral
Channel Features from [Šochman05]_ and [Dollár09]_.
computeChannels
---------------
Compute channels for integral channel features evaluation
.. ocv:function:: void computeChannels(InputArray image, vector<Mat>& channels)
:param image: image for which channels should be computed
:param channels: output array for computed channels
FeatureEvaluator
----------------
Feature evaluation interface
.. ocv:class:: FeatureEvaluator : public Algorithm
FeatureEvaluator::setChannels
-----------------------------
Set channels for feature evaluation
.. ocv:function:: void FeatureEvaluator::setChannels(InputArrayOfArrays channels)
:param channels: array of channels to be set
FeatureEvaluator::setPosition
-----------------------------
Set window position to sample features with shift. By default position is (0, 0).
.. ocv:function:: void FeatureEvaluator::setPosition(Size position)
:param position: position to be set
FeatureEvaluator::evaluate
--------------------------
Evaluate feature value with given index for current channels and window position.
.. ocv:function:: int FeatureEvaluator::evaluate(size_t feature_ind) const
:param feature_ind: index of feature to be evaluated
FeatureEvaluator::evaluateAll
-----------------------------
Evaluate all features for current channels and window position.
.. ocv:function:: void FeatureEvaluator::evaluateAll(OutputArray feature_values)
:param feature_values: matrix-column of evaluated feature values
generateFeatures
----------------
Generate integral features. Returns vector of features.
.. ocv:function:: vector<vector<int> > generateFeatures(Size window_size, const string& type, int count=INT_MAX, int channel_count=10)
:param window_size: size of window in which features should be evaluated
:param type: feature type. Can be "icf" or "acf"
:param count: number of features to generate.
:param channel_count: number of feature channels
createFeatureEvaluator
----------------------
Construct feature evaluator.
.. ocv:function:: Ptr<FeatureEvaluator> createFeatureEvaluator(const vector<vector<int>>& features, const string& type)
:param features: features for evaluation
:param type: feature type. Can be "icf" or "acf"
WaldBoostParams
---------------
Parameters for WaldBoost. weak_count — number of weak learners, alpha — cascade
thresholding param.
::
struct CV_EXPORTS WaldBoostParams
{
int weak_count;
float alpha;
WaldBoostParams(): weak_count(100), alpha(0.02f)
{}
};
WaldBoost
---------
.. ocv:class:: WaldBoost : public Algorithm
WaldBoost::train
----------------
Train WaldBoost cascade for given data. Returns feature indices chosen for
cascade. Feature enumeration starts from 0.
.. ocv:function:: vector<int> WaldBoost::train(const Mat& data, const Mat& labels)
:param data: matrix of feature values, size M x N, one feature per row
:param labels: matrix of samples class labels, size 1 x N. Labels can be from {-1, +1}
WaldBoost::predict
------------------
Predict objects class given object that can compute object features. Returns
unnormed confidence value — measure of confidence that object is from class +1.
.. ocv:function:: float WaldBoost::predict(const Ptr<FeatureEvaluator>& feature_evaluator) const
:param feature_evaluator: object that can compute features by demand
WaldBoost::write
----------------
Write WaldBoost to FileStorage
.. ocv:function:: void WaldBoost::write(FileStorage& fs)
:param fs: FileStorage for output
WaldBoost::read
---------------
Write WaldBoost to FileNode
.. ocv:function:: void WaldBoost::read(const FileNode& node)
:param node: FileNode for reading
createWaldBoost
---------------
Construct WaldBoost object.
.. ocv:function:: Ptr<WaldBoost> createWaldBoost(const WaldBoostParams& params = WaldBoostParams())
ICFDetectorParams
-----------------
Params for ICFDetector training.
::
struct CV_EXPORTS ICFDetectorParams
{
int feature_count;
int weak_count;
int model_n_rows;
int model_n_cols;
int bg_per_image;
ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100),
model_n_rows(56), model_n_cols(56), bg_per_image(5)
{}
};
ICFDetector
-----------
.. ocv:class:: ICFDetector
ICFDetector::train
------------------
Train detector.
.. ocv:function:: void ICFDetector::train(const String& pos_path, const String& bg_path, ICFDetectorParams params = ICFDetectorParams())
:param pos_path: path to folder with images of objects
:param bg_path: path to folder with background images
:param params: parameters for detector training
ICFDetector::detect
-------------------
Detect objects on image.
.. ocv:function:: void ICFDetector::detect(const Mat& image, vector<Rect>& objects, float scaleFactor, Size minSize, Size maxSize, float threshold)
:param image: image for detection
:param objects: output array of bounding boxes
:param scaleFactor: scale between layers in detection pyramid
:param minSize: min size of objects in pixels
:param maxSize: max size of objects in pixels
ICFDetector::write
------------------
Write detector to FileStorage.
.. ocv:function:: void ICFDetector::write(FileStorage& fs) const
:param fs: FileStorage for output
ICFDetector::read
-----------------
Write ICFDetector to FileNode
.. ocv:function:: void ICFDetector::read(const FileNode& node)
:param node: FileNode for reading
.. [Šochman05] J. Šochman and J. Matas. WaldBoost – Learning for Time Constrained Sequential Detection", CVPR, 2005. The paper is available `online <https://dspace.cvut.cz/bitstream/handle/10467/9494/2005-Waldboost-learning-for-time-constrained-sequential-detection.pdf?sequence=1>`__.
.. [Dollár09] P. Dollár, Z. Tu, P. Perona and S. Belongie. "Integral Channel Features", BMCV 2009. The paper is available `online <http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC09ChnFtrs.pdf>`__.
***************************************
xobjdetect. Extended object detection.
***************************************
.. highlight:: cpp
.. toctree::
:maxdepth: 2
integral_channel_features
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment