Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
aa0d8060
Commit
aa0d8060
authored
Jun 13, 2017
by
Aleksandr Rybnikov
Committed by
Maksim Shabunin
Jun 16, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added possibility of getting any intermediate blob with thrifty memory management
parent
b18e3579
Show whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
340 additions
and
195 deletions
+340
-195
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+29
-19
pyopencv_dnn.hpp
modules/dnn/misc/python/pyopencv_dnn.hpp
+1
-0
caffe_googlenet.cpp
modules/dnn/samples/caffe_googlenet.cpp
+2
-4
fcn_semsegm.cpp
modules/dnn/samples/fcn_semsegm.cpp
+2
-5
squeezenet_halide.cpp
modules/dnn/samples/squeezenet_halide.cpp
+4
-4
ssd_object_detection.cpp
modules/dnn/samples/ssd_object_detection.cpp
+2
-4
tf_inception.cpp
modules/dnn/samples/tf_inception.cpp
+3
-6
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+3
-16
caffe_importer.cpp
modules/dnn/src/caffe/caffe_importer.cpp
+1
-1
dnn.cpp
modules/dnn/src/dnn.cpp
+219
-91
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+1
-1
torch_importer.cpp
modules/dnn/src/torch/torch_importer.cpp
+18
-4
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+6
-11
test_googlenet.cpp
modules/dnn/test/test_googlenet.cpp
+21
-3
test_layers.cpp
modules/dnn/test/test_layers.cpp
+4
-6
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+4
-6
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+17
-10
gtrTracker.cpp
modules/tracking/src/gtrTracker.cpp
+3
-4
No files found.
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
aa0d8060
...
...
@@ -337,19 +337,35 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
* In fact, this layer provides the only way to pass user data into the network.
* As any other layer, this layer can label its outputs and this function provides an easy way to do this.
*/
CV_WRAP
void
set
NetInput
s
(
const
std
::
vector
<
String
>
&
inputBlobNames
);
CV_WRAP
void
set
InputsName
s
(
const
std
::
vector
<
String
>
&
inputBlobNames
);
/** @brief Initializes and allocates all layers. */
CV_WRAP
void
allocate
();
/** @brief Runs forward pass to compute output of layer @p toLayer.
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputName name for layer which output is needed to get
* @return blob for first output of specified layer.
* @details By default runs forward pass for the whole network.
*/
CV_WRAP
void
forward
(
LayerId
toLayer
=
String
());
/** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
void
forward
(
LayerId
startLayer
,
LayerId
toLayer
);
/** @overload */
void
forward
(
const
std
::
vector
<
LayerId
>
&
startLayers
,
const
std
::
vector
<
LayerId
>
&
toLayers
);
CV_WRAP
Mat
forward
(
const
String
&
outputName
=
String
());
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputBlobs contains all output blobs for specified layer.
* @param outputName name for layer which output is needed to get
* @details If @p outputName is empty, runs forward pass for the whole network.
*/
CV_WRAP
void
forward
(
std
::
vector
<
Mat
>&
outputBlobs
,
const
String
&
outputName
=
String
());
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains blobs for first outputs of specified layers.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP
void
forward
(
std
::
vector
<
Mat
>&
outputBlobs
,
const
std
::
vector
<
String
>&
outBlobNames
);
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP
void
forward
(
std
::
vector
<
std
::
vector
<
Mat
>
>&
outputBlobs
,
const
std
::
vector
<
String
>&
outBlobNames
);
//TODO:
/** @brief Optimized forward.
...
...
@@ -369,7 +385,7 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
* specific target. For layers that not represented in scheduling file
* or if no manual scheduling used at all, automatic scheduling will be applied.
*/
void
compileHalide
(
const
std
::
string
&
scheduler
=
""
);
void
setHalideScheduler
(
const
String
&
scheduler
);
/**
* @brief Ask network to use specific computation backend where it supported.
...
...
@@ -379,19 +395,13 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
void
setPreferableBackend
(
int
backendId
);
/** @brief Sets the new value for the layer output blob
* @param
outputN
ame descriptor of the updating layer output blob.
* @param
n
ame descriptor of the updating layer output blob.
* @param blob new blob.
* @see connect(String, String) to know format of the descriptor.
* @note If updating blob is not empty then @p blob must have the same shape,
* because network reshaping is not implemented yet.
*/
CV_WRAP
void
setBlob
(
String
outputName
,
const
Mat
&
blob
);
/** @brief Returns the layer output blob.
* @param outputName the descriptor of the returning layer output blob.
* @see connect(String, String)
*/
CV_WRAP
Mat
getBlob
(
String
outputName
);
CV_WRAP
void
setInput
(
const
Mat
&
blob
,
const
String
&
name
=
""
);
/** @brief Sets the new value for the learned param of the layer.
* @param layer name or id of the layer.
...
...
modules/dnn/misc/python/pyopencv_dnn.hpp
View file @
aa0d8060
...
...
@@ -3,6 +3,7 @@ typedef dnn::DictValue LayerId;
typedef
std
::
vector
<
dnn
::
MatShape
>
vector_MatShape
;
typedef
std
::
vector
<
std
::
vector
<
dnn
::
MatShape
>
>
vector_vector_MatShape
;
typedef
std
::
vector
<
size_t
>
vector_size_t
;
typedef
std
::
vector
<
std
::
vector
<
Mat
>
>
vector_vector_Mat
;
template
<>
bool
pyopencv_to
(
PyObject
*
o
,
dnn
::
DictValue
&
dv
,
const
char
*
name
)
...
...
modules/dnn/samples/caffe_googlenet.cpp
View file @
aa0d8060
...
...
@@ -119,16 +119,14 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net
.
set
Blob
(
".data"
,
inputBlob
);
//set the network input
net
.
set
Input
(
inputBlob
,
"data"
);
//set the network input
//! [Set input blob]
//! [Make forward pass]
net
.
forward
(
);
//compute output
Mat
prob
=
net
.
forward
(
"prob"
);
//compute output
//! [Make forward pass]
//! [Gather output]
Mat
prob
=
net
.
getBlob
(
"prob"
);
//gather output of "prob" layer
int
classId
;
double
classProb
;
getMaxClass
(
prob
,
&
classId
,
&
classProb
);
//find the best class
...
...
modules/dnn/samples/fcn_semsegm.cpp
View file @
aa0d8060
...
...
@@ -134,19 +134,16 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net
.
set
Blob
(
".data"
,
inputBlob
);
//set the network input
net
.
set
Input
(
inputBlob
,
"data"
);
//set the network input
//! [Set input blob]
//! [Make forward pass]
double
t
=
(
double
)
cv
::
getTickCount
();
net
.
forward
(
);
//compute output
Mat
score
=
net
.
forward
(
"score"
);
//compute output
t
=
(
double
)
cv
::
getTickCount
()
-
t
;
printf
(
"processing time: %.1fms
\n
"
,
t
*
1000.
/
getTickFrequency
());
//! [Make forward pass]
//! [Gather output]
Mat
score
=
net
.
getBlob
(
"score"
);
Mat
colorize
;
colorizeSegmentation
(
score
,
colors
,
colorize
);
Mat
show
;
...
...
modules/dnn/samples/squeezenet_halide.cpp
View file @
aa0d8060
...
...
@@ -93,7 +93,7 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net
.
set
Blob
(
""
,
inputBlob
);
// Set the network input.
net
.
set
Input
(
inputBlob
);
// Set the network input.
//! [Set input blob]
//! [Enable Halide backend]
...
...
@@ -101,15 +101,15 @@ int main(int argc, char **argv)
//! [Enable Halide backend]
//! [Compile Halide pipeline]
net
.
compileHalide
();
// Compile Halide pipeline.
//
net.compileHalide(); // Compile Halide pipeline.
//! [Compile Halide pipeline]
//! [Make forward pass]
net
.
forward
(
);
// Compute output.
Mat
prob
=
net
.
forward
(
"prob"
);
// Compute output.
//! [Make forward pass]
//! [Gather output]
Mat
prob
=
net
.
getBlob
(
"prob"
);
// Gather output of "prob" layer.
// net.getBlob(
); // Gather output of "prob" layer.
int
classId
;
double
classProb
;
...
...
modules/dnn/samples/ssd_object_detection.cpp
View file @
aa0d8060
...
...
@@ -108,15 +108,13 @@ int main(int argc, char** argv)
//! [Prepare blob]
//! [Set input blob]
net
.
set
Blob
(
".data"
,
inputBlob
);
//set the network input
net
.
set
Input
(
inputBlob
,
"data"
);
//set the network input
//! [Set input blob]
//! [Make forward pass]
net
.
forward
(
);
//compute output
Mat
detection
=
net
.
forward
(
"detection_out"
);
//compute output
//! [Make forward pass]
//! [Gather output]
Mat
detection
=
net
.
getBlob
(
"detection_out"
);
Mat
detectionMat
(
detection
.
size
[
2
],
detection
.
size
[
3
],
CV_32F
,
detection
.
ptr
<
float
>
());
float
confidenceThreshold
=
parser
.
get
<
float
>
(
"min_confidence"
);
...
...
modules/dnn/samples/tf_inception.cpp
View file @
aa0d8060
...
...
@@ -26,7 +26,7 @@ const String keys =
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip }"
"{model m |tensorflow_inception_graph.pb| path to TensorFlow .pb model file }"
"{image i || path to image file }"
"{i_blob |
.
input | input blob name) }"
"{i_blob | input | input blob name) }"
"{o_blob | softmax2 | output blob name) }"
"{c_names c | imagenet_comp_graph_label_strings.txt | path to file with classnames for class id }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
...
...
@@ -101,21 +101,18 @@ int main(int argc, char **argv)
//! [Prepare blob]
inputBlob
-=
117.0
;
//! [Set input blob]
net
.
set
Blob
(
inBlobName
,
inputBlob
);
//set the network input
net
.
set
Input
(
inputBlob
,
inBlobName
);
//set the network input
//! [Set input blob]
cv
::
TickMeter
tm
;
tm
.
start
();
//! [Make forward pass]
net
.
forward
(
);
//compute output
Mat
result
=
net
.
forward
(
outBlobName
);
//compute output
//! [Make forward pass]
tm
.
stop
();
//! [Gather output]
Mat
result
=
net
.
getBlob
(
outBlobName
);
//gather output of "prob" layer
if
(
!
resultFile
.
empty
())
{
CV_Assert
(
result
.
isContinuous
());
...
...
modules/dnn/samples/torch_enet.cpp
View file @
aa0d8060
...
...
@@ -73,32 +73,19 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net
.
set
Blob
(
""
,
inputBlob
);
//set the network input
net
.
set
Input
(
inputBlob
,
""
);
//set the network input
//! [Set input blob]
const
int
N
=
3
;
TickMeter
tm
;
//! [Make forward pass]
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
TickMeter
tm_
;
tm_
.
start
();
net
.
forward
();
//compute output
tm_
.
stop
();
if
(
i
==
0
||
tm_
.
getTimeTicks
()
<
tm
.
getTimeTicks
()
)
tm
=
tm_
;
}
//! [Gather output]
String
oBlob
=
net
.
getLayerNames
().
back
();
if
(
!
parser
.
get
<
String
>
(
"o_blob"
).
empty
())
{
oBlob
=
parser
.
get
<
String
>
(
"o_blob"
);
}
Mat
result
=
net
.
getBlob
(
oBlob
);
//gather output of "prob" layer
//! [Make forward pass]
Mat
result
=
net
.
forward
(
oBlob
);
if
(
!
resultFile
.
empty
())
{
CV_Assert
(
result
.
isContinuous
());
...
...
modules/dnn/src/caffe/caffe_importer.cpp
View file @
aa0d8060
...
...
@@ -277,7 +277,7 @@ public:
addedBlobs
.
push_back
(
BlobNote
(
net
.
input
(
inNum
),
0
,
inNum
));
netInputs
[
inNum
]
=
net
.
input
(
inNum
);
}
dstNet
.
set
NetInput
s
(
netInputs
);
dstNet
.
set
InputsName
s
(
netInputs
);
}
for
(
int
li
=
0
;
li
<
layersSize
;
li
++
)
...
...
modules/dnn/src/dnn.cpp
View file @
aa0d8060
...
...
@@ -177,6 +177,11 @@ struct LayerPin
{
return
lid
<
r
.
lid
||
lid
==
r
.
lid
&&
oid
<
r
.
oid
;
}
bool
operator
==
(
const
LayerPin
&
r
)
const
{
return
lid
==
r
.
lid
&&
oid
==
r
.
oid
;
}
};
// Objects of this class manages wrappers. For every CPU memory pointer and shape
...
...
@@ -468,6 +473,8 @@ public:
}
else
{
// if dst already has been allocated with total(shape) elements,
// it won't be recrreated and pointer of dst.data remains the same.
dst
.
create
(
shape
,
CV_32F
);
addHost
(
lp
,
dst
);
}
...
...
@@ -598,11 +605,12 @@ struct Net::Impl
Ptr
<
DataLayer
>
netInputLayer
;
std
::
vector
<
int
>
netOutputs
;
std
::
vector
<
LayerPin
>
blobsToKeep
;
MapIdToLayerData
layers
;
std
::
map
<
String
,
int
>
layerNameToId
;
BlobManager
blobManager
;
int
preferableBackend
;
String
halideConfigFile
;
// Backend-specific wrapping manager.
BackendWrapManager
backendWrapper
;
...
...
@@ -610,15 +618,59 @@ struct Net::Impl
bool
netWasAllocated
;
void
setUpNet
()
void
compileHalide
()
{
CV_Assert
(
preferableBackend
==
DNN_BACKEND_HALIDE
);
HalideScheduler
scheduler
(
halideConfigFile
);
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
++
it
)
{
if
(
!
netWasAllocated
)
LayerData
&
ld
=
it
->
second
;
Ptr
<
Layer
>
layer
=
ld
.
layerInstance
;
if
(
layer
->
supportBackend
(
DNN_BACKEND_HALIDE
)
&&
!
ld
.
skipFlags
[
DNN_BACKEND_HALIDE
])
{
allocateLayers
();
CV_Assert
(
!
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
].
empty
());
bool
scheduled
=
scheduler
.
process
(
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
]);
if
(
!
scheduled
)
{
// Use automatic scheduling provided by layer.
layer
->
applyHalideScheduler
(
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
],
ld
.
inputBlobs
,
ld
.
outputBlobs
);
}
dnn
::
compileHalide
(
ld
.
outputBlobs
,
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
],
DNN_TARGET_CPU
);
}
}
}
void
setUpNet
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
=
std
::
vector
<
LayerPin
>
())
{
if
(
!
netWasAllocated
||
this
->
blobsToKeep
!=
blobsToKeep_
)
{
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
{
if
(
it
->
second
.
id
!=
0
)
{
it
->
second
.
outputBlobs
.
clear
();
it
->
second
.
internals
.
clear
();
}
}
allocateLayers
(
blobsToKeep_
);
computeNetOutputLayers
();
initBackend
();
if
(
!
netWasAllocated
)
{
// If user didn't call compileHalide() between
// setPreferableBackend(DNN_BACKEND_HALIDE) and forward().
if
(
preferableBackend
==
DNN_BACKEND_HALIDE
)
compileHalide
();
}
netWasAllocated
=
true
;
this
->
blobsToKeep
=
blobsToKeep_
;
}
}
...
...
@@ -705,7 +757,7 @@ struct Net::Impl
outName
=
(
delimPos
==
String
::
npos
)
?
String
()
:
pinAlias
.
substr
(
delimPos
+
1
);
}
int
resolvePinOutputName
(
LayerData
&
ld
,
const
String
&
outName
,
bool
isOutPin
)
int
resolvePinOutputName
(
LayerData
&
ld
,
const
String
&
outName
)
{
if
(
outName
.
empty
())
return
0
;
...
...
@@ -722,13 +774,10 @@ struct Net::Impl
}
}
if
(
isOutPin
)
return
ld
.
getLayerInstance
()
->
outputNameToIndex
(
outName
);
else
return
ld
.
getLayerInstance
()
->
inputNameToIndex
(
outName
);
}
LayerPin
getPinByAlias
(
const
String
&
pinAlias
,
bool
isOutPin
=
true
)
LayerPin
getPinByAlias
(
const
String
&
pinAlias
)
{
LayerPin
pin
;
String
layerName
,
outName
;
...
...
@@ -737,13 +786,31 @@ struct Net::Impl
pin
.
lid
=
(
layerName
.
empty
())
?
0
:
getLayerId
(
layerName
);
if
(
pin
.
lid
>=
0
)
pin
.
oid
=
resolvePinOutputName
(
getLayerData
(
pin
.
lid
),
outName
,
isOutPin
);
pin
.
oid
=
resolvePinOutputName
(
getLayerData
(
pin
.
lid
),
outName
);
return
pin
;
}
std
::
vector
<
LayerPin
>
getLayerOutPins
(
const
String
&
pinAlias
)
{
String
layerName
,
outName
;
splitPin
(
pinAlias
,
layerName
,
outName
);
int
lid
=
(
layerName
.
empty
())
?
0
:
getLayerId
(
layerName
);
std
::
vector
<
LayerPin
>
pins
;
for
(
int
i
=
0
;
i
<
layers
[
lid
].
outputBlobs
.
size
();
i
++
)
{
pins
.
push_back
(
LayerPin
(
lid
,
i
));
}
return
pins
;
}
void
connect
(
int
outLayerId
,
int
outNum
,
int
inLayerId
,
int
inNum
)
{
CV_Assert
(
outLayerId
<
inLayerId
);
LayerData
&
ldOut
=
getLayerData
(
outLayerId
);
LayerData
&
ldInp
=
getLayerData
(
inLayerId
);
...
...
@@ -911,7 +978,7 @@ struct Net::Impl
ld
.
flag
=
1
;
}
void
allocateLayers
()
void
allocateLayers
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
)
{
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
...
...
@@ -934,34 +1001,19 @@ struct Net::Impl
blobManager
.
addReferences
(
ld
.
inputBlobsId
);
}
for
(
i
t
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
for
(
i
nt
i
=
0
;
i
<
blobsToKeep_
.
size
();
i
++
)
{
int
lid
=
it
->
first
;
allocateLayer
(
lid
,
layersShapes
);
}
blobManager
.
addReference
(
blobsToKeep_
[
i
]);
}
void
forwardLayer
(
LayerData
&
ld
,
bool
clearFlags
=
true
)
{
if
(
clearFlags
)
{
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
it
->
second
.
flag
=
0
;
}
//already was forwarded
if
(
ld
.
flag
)
return
;
//forward parents
for
(
set
<
int
>::
iterator
i
=
ld
.
inputLayersId
.
begin
();
i
!=
ld
.
inputLayersId
.
end
();
i
++
)
{
forwardLayer
(
layers
[
*
i
],
false
);
int
lid
=
it
->
first
;
allocateLayer
(
lid
,
layersShapes
);
}
}
//forward itself
//try
void
forwardLayer
(
LayerData
&
ld
)
{
Ptr
<
Layer
>
layer
=
ld
.
layerInstance
;
if
(
preferableBackend
==
DNN_BACKEND_DEFAULT
||
...
...
@@ -983,23 +1035,40 @@ struct Net::Impl
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown backend identifier"
);
}
}
}
/*catch (const cv::Exception &err)
{
CV_RETHROW_ERROR(err, format("The following error occured while making forward() for layer \"%s\": %s", ld.name.c_str(), err.err.c_str()));
}*/
ld
.
flag
=
1
;
}
void
forwardAll
()
void
forwardToLayer
(
LayerData
&
ld
,
bool
clearFlags
=
true
)
{
if
(
clearFlags
)
{
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
it
->
second
.
flag
=
0
;
}
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
forwardLayer
(
it
->
second
,
false
);
//already was forwarded
if
(
ld
.
flag
)
return
;
//forward parents
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
->
second
.
id
<
ld
.
id
;
it
++
)
{
LayerData
&
ld
=
it
->
second
;
if
(
ld
.
flag
)
continue
;
forwardLayer
(
ld
);
}
//forward itself
forwardLayer
(
ld
);
}
void
forwardAll
()
{
forwardToLayer
(
layers
.
rbegin
()
->
second
,
true
);
}
void
getLayerShapesRecursively
(
int
id
,
LayersShapesMap
&
inOutShapes
)
...
...
@@ -1052,6 +1121,30 @@ struct Net::Impl
getLayerShapesRecursively
(
layerId
,
inOutShapes
);
shapes
=
inOutShapes
[
layerId
];
}
LayerPin
getLatestLayerPin
(
const
std
::
vector
<
LayerPin
>&
pins
)
{
return
*
std
::
max_element
(
pins
.
begin
(),
pins
.
end
());
}
Mat
getBlob
(
const
LayerPin
&
pin
)
{
if
(
!
pin
.
valid
())
CV_Error
(
Error
::
StsObjectNotFound
,
"Requested blob not found"
);
LayerData
&
ld
=
layers
[
pin
.
lid
];
if
((
size_t
)
pin
.
oid
>=
ld
.
outputBlobs
.
size
())
{
CV_Error
(
Error
::
StsOutOfRange
,
"Layer
\"
"
+
ld
.
name
+
"
\"
produce only "
+
toString
(
ld
.
outputBlobs
.
size
())
+
" outputs, the #"
+
toString
(
pin
.
oid
)
+
" was requsted"
);
}
return
ld
.
outputBlobs
[
pin
.
oid
];
}
Mat
getBlob
(
String
outputName
)
{
return
getBlob
(
getPinByAlias
(
outputName
));
}
};
Net
::
Net
()
:
impl
(
new
Net
::
Impl
)
...
...
@@ -1106,52 +1199,94 @@ void Net::connect(String _outPin, String _inPin)
impl
->
connect
(
outPin
.
lid
,
outPin
.
oid
,
inpPin
.
lid
,
inpPin
.
oid
);
}
void
Net
::
allocate
()
//void Net::forward(LayerId toLayer)
//{
// if (!impl->netWasAllocated)
// {
// impl->setUpNet();
// }
// if (toLayer.isString() && toLayer.get<String>().empty())
// impl->forwardAll();
// else
// impl->forwardLayer(impl->getLayerData(toLayer));
//}
Mat
Net
::
forward
(
const
String
&
outputName
)
{
String
layerName
=
outputName
;
if
(
layerName
.
empty
())
layerName
=
getLayerNames
().
back
();
impl
->
setUpNet
();
impl
->
forwardToLayer
(
impl
->
getLayerData
(
layerName
));
return
impl
->
getBlob
(
layerName
);
}
void
Net
::
forward
(
LayerId
toLayer
)
void
Net
::
forward
(
std
::
vector
<
Mat
>&
outputBlobs
,
const
String
&
outputName
)
{
if
(
!
impl
->
netWasAllocated
)
{
impl
->
setUpNet
();
// If user didn't call compileHalide() between
// setPreferableBackend(DNN_BACKEND_HALIDE) and forward().
if
(
impl
->
preferableBackend
==
DNN_BACKEND_HALIDE
)
compileHalide
();
}
if
(
toLayer
.
isString
()
&&
toLayer
.
get
<
String
>
().
empty
())
impl
->
forwardAll
();
else
impl
->
forwardLayer
(
impl
->
getLayerData
(
toLayer
));
String
layerName
=
outputName
;
if
(
layerName
.
empty
())
layerName
=
getLayerNames
().
back
();
impl
->
forwardToLayer
(
impl
->
getLayerData
(
layerName
));
LayerPin
pin
=
impl
->
getPinByAlias
(
layerName
);
LayerData
&
ld
=
impl
->
layers
[
pin
.
lid
];
outputBlobs
=
ld
.
outputBlobs
;
}
void
Net
::
compileHalide
(
const
std
::
string
&
configFile
)
void
Net
::
forward
(
std
::
vector
<
Mat
>&
outputBlobs
,
const
std
::
vector
<
String
>&
outBlobNames
)
{
CV_Assert
(
impl
->
preferableBackend
==
DNN_BACKEND_HALIDE
);
if
(
!
impl
->
netWasAllocated
)
impl
->
setUpNet
();
HalideScheduler
scheduler
(
configFile
);
Impl
::
MapIdToLayerData
::
iterator
it
;
for
(
it
=
impl
->
layers
.
begin
();
it
!=
impl
->
layers
.
end
();
++
it
)
std
::
vector
<
LayerPin
>
pins
;
for
(
int
i
=
0
;
i
<
outBlobNames
.
size
();
i
++
)
{
LayerData
&
ld
=
it
->
second
;
Ptr
<
Layer
>
layer
=
ld
.
layerInstance
;
if
(
layer
->
supportBackend
(
DNN_BACKEND_HALIDE
)
&&
!
ld
.
skipFlags
[
DNN_BACKEND_HALIDE
])
pins
.
push_back
(
impl
->
getPinByAlias
(
outBlobNames
[
i
]));
}
impl
->
setUpNet
(
pins
);
LayerPin
out
=
impl
->
getLatestLayerPin
(
pins
);
impl
->
forwardToLayer
(
impl
->
getLayerData
(
out
.
lid
));
outputBlobs
.
clear
();
for
(
int
i
=
0
;
i
<
pins
.
size
();
i
++
)
{
CV_Assert
(
!
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
].
empty
());
bool
scheduled
=
scheduler
.
process
(
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
]);
if
(
!
scheduled
)
outputBlobs
.
push_back
(
impl
->
getBlob
(
pins
[
i
]));
}
}
void
Net
::
forward
(
std
::
vector
<
std
::
vector
<
Mat
>
>&
outputBlobs
,
const
std
::
vector
<
String
>&
outBlobNames
)
{
std
::
vector
<
LayerPin
>
pins
;
for
(
int
i
=
0
;
i
<
outBlobNames
.
size
();
i
++
)
{
// Use automatic scheduling provided by layer.
layer
->
applyHalideScheduler
(
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
],
ld
.
inputBlobs
,
ld
.
outputBlobs
);
std
::
vector
<
LayerPin
>
lp
=
impl
->
getLayerOutPins
(
outBlobNames
[
i
]);
pins
.
insert
(
pins
.
end
(),
lp
.
begin
(),
lp
.
end
());
}
dnn
::
compileHalide
(
ld
.
outputBlobs
,
ld
.
backendNodes
[
DNN_BACKEND_HALIDE
],
DNN_TARGET_CPU
);
impl
->
setUpNet
(
pins
);
LayerPin
out
=
impl
->
getLatestLayerPin
(
pins
);
impl
->
forwardToLayer
(
impl
->
getLayerData
(
out
.
lid
));
outputBlobs
.
resize
(
outBlobNames
.
size
());
for
(
int
i
=
0
;
i
<
outBlobNames
.
size
();
i
++
)
{
std
::
vector
<
LayerPin
>
lp
=
impl
->
getLayerOutPins
(
outBlobNames
[
i
]);
for
(
int
i
=
0
;
i
<
lp
.
size
();
i
++
)
{
outputBlobs
[
i
].
push_back
(
impl
->
getBlob
(
lp
[
i
]));
}
}
}
...
...
@@ -1163,16 +1298,19 @@ void Net::setPreferableBackend(int backendId)
impl
->
preferableBackend
=
backendId
;
}
void
Net
::
set
NetInput
s
(
const
std
::
vector
<
String
>
&
inputBlobNames
)
void
Net
::
set
InputsName
s
(
const
std
::
vector
<
String
>
&
inputBlobNames
)
{
impl
->
netInputLayer
->
setNames
(
inputBlobNames
);
}
void
Net
::
set
Blob
(
String
outputName
,
const
Mat
&
blob_
)
void
Net
::
set
Input
(
const
Mat
&
blob_
,
const
String
&
name
)
{
LayerPin
pin
=
impl
->
getPinByAlias
(
outputName
);
LayerPin
pin
;
pin
.
lid
=
0
;
pin
.
oid
=
impl
->
resolvePinOutputName
(
impl
->
getLayerData
(
pin
.
lid
),
name
);
if
(
!
pin
.
valid
())
CV_Error
(
Error
::
StsObjectNotFound
,
"Requested blob
\"
"
+
outputN
ame
+
"
\"
not found"
);
CV_Error
(
Error
::
StsObjectNotFound
,
"Requested blob
\"
"
+
n
ame
+
"
\"
not found"
);
LayerData
&
ld
=
impl
->
layers
[
pin
.
lid
];
ld
.
outputBlobs
.
resize
(
std
::
max
(
pin
.
oid
+
1
,
(
int
)
ld
.
requiredOutputs
.
size
())
);
...
...
@@ -1186,21 +1324,6 @@ void Net::setBlob(String outputName, const Mat &blob_)
impl
->
netWasAllocated
=
impl
->
netWasAllocated
&&
oldShape
;
}
Mat
Net
::
getBlob
(
String
outputName
)
{
LayerPin
pin
=
impl
->
getPinByAlias
(
outputName
);
if
(
!
pin
.
valid
())
CV_Error
(
Error
::
StsObjectNotFound
,
"Requested blob
\"
"
+
outputName
+
"
\"
not found"
);
LayerData
&
ld
=
impl
->
layers
[
pin
.
lid
];
if
((
size_t
)
pin
.
oid
>=
ld
.
outputBlobs
.
size
())
{
CV_Error
(
Error
::
StsOutOfRange
,
"Layer
\"
"
+
ld
.
name
+
"
\"
produce only "
+
toString
(
ld
.
outputBlobs
.
size
())
+
" outputs, the #"
+
toString
(
pin
.
oid
)
+
" was requsted"
);
}
return
ld
.
outputBlobs
[
pin
.
oid
];
}
Mat
Net
::
getParam
(
LayerId
layer
,
int
numParam
)
{
LayerData
&
ld
=
impl
->
getLayerData
(
layer
);
...
...
@@ -1516,6 +1639,11 @@ void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>&
weights
,
blobs
);
}
void
Net
::
setHalideScheduler
(
const
String
&
scheduler
)
{
impl
->
halideConfigFile
=
scheduler
;
}
//////////////////////////////////////////////////////////////////////////
Importer
::~
Importer
()
{}
...
...
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
aa0d8060
...
...
@@ -703,7 +703,7 @@ void TFImporter::populateNet(Net dstNet)
std
::
vector
<
String
>
netInputs
(
1
);
netInputs
[
0
]
=
name
;
layer_id
[
name
]
=
0
;
dstNet
.
set
NetInput
s
(
netInputs
);
dstNet
.
set
InputsName
s
(
netInputs
);
}
else
if
(
type
==
"Split"
)
{
// TODO: determing axis index remapping by input dimensions order of input blob
...
...
modules/dnn/src/torch/torch_importer.cpp
View file @
aa0d8060
...
...
@@ -824,13 +824,20 @@ struct TorchImporter : public ::cv::dnn::Importer
mergeParams
.
set
(
"axis"
,
module
->
params
.
get
<
int
>
(
"dimension"
)
-
1
);
splitId
=
net
.
addLayer
(
generateLayerName
(
"torchSplit"
),
"Split"
,
splitParams
);
mergeId
=
net
.
addLayer
(
generateLayerName
(
"torchMerge"
),
"Concat"
,
mergeParams
);
net
.
connect
(
prevLayerId
,
prevOutNum
,
splitId
,
0
);
std
::
vector
<
int
>
branchIds
;
for
(
int
i
=
0
;
i
<
(
int
)
module
->
modules
.
size
();
i
++
)
{
newId
=
fill
(
module
->
modules
[
i
],
addedModules
,
splitId
,
i
);
net
.
connect
(
newId
,
0
,
mergeId
,
i
);
branchIds
.
push_back
(
newId
);
}
mergeId
=
net
.
addLayer
(
generateLayerName
(
"torchMerge"
),
"Concat"
,
mergeParams
);
for
(
int
i
=
0
;
i
<
branchIds
.
size
();
i
++
)
{
net
.
connect
(
branchIds
[
i
],
0
,
mergeId
,
i
);
}
addedModules
.
push_back
(
std
::
make_pair
(
mergeId
,
module
));
...
...
@@ -847,15 +854,22 @@ struct TorchImporter : public ::cv::dnn::Importer
reshapeParams
.
set
(
"num_axes"
,
1
);
splitId
=
net
.
addLayer
(
generateLayerName
(
"torchSplit"
),
"Slice"
,
splitParams
);
mergeId
=
net
.
addLayer
(
generateLayerName
(
"torchMerge"
),
"Concat"
,
mergeParams
);
reshapeId
=
net
.
addLayer
(
generateLayerName
(
"torchReshape"
),
"Reshape"
,
reshapeParams
);
net
.
connect
(
prevLayerId
,
prevOutNum
,
splitId
,
0
);
std
::
vector
<
int
>
branchIds
;
for
(
int
i
=
0
;
i
<
(
int
)
module
->
modules
.
size
();
i
++
)
{
net
.
connect
(
splitId
,
i
,
reshapeId
,
i
);
newId
=
fill
(
module
->
modules
[
i
],
addedModules
,
reshapeId
,
i
);
net
.
connect
(
newId
,
0
,
mergeId
,
i
);
branchIds
.
push_back
(
newId
);
}
mergeId
=
net
.
addLayer
(
generateLayerName
(
"torchMerge"
),
"Concat"
,
mergeParams
);
for
(
int
i
=
0
;
i
<
branchIds
.
size
();
i
++
)
{
net
.
connect
(
branchIds
[
i
],
0
,
mergeId
,
i
);
}
addedModules
.
push_back
(
std
::
make_pair
(
mergeId
,
module
));
...
...
modules/dnn/test/test_caffe_importer.cpp
View file @
aa0d8060
...
...
@@ -94,10 +94,8 @@ TEST(Reproducibility_AlexNet, Accuracy)
if
(
sample
.
size
()
!=
inputSize
)
resize
(
sample
,
sample
,
inputSize
);
net
.
setBlob
(
".data"
,
blobFromImage
(
sample
,
1.
));
net
.
forward
();
Mat
out
=
net
.
getBlob
(
"prob"
);
net
.
setInput
(
blobFromImage
(
sample
,
1.
),
"data"
);
Mat
out
=
net
.
forward
(
"prob"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_alexnet_prob.npy"
));
normAssert
(
ref
,
out
);
}
...
...
@@ -125,10 +123,8 @@ TEST(Reproducibility_FCN, Accuracy)
std
::
vector
<
size_t
>
weights
,
blobs
;
net
.
getMemoryConsumption
(
shape
(
1
,
3
,
227
,
227
),
layerIds
,
weights
,
blobs
);
net
.
setBlob
(
".data"
,
blobFromImage
(
sample
,
1.
));
net
.
forward
();
Mat
out
=
net
.
getBlob
(
"score"
);
net
.
setInput
(
blobFromImage
(
sample
,
1.
),
"data"
);
Mat
out
=
net
.
forward
(
"score"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_fcn8s_prob.npy"
));
normAssert
(
ref
,
out
);
}
...
...
@@ -155,9 +151,8 @@ TEST(Reproducibility_SSD, Accuracy)
resize
(
sample
,
sample
,
Size
(
300
,
300
));
Mat
in_blob
=
blobFromImage
(
sample
);
net
.
setBlob
(
".data"
,
in_blob
);
net
.
forward
();
Mat
out
=
net
.
getBlob
(
"detection_out"
);
net
.
setInput
(
in_blob
,
"data"
);
Mat
out
=
net
.
forward
(
"detection_out"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"ssd_out.npy"
));
normAssert
(
ref
,
out
);
...
...
modules/dnn/test/test_googlenet.cpp
View file @
aa0d8060
...
...
@@ -72,12 +72,30 @@ static void launchGoogleNetTest()
inpMats
.
push_back
(
imread
(
_tf
(
"googlenet_1.png"
))
);
ASSERT_TRUE
(
!
inpMats
[
0
].
empty
()
&&
!
inpMats
[
1
].
empty
());
net
.
set
Blob
(
".data"
,
blobFromImages
(
inpMats
)
);
net
.
forward
(
);
net
.
set
Input
(
blobFromImages
(
inpMats
),
"data"
);
Mat
out
=
net
.
forward
(
"prob"
);
Mat
out
=
net
.
getBlob
(
"prob"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"googlenet_prob.npy"
));
normAssert
(
out
,
ref
);
std
::
vector
<
String
>
blobsNames
;
blobsNames
.
push_back
(
"conv1/7x7_s2"
);
blobsNames
.
push_back
(
"conv1/relu_7x7"
);
blobsNames
.
push_back
(
"inception_4c/1x1"
);
blobsNames
.
push_back
(
"inception_4c/relu_1x1"
);
std
::
vector
<
Mat
>
outs
;
Mat
in
=
blobFromImage
(
inpMats
[
0
]);
net
.
setInput
(
in
,
"data"
);
net
.
forward
(
outs
,
blobsNames
);
CV_Assert
(
outs
.
size
()
==
blobsNames
.
size
());
for
(
int
i
=
0
;
i
<
blobsNames
.
size
();
i
++
)
{
std
::
string
filename
=
blobsNames
[
i
];
std
::
replace
(
filename
.
begin
(),
filename
.
end
(),
'/'
,
'#'
);
Mat
ref
=
blobFromNPY
(
_tf
(
"googlenet_"
+
filename
+
".npy"
));
normAssert
(
outs
[
i
],
ref
,
""
,
1E-4
,
1E-2
);
}
}
TEST
(
Reproducibility_GoogLeNet
,
Accuracy
)
...
...
modules/dnn/test/test_layers.cpp
View file @
aa0d8060
...
...
@@ -118,9 +118,8 @@ void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool
Mat
inp
=
blobFromNPY
(
inpfile
);
Mat
ref
=
blobFromNPY
(
outfile
);
net
.
setBlob
(
".input"
,
inp
);
net
.
forward
();
Mat
out
=
net
.
getBlob
(
"output"
);
net
.
setInput
(
inp
,
"input"
);
Mat
out
=
net
.
forward
(
"output"
);
normAssert
(
ref
,
out
);
}
...
...
@@ -244,9 +243,8 @@ static void test_Reshape_Split_Slice_layers()
RNG
rng
(
0
);
rng
.
fill
(
input
,
RNG
::
UNIFORM
,
-
1
,
1
);
net
.
setBlob
(
".input"
,
input
);
net
.
forward
();
Mat
output
=
net
.
getBlob
(
"output"
);
net
.
setInput
(
input
,
"input"
);
Mat
output
=
net
.
forward
(
"output"
);
normAssert
(
input
,
output
);
}
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
aa0d8060
...
...
@@ -42,10 +42,9 @@ TEST(Test_TensorFlow, read_inception)
Mat
inputBlob
=
blobFromImage
(
input
,
1.
);
net
.
set
Blob
(
"_input.input"
,
inputBlob
);
net
.
forward
(
);
net
.
set
Input
(
inputBlob
,
"input"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
Mat
out
=
net
.
getBlob
(
"softmax2"
);
std
::
cout
<<
out
.
dims
<<
std
::
endl
;
}
...
...
@@ -64,10 +63,9 @@ TEST(Test_TensorFlow, inception_accuracy)
resize
(
sample
,
sample
,
Size
(
224
,
224
));
Mat
inputBlob
=
blobFromImage
(
sample
,
1.
);
net
.
set
Blob
(
".input"
,
inputBlob
);
net
.
forward
(
);
net
.
set
Input
(
inputBlob
,
"input"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
Mat
out
=
net
.
getBlob
(
"softmax2"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"tf_inception_prob.npy"
));
normAssert
(
ref
,
out
);
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
aa0d8060
...
...
@@ -87,17 +87,17 @@ static void runTorchNet(String prefix, String outLayerName = "",
ASSERT_NO_THROW
(
inp
=
readTorchBlob
(
_tf
(
prefix
+
"_input"
+
suffix
),
isBinary
)
);
ASSERT_NO_THROW
(
outRef
=
readTorchBlob
(
_tf
(
prefix
+
"_output"
+
suffix
),
isBinary
)
);
net
.
setBlob
(
".0"
,
inp
);
net
.
forward
();
if
(
outLayerName
.
empty
())
outLayerName
=
net
.
getLayerNames
().
back
();
Mat
out
=
net
.
getBlob
(
outLayerName
);
normAssert
(
outRef
,
out
);
net
.
setInput
(
inp
,
"0"
);
std
::
vector
<
Mat
>
outBlobs
;
net
.
forward
(
outBlobs
,
outLayerName
);
normAssert
(
outRef
,
outBlobs
[
0
]);
if
(
check2ndBlob
)
{
Mat
out2
=
net
.
getBlob
(
outLayerName
+
".1"
)
;
Mat
out2
=
outBlobs
[
1
]
;
Mat
ref2
=
readTorchBlob
(
_tf
(
prefix
+
"_output_2"
+
suffix
),
isBinary
);
normAssert
(
out2
,
ref2
);
}
...
...
@@ -132,12 +132,12 @@ TEST(Torch_Importer, run_linear)
TEST
(
Torch_Importer
,
run_paralel
)
{
runTorchNet
(
"net_parallel"
,
"l
2
_torchMerge"
);
runTorchNet
(
"net_parallel"
,
"l
5
_torchMerge"
);
}
TEST
(
Torch_Importer
,
run_concat
)
{
runTorchNet
(
"net_concat"
,
"l
2
_torchMerge"
);
runTorchNet
(
"net_concat"
,
"l
5
_torchMerge"
);
}
TEST
(
Torch_Importer
,
run_deconv
)
...
...
@@ -185,14 +185,21 @@ TEST(Torch_Importer, ENet_accuracy)
Mat
sample
=
imread
(
_tf
(
"street.png"
,
false
));
Mat
inputBlob
=
blobFromImage
(
sample
,
1.
/
255
);
net
.
setBlob
(
""
,
inputBlob
);
net
.
forward
();
Mat
out
=
net
.
getBlob
(
net
.
getLayerNames
().
back
());
net
.
setInput
(
inputBlob
,
""
);
Mat
out
=
net
.
forward
();
Mat
ref
=
blobFromNPY
(
_tf
(
"torch_enet_prob.npy"
,
false
));
// Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
// thresholds for ENet must be changed. Accuracy of resuults was checked on
// Cityscapes dataset and difference in mIOU with Torch is 10E-4%
normAssert
(
ref
,
out
,
""
,
0.00044
,
0.44
);
const
int
N
=
3
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
net
.
setInput
(
inputBlob
,
""
);
Mat
out
=
net
.
forward
();
normAssert
(
ref
,
out
,
""
,
0.00044
,
0.44
);
}
}
}
...
...
modules/tracking/src/gtrTracker.cpp
View file @
aa0d8060
...
...
@@ -172,11 +172,10 @@ bool TrackerGOTURNImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
Mat
targetBlob
=
dnn
::
blobFromImage
(
targetPatch
);
Mat
searchBlob
=
dnn
::
blobFromImage
(
searchPatch
);
net
.
set
Blob
(
".data1"
,
targetBlob
);
net
.
set
Blob
(
".data2"
,
searchBlob
);
net
.
set
Input
(
targetBlob
,
".data1"
);
net
.
set
Input
(
searchBlob
,
".data2"
);
net
.
forward
();
Mat
resMat
=
net
.
getBlob
(
"scale"
).
reshape
(
1
,
1
);
Mat
resMat
=
net
.
forward
(
"scale"
).
reshape
(
1
,
1
);
curBB
.
x
=
targetPatchRect
.
x
+
(
resMat
.
at
<
float
>
(
0
)
*
targetPatchRect
.
width
/
INPUT_SIZE
)
-
targetPatchRect
.
width
;
curBB
.
y
=
targetPatchRect
.
y
+
(
resMat
.
at
<
float
>
(
1
)
*
targetPatchRect
.
height
/
INPUT_SIZE
)
-
targetPatchRect
.
height
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment