Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
ab3015d4
Commit
ab3015d4
authored
Jun 17, 2015
by
Kurnianggoro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added the feature compression method
parent
7b221052
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
94 additions
and
8 deletions
+94
-8
tracker.hpp
modules/tracking/include/opencv2/tracking/tracker.hpp
+4
-1
trackerKCF.cpp
modules/tracking/src/trackerKCF.cpp
+90
-7
No files found.
modules/tracking/include/opencv2/tracking/tracker.hpp
View file @
ab3015d4
...
...
@@ -1208,11 +1208,14 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
double
sigma
;
// gaussian kernel bandwidth
double
lambda
;
// regularization
double
interp_factor
;
// linear interpolation factor for adaptation
double
output_sigma_factor
;
// spatial bandwidth (proportional to target)
double
output_sigma_factor
;
// spatial bandwidth (proportional to target)
double
pca_learning_rate
;
// compression learning rate
bool
resize
;
// activate the resize feature to improve the processing speed
bool
splitCoeff
;
// split the training coefficients into two matrices
bool
wrapKernel
;
// wrap around the kernel values
bool
compressFeature
;
// activate pca method to compress the features
int
max_patch_size
;
// threshold for the ROI size
int
compressed_size
;
// feature size after compression
MODE
descriptor
;
// descriptor type
};
...
...
modules/tracking/src/trackerKCF.cpp
View file @
ab3015d4
...
...
@@ -93,11 +93,13 @@ namespace cv{
void
inline
ifft2
(
const
Mat
src
,
Mat
&
dest
)
const
;
void
inline
pixelWiseMult
(
const
std
::
vector
<
Mat
>
src1
,
const
std
::
vector
<
Mat
>
src2
,
std
::
vector
<
Mat
>
&
dest
,
const
int
flags
,
const
bool
conjB
=
false
)
const
;
void
inline
sumChannels
(
std
::
vector
<
Mat
>
src
,
Mat
&
dest
)
const
;
void
inline
updateProjectionMatrix
(
const
Mat
src
,
Mat
&
old_cov
,
Mat
&
_proj_mtx
,
double
pca_rate
,
int
compressed_sz
)
const
;
void
inline
compress
(
const
Mat
_proj_mtx
,
const
Mat
src
,
Mat
&
dest
)
const
;
bool
getSubWindow
(
const
Mat
img
,
const
Rect
roi
,
Mat
&
patch
)
const
;
void
extractCN
(
Mat
_patch
,
Mat
&
cnFeatures
)
const
;
void
denseGaussKernel
(
const
double
sigma
,
const
Mat
_x
,
const
Mat
_y
,
Mat
&
_k
)
const
;
void
calcResponse
(
const
Mat
_alphaf
,
const
Mat
_k
,
Mat
&
_response
)
const
;
void
calcResponse
(
const
Mat
_alphaf
,
const
Mat
_alphaf_den
,
const
Mat
_k
,
Mat
&
_response
)
const
;
void
calcResponse
(
const
Mat
_alphaf
,
const
Mat
_alphaf_den
,
const
Mat
_k
,
Mat
&
_response
)
const
;
void
shiftRows
(
Mat
&
mat
)
const
;
void
shiftRows
(
Mat
&
mat
,
int
n
)
const
;
...
...
@@ -116,6 +118,7 @@ namespace cv{
Mat
new_alphaf_den
,
alphaf_den
;
// for splitted training coefficients
Mat
z
,
new_z
;
// model
Mat
response
;
// detection result
Mat
old_cov_mtx
,
proj_mtx
;
// for feature compression
bool
resizeImage
;
// resize the image whenever needed and the patch size is large
...
...
@@ -208,6 +211,7 @@ namespace cv{
bool
TrackerKCFImpl
::
updateImpl
(
const
Mat
&
image
,
Rect2d
&
boundingBox
){
double
minVal
,
maxVal
;
// min-max response
Point
minLoc
,
maxLoc
;
// min-max location
Mat
zc
;
Mat
img
=
image
.
clone
();
// check the channels of the input image, grayscale is preferred
...
...
@@ -221,14 +225,26 @@ namespace cv{
// detection part
if
(
frame
>
0
){
denseGaussKernel
(
params
.
sigma
,
x
,
z
,
k
);
//compute the gaussian kernel
if
(
params
.
compressFeature
){
compress
(
proj_mtx
,
x
,
x
);
compress
(
proj_mtx
,
z
,
zc
);
denseGaussKernel
(
params
.
sigma
,
x
,
zc
,
k
);
}
else
{
denseGaussKernel
(
params
.
sigma
,
x
,
z
,
k
);
}
// calculate filter response
if
(
params
.
splitCoeff
){
calcResponse
(
alphaf
,
alphaf_den
,
k
,
response
);
}
else
{
calcResponse
(
alphaf
,
k
,
response
);
}
// extract the maximum response
minMaxLoc
(
response
,
&
minVal
,
&
maxVal
,
&
minLoc
,
&
maxLoc
);
roi
.
x
+=
(
maxLoc
.
x
-
roi
.
width
/
2
+
1
);
roi
.
y
+=
(
maxLoc
.
y
-
roi
.
height
/
2
+
1
);
roi
.
x
+=
(
maxLoc
.
x
-
roi
.
width
/
2
+
1
);
roi
.
y
+=
(
maxLoc
.
y
-
roi
.
height
/
2
+
1
);
// update the bounding box
boundingBox
.
x
=
(
resizeImage
?
roi
.
x
*
2
:
roi
.
x
)
+
boundingBox
.
width
/
2
;
...
...
@@ -238,6 +254,20 @@ namespace cv{
// extract the patch for learning purpose
if
(
!
getSubWindow
(
img
,
roi
,
x
))
return
false
;
//update the training data
new_z
=
x
.
clone
();
if
(
frame
==
0
){
z
=
x
.
clone
();
}
else
{
z
=
(
1.0
-
params
.
interp_factor
)
*
z
+
params
.
interp_factor
*
new_z
;
}
if
(
params
.
compressFeature
){
// feature compression
updateProjectionMatrix
(
z
,
old_cov_mtx
,
proj_mtx
,
params
.
pca_learning_rate
,
params
.
compressed_size
);
compress
(
proj_mtx
,
x
,
x
);
}
// Kernel Regularized Least-Squares, calculate alphas
denseGaussKernel
(
params
.
sigma
,
x
,
x
,
k
);
...
...
@@ -264,16 +294,13 @@ namespace cv{
}
}
// update the learning model
new_z
=
x
.
clone
();
// update the RLS model
if
(
frame
==
0
){
alphaf
=
new_alphaf
.
clone
();
if
(
params
.
splitCoeff
)
alphaf_den
=
new_alphaf_den
.
clone
();
z
=
x
.
clone
();
}
else
{
alphaf
=
(
1.0
-
params
.
interp_factor
)
*
alphaf
+
params
.
interp_factor
*
new_alphaf
;
if
(
params
.
splitCoeff
)
alphaf_den
=
(
1.0
-
params
.
interp_factor
)
*
alphaf_den
+
params
.
interp_factor
*
new_alphaf_den
;
z
=
(
1.0
-
params
.
interp_factor
)
*
z
+
params
.
interp_factor
*
new_z
;
}
frame
++
;
...
...
@@ -384,6 +411,54 @@ namespace cv{
dest
+=
src
[
i
];
}
}
/*
* obtains the projection matrix using PCA
*/
void
inline
TrackerKCFImpl
::
updateProjectionMatrix
(
const
Mat
src
,
Mat
&
old_cov
,
Mat
&
_proj_mtx
,
double
pca_rate
,
int
compressed_sz
)
const
{
CV_Assert
(
compressed_sz
<=
src
.
channels
());
// compute average
std
::
vector
<
Mat
>
layers
(
src
.
channels
());
std
::
vector
<
Scalar
>
average
(
src
.
channels
());
split
(
src
,
layers
);
for
(
int
i
=
0
;
i
<
src
.
channels
();
i
++
){
average
[
i
]
=
mean
(
layers
[
i
]);
layers
[
i
]
-=
average
[
i
];
}
// calc covariance matrix
Mat
data
,
new_cov
;
merge
(
layers
,
data
);
data
=
data
.
reshape
(
1
,
src
.
rows
*
src
.
cols
);
new_cov
=
1.0
/
(
double
)(
src
.
rows
*
src
.
cols
-
1
)
*
(
data
.
t
()
*
data
);
if
(
old_cov
.
rows
==
0
)
old_cov
=
new_cov
.
clone
();
// calc PCA
Mat
w
,
u
,
vt
;
SVD
::
compute
((
1.0
-
pca_rate
)
*
old_cov
+
pca_rate
*
new_cov
,
w
,
u
,
vt
);
// extract the projection matrix
_proj_mtx
=
u
(
Rect
(
0
,
0
,
compressed_sz
,
src
.
channels
())).
clone
();
Mat
proj_vars
=
Mat
::
eye
(
compressed_sz
,
compressed_sz
,
_proj_mtx
.
type
());
for
(
int
i
=
0
;
i
<
compressed_sz
;
i
++
){
proj_vars
.
at
<
double
>
(
i
,
i
)
=
w
.
at
<
double
>
(
i
);
}
// update the covariance matrix
old_cov
=
(
1.0
-
pca_rate
)
*
old_cov
+
pca_rate
*
_proj_mtx
*
proj_vars
*
_proj_mtx
.
t
();
}
/*
* compress the features
*/
void
inline
TrackerKCFImpl
::
compress
(
const
Mat
_proj_mtx
,
const
Mat
src
,
Mat
&
dest
)
const
{
Mat
data
=
src
.
reshape
(
1
,
src
.
rows
*
src
.
cols
);
Mat
compressed
=
data
*
_proj_mtx
;
dest
=
compressed
.
reshape
(
_proj_mtx
.
cols
,
src
.
rows
).
clone
();
}
/*
* obtain the patch and apply hann window filter to it
...
...
@@ -578,6 +653,9 @@ namespace cv{
ifft2
(
spec
,
_response
);
}
/*
* calculate the detection response for splitted form
*/
void
TrackerKCFImpl
::
calcResponse
(
const
Mat
_alphaf
,
const
Mat
_alphaf_den
,
const
Mat
_k
,
Mat
&
_response
)
const
{
Mat
_kf
;
fft2
(
_k
,
_kf
);
...
...
@@ -612,6 +690,11 @@ namespace cv{
descriptor
=
CN
;
splitCoeff
=
true
;
wrapKernel
=
false
;
//feature compression
compressFeature
=
true
;
compressed_size
=
2
;
pca_learning_rate
=
0.15
;
}
void
TrackerKCF
::
Params
::
read
(
const
cv
::
FileNode
&
/*fn*/
){}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment