Commit aa0d8060 authored by Aleksandr Rybnikov's avatar Aleksandr Rybnikov Committed by Maksim Shabunin

Added possibility of getting any intermediate blob with thrifty memory management

parent b18e3579
......@@ -337,19 +337,35 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
* In fact, this layer provides the only way to pass user data into the network.
* As any other layer, this layer can label its outputs and this function provides an easy way to do this.
*/
CV_WRAP void setNetInputs(const std::vector<String> &inputBlobNames);
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
/** @brief Initializes and allocates all layers. */
CV_WRAP void allocate();
/** @brief Runs forward pass to compute output of layer @p toLayer.
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputName name for layer which output is needed to get
* @return blob for first output of specified layer.
* @details By default runs forward pass for the whole network.
*/
CV_WRAP void forward(LayerId toLayer = String());
/** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
void forward(LayerId startLayer, LayerId toLayer);
/** @overload */
void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers);
CV_WRAP Mat forward(const String& outputName = String());
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputBlobs contains all output blobs for specified layer.
* @param outputName name for layer which output is needed to get
* @details If @p outputName is empty, runs forward pass for the whole network.
*/
CV_WRAP void forward(std::vector<Mat>& outputBlobs, const String& outputName = String());
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains blobs for first outputs of specified layers.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP void forward(std::vector<Mat>& outputBlobs,
const std::vector<String>& outBlobNames);
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP void forward(std::vector<std::vector<Mat> >& outputBlobs,
const std::vector<String>& outBlobNames);
//TODO:
/** @brief Optimized forward.
......@@ -369,7 +385,7 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
* specific target. For layers that not represented in scheduling file
* or if no manual scheduling used at all, automatic scheduling will be applied.
*/
void compileHalide(const std::string& scheduler = "");
void setHalideScheduler(const String& scheduler);
/**
* @brief Ask network to use specific computation backend where it supported.
......@@ -379,19 +395,13 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
void setPreferableBackend(int backendId);
/** @brief Sets the new value for the layer output blob
* @param outputName descriptor of the updating layer output blob.
* @param name descriptor of the updating layer output blob.
* @param blob new blob.
* @see connect(String, String) to know format of the descriptor.
* @note If updating blob is not empty then @p blob must have the same shape,
* because network reshaping is not implemented yet.
*/
CV_WRAP void setBlob(String outputName, const Mat &blob);
/** @brief Returns the layer output blob.
* @param outputName the descriptor of the returning layer output blob.
* @see connect(String, String)
*/
CV_WRAP Mat getBlob(String outputName);
CV_WRAP void setInput(const Mat &blob, const String& name = "");
/** @brief Sets the new value for the learned param of the layer.
* @param layer name or id of the layer.
......
......@@ -3,6 +3,7 @@ typedef dnn::DictValue LayerId;
typedef std::vector<dnn::MatShape> vector_MatShape;
typedef std::vector<std::vector<dnn::MatShape> > vector_vector_MatShape;
typedef std::vector<size_t> vector_size_t;
typedef std::vector<std::vector<Mat> > vector_vector_Mat;
template<>
bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
......
......@@ -119,16 +119,14 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net.setBlob(".data", inputBlob); //set the network input
net.setInput(inputBlob, "data"); //set the network input
//! [Set input blob]
//! [Make forward pass]
net.forward(); //compute output
Mat prob = net.forward("prob"); //compute output
//! [Make forward pass]
//! [Gather output]
Mat prob = net.getBlob("prob"); //gather output of "prob" layer
int classId;
double classProb;
getMaxClass(prob, &classId, &classProb);//find the best class
......
......@@ -134,19 +134,16 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net.setBlob(".data", inputBlob); //set the network input
net.setInput(inputBlob, "data"); //set the network input
//! [Set input blob]
//! [Make forward pass]
double t = (double)cv::getTickCount();
net.forward(); //compute output
Mat score = net.forward("score"); //compute output
t = (double)cv::getTickCount() - t;
printf("processing time: %.1fms\n", t*1000./getTickFrequency());
//! [Make forward pass]
//! [Gather output]
Mat score = net.getBlob("score");
Mat colorize;
colorizeSegmentation(score, colors, colorize);
Mat show;
......
......@@ -93,7 +93,7 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net.setBlob("", inputBlob); // Set the network input.
net.setInput(inputBlob); // Set the network input.
//! [Set input blob]
//! [Enable Halide backend]
......@@ -101,15 +101,15 @@ int main(int argc, char **argv)
//! [Enable Halide backend]
//! [Compile Halide pipeline]
net.compileHalide(); // Compile Halide pipeline.
// net.compileHalide(); // Compile Halide pipeline.
//! [Compile Halide pipeline]
//! [Make forward pass]
net.forward(); // Compute output.
Mat prob = net.forward("prob"); // Compute output.
//! [Make forward pass]
//! [Gather output]
Mat prob = net.getBlob("prob"); // Gather output of "prob" layer.
// net.getBlob(); // Gather output of "prob" layer.
int classId;
double classProb;
......
......@@ -108,15 +108,13 @@ int main(int argc, char** argv)
//! [Prepare blob]
//! [Set input blob]
net.setBlob(".data", inputBlob); //set the network input
net.setInput(inputBlob, "data"); //set the network input
//! [Set input blob]
//! [Make forward pass]
net.forward(); //compute output
Mat detection = net.forward("detection_out"); //compute output
//! [Make forward pass]
//! [Gather output]
Mat detection = net.getBlob("detection_out");
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
float confidenceThreshold = parser.get<float>("min_confidence");
......
......@@ -26,7 +26,7 @@ const String keys =
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip }"
"{model m |tensorflow_inception_graph.pb| path to TensorFlow .pb model file }"
"{image i || path to image file }"
"{i_blob | .input | input blob name) }"
"{i_blob | input | input blob name) }"
"{o_blob | softmax2 | output blob name) }"
"{c_names c | imagenet_comp_graph_label_strings.txt | path to file with classnames for class id }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
......@@ -101,21 +101,18 @@ int main(int argc, char **argv)
//! [Prepare blob]
inputBlob -= 117.0;
//! [Set input blob]
net.setBlob(inBlobName, inputBlob); //set the network input
net.setInput(inputBlob, inBlobName); //set the network input
//! [Set input blob]
cv::TickMeter tm;
tm.start();
//! [Make forward pass]
net.forward(); //compute output
Mat result = net.forward(outBlobName); //compute output
//! [Make forward pass]
tm.stop();
//! [Gather output]
Mat result = net.getBlob(outBlobName); //gather output of "prob" layer
if (!resultFile.empty()) {
CV_Assert(result.isContinuous());
......
......@@ -73,32 +73,19 @@ int main(int argc, char **argv)
//! [Prepare blob]
//! [Set input blob]
net.setBlob("", inputBlob); //set the network input
net.setInput(inputBlob, ""); //set the network input
//! [Set input blob]
const int N = 3;
TickMeter tm;
//! [Make forward pass]
for( int i = 0; i < N; i++ )
{
TickMeter tm_;
tm_.start();
net.forward(); //compute output
tm_.stop();
if( i == 0 || tm_.getTimeTicks() < tm.getTimeTicks() )
tm = tm_;
}
//! [Gather output]
String oBlob = net.getLayerNames().back();
if (!parser.get<String>("o_blob").empty())
{
oBlob = parser.get<String>("o_blob");
}
Mat result = net.getBlob(oBlob); //gather output of "prob" layer
//! [Make forward pass]
Mat result = net.forward(oBlob);
if (!resultFile.empty()) {
CV_Assert(result.isContinuous());
......
......@@ -277,7 +277,7 @@ public:
addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum));
netInputs[inNum] = net.input(inNum);
}
dstNet.setNetInputs(netInputs);
dstNet.setInputsNames(netInputs);
}
for (int li = 0; li < layersSize; li++)
......
......@@ -177,6 +177,11 @@ struct LayerPin
{
return lid < r.lid || lid == r.lid && oid < r.oid;
}
bool operator ==(const LayerPin &r) const
{
return lid == r.lid && oid == r.oid;
}
};
// Objects of this class manages wrappers. For every CPU memory pointer and shape
......@@ -468,6 +473,8 @@ public:
}
else
{
// if dst already has been allocated with total(shape) elements,
// it won't be recrreated and pointer of dst.data remains the same.
dst.create(shape, CV_32F);
addHost(lp, dst);
}
......@@ -598,11 +605,12 @@ struct Net::Impl
Ptr<DataLayer> netInputLayer;
std::vector<int> netOutputs;
std::vector<LayerPin> blobsToKeep;
MapIdToLayerData layers;
std::map<String, int> layerNameToId;
BlobManager blobManager;
int preferableBackend;
String halideConfigFile;
// Backend-specific wrapping manager.
BackendWrapManager backendWrapper;
......@@ -610,15 +618,59 @@ struct Net::Impl
bool netWasAllocated;
void setUpNet()
void compileHalide()
{
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);
HalideScheduler scheduler(halideConfigFile);
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); ++it)
{
if (!netWasAllocated)
LayerData &ld = it->second;
Ptr<Layer> layer = ld.layerInstance;
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skipFlags[DNN_BACKEND_HALIDE])
{
allocateLayers();
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
if (!scheduled)
{
// Use automatic scheduling provided by layer.
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
ld.inputBlobs, ld.outputBlobs);
}
dnn::compileHalide(ld.outputBlobs, ld.backendNodes[DNN_BACKEND_HALIDE],
DNN_TARGET_CPU);
}
}
}
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>())
{
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
{
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
{
if (it->second.id != 0) {
it->second.outputBlobs.clear();
it->second.internals.clear();
}
}
allocateLayers(blobsToKeep_);
computeNetOutputLayers();
initBackend();
if (!netWasAllocated )
{
// If user didn't call compileHalide() between
// setPreferableBackend(DNN_BACKEND_HALIDE) and forward().
if (preferableBackend == DNN_BACKEND_HALIDE)
compileHalide();
}
netWasAllocated = true;
this->blobsToKeep = blobsToKeep_;
}
}
......@@ -705,7 +757,7 @@ struct Net::Impl
outName = (delimPos == String::npos) ? String() : pinAlias.substr(delimPos + 1);
}
int resolvePinOutputName(LayerData &ld, const String &outName, bool isOutPin)
int resolvePinOutputName(LayerData &ld, const String &outName)
{
if (outName.empty())
return 0;
......@@ -722,13 +774,10 @@ struct Net::Impl
}
}
if (isOutPin)
return ld.getLayerInstance()->outputNameToIndex(outName);
else
return ld.getLayerInstance()->inputNameToIndex(outName);
}
LayerPin getPinByAlias(const String &pinAlias, bool isOutPin = true)
LayerPin getPinByAlias(const String &pinAlias)
{
LayerPin pin;
String layerName, outName;
......@@ -737,13 +786,31 @@ struct Net::Impl
pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);
if (pin.lid >= 0)
pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName, isOutPin);
pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName);
return pin;
}
std::vector<LayerPin> getLayerOutPins(const String &pinAlias)
{
String layerName, outName;
splitPin(pinAlias, layerName, outName);
int lid = (layerName.empty()) ? 0 : getLayerId(layerName);
std::vector<LayerPin> pins;
for (int i = 0; i < layers[lid].outputBlobs.size(); i++)
{
pins.push_back(LayerPin(lid, i));
}
return pins;
}
void connect(int outLayerId, int outNum, int inLayerId, int inNum)
{
CV_Assert(outLayerId < inLayerId);
LayerData &ldOut = getLayerData(outLayerId);
LayerData &ldInp = getLayerData(inLayerId);
......@@ -911,7 +978,7 @@ struct Net::Impl
ld.flag = 1;
}
void allocateLayers()
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_)
{
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
......@@ -934,34 +1001,19 @@ struct Net::Impl
blobManager.addReferences(ld.inputBlobsId);
}
for (it = layers.begin(); it != layers.end(); it++)
for (int i = 0; i < blobsToKeep_.size(); i++)
{
int lid = it->first;
allocateLayer(lid, layersShapes);
}
blobManager.addReference(blobsToKeep_[i]);
}
void forwardLayer(LayerData &ld, bool clearFlags = true)
{
if (clearFlags)
{
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
it->second.flag = 0;
}
//already was forwarded
if (ld.flag)
return;
//forward parents
for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++)
{
forwardLayer(layers[*i], false);
int lid = it->first;
allocateLayer(lid, layersShapes);
}
}
//forward itself
//try
void forwardLayer(LayerData &ld)
{
Ptr<Layer> layer = ld.layerInstance;
if (preferableBackend == DNN_BACKEND_DEFAULT ||
......@@ -983,23 +1035,40 @@ struct Net::Impl
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
}
}
}
/*catch (const cv::Exception &err)
{
CV_RETHROW_ERROR(err, format("The following error occured while making forward() for layer \"%s\": %s", ld.name.c_str(), err.err.c_str()));
}*/
ld.flag = 1;
}
void forwardAll()
void forwardToLayer(LayerData &ld, bool clearFlags = true)
{
if (clearFlags)
{
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
it->second.flag = 0;
}
for (it = layers.begin(); it != layers.end(); it++)
forwardLayer(it->second, false);
//already was forwarded
if (ld.flag)
return;
//forward parents
MapIdToLayerData::iterator it;
for (it = layers.begin(); it->second.id < ld.id; it++)
{
LayerData &ld = it->second;
if (ld.flag)
continue;
forwardLayer(ld);
}
//forward itself
forwardLayer(ld);
}
void forwardAll()
{
forwardToLayer(layers.rbegin()->second, true);
}
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
......@@ -1052,6 +1121,30 @@ struct Net::Impl
getLayerShapesRecursively(layerId, inOutShapes);
shapes = inOutShapes[layerId];
}
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
{
return *std::max_element(pins.begin(), pins.end());
}
Mat getBlob(const LayerPin& pin)
{
if (!pin.valid())
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
LayerData &ld = layers[pin.lid];
if ((size_t)pin.oid >= ld.outputBlobs.size())
{
CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) +
" outputs, the #" + toString(pin.oid) + " was requsted");
}
return ld.outputBlobs[pin.oid];
}
Mat getBlob(String outputName)
{
return getBlob(getPinByAlias(outputName));
}
};
Net::Net() : impl(new Net::Impl)
......@@ -1106,52 +1199,94 @@ void Net::connect(String _outPin, String _inPin)
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
}
void Net::allocate()
//void Net::forward(LayerId toLayer)
//{
// if (!impl->netWasAllocated)
// {
// impl->setUpNet();
// }
// if (toLayer.isString() && toLayer.get<String>().empty())
// impl->forwardAll();
// else
// impl->forwardLayer(impl->getLayerData(toLayer));
//}
Mat Net::forward(const String& outputName)
{
String layerName = outputName;
if (layerName.empty())
layerName = getLayerNames().back();
impl->setUpNet();
impl->forwardToLayer(impl->getLayerData(layerName));
return impl->getBlob(layerName);
}
void Net::forward(LayerId toLayer)
void Net::forward(std::vector<Mat>& outputBlobs, const String& outputName)
{
if (!impl->netWasAllocated)
{
impl->setUpNet();
// If user didn't call compileHalide() between
// setPreferableBackend(DNN_BACKEND_HALIDE) and forward().
if (impl->preferableBackend == DNN_BACKEND_HALIDE)
compileHalide();
}
if (toLayer.isString() && toLayer.get<String>().empty())
impl->forwardAll();
else
impl->forwardLayer(impl->getLayerData(toLayer));
String layerName = outputName;
if (layerName.empty())
layerName = getLayerNames().back();
impl->forwardToLayer(impl->getLayerData(layerName));
LayerPin pin = impl->getPinByAlias(layerName);
LayerData &ld = impl->layers[pin.lid];
outputBlobs = ld.outputBlobs;
}
void Net::compileHalide(const std::string& configFile)
void Net::forward(std::vector<Mat>& outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_Assert(impl->preferableBackend == DNN_BACKEND_HALIDE);
if (!impl->netWasAllocated)
impl->setUpNet();
HalideScheduler scheduler(configFile);
Impl::MapIdToLayerData::iterator it;
for (it = impl->layers.begin(); it != impl->layers.end(); ++it)
std::vector<LayerPin> pins;
for (int i = 0; i < outBlobNames.size(); i++)
{
LayerData &ld = it->second;
Ptr<Layer> layer = ld.layerInstance;
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skipFlags[DNN_BACKEND_HALIDE])
pins.push_back(impl->getPinByAlias(outBlobNames[i]));
}
impl->setUpNet(pins);
LayerPin out = impl->getLatestLayerPin(pins);
impl->forwardToLayer(impl->getLayerData(out.lid));
outputBlobs.clear();
for (int i = 0; i < pins.size(); i++)
{
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
if (!scheduled)
outputBlobs.push_back(impl->getBlob(pins[i]));
}
}
void Net::forward(std::vector<std::vector<Mat> >& outputBlobs,
const std::vector<String>& outBlobNames)
{
std::vector<LayerPin> pins;
for (int i = 0; i < outBlobNames.size(); i++)
{
// Use automatic scheduling provided by layer.
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
ld.inputBlobs, ld.outputBlobs);
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
pins.insert(pins.end(), lp.begin(), lp.end());
}
dnn::compileHalide(ld.outputBlobs, ld.backendNodes[DNN_BACKEND_HALIDE],
DNN_TARGET_CPU);
impl->setUpNet(pins);
LayerPin out = impl->getLatestLayerPin(pins);
impl->forwardToLayer(impl->getLayerData(out.lid));
outputBlobs.resize(outBlobNames.size());
for (int i = 0; i < outBlobNames.size(); i++)
{
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
for (int i = 0; i < lp.size(); i++)
{
outputBlobs[i].push_back(impl->getBlob(lp[i]));
}
}
}
......@@ -1163,16 +1298,19 @@ void Net::setPreferableBackend(int backendId)
impl->preferableBackend = backendId;
}
void Net::setNetInputs(const std::vector<String> &inputBlobNames)
void Net::setInputsNames(const std::vector<String> &inputBlobNames)
{
impl->netInputLayer->setNames(inputBlobNames);
}
void Net::setBlob(String outputName, const Mat &blob_)
void Net::setInput(const Mat &blob_, const String& name)
{
LayerPin pin = impl->getPinByAlias(outputName);
LayerPin pin;
pin.lid = 0;
pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name);
if (!pin.valid())
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + outputName + "\" not found");
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found");
LayerData &ld = impl->layers[pin.lid];
ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
......@@ -1186,21 +1324,6 @@ void Net::setBlob(String outputName, const Mat &blob_)
impl->netWasAllocated = impl->netWasAllocated && oldShape;
}
Mat Net::getBlob(String outputName)
{
LayerPin pin = impl->getPinByAlias(outputName);
if (!pin.valid())
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + outputName + "\" not found");
LayerData &ld = impl->layers[pin.lid];
if ((size_t)pin.oid >= ld.outputBlobs.size())
{
CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) +
" outputs, the #" + toString(pin.oid) + " was requsted");
}
return ld.outputBlobs[pin.oid];
}
Mat Net::getParam(LayerId layer, int numParam)
{
LayerData &ld = impl->getLayerData(layer);
......@@ -1516,6 +1639,11 @@ void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>&
weights, blobs);
}
void Net::setHalideScheduler(const String& scheduler)
{
impl->halideConfigFile = scheduler;
}
//////////////////////////////////////////////////////////////////////////
Importer::~Importer() {}
......
......@@ -703,7 +703,7 @@ void TFImporter::populateNet(Net dstNet)
std::vector<String> netInputs(1);
netInputs[0] = name;
layer_id[name] = 0;
dstNet.setNetInputs(netInputs);
dstNet.setInputsNames(netInputs);
}
else if (type == "Split") {
// TODO: determing axis index remapping by input dimensions order of input blob
......
......@@ -824,13 +824,20 @@ struct TorchImporter : public ::cv::dnn::Importer
mergeParams.set("axis", module->params.get<int>("dimension") - 1);
splitId = net.addLayer(generateLayerName("torchSplit"), "Split", splitParams);
mergeId = net.addLayer(generateLayerName("torchMerge"), "Concat", mergeParams);
net.connect(prevLayerId, prevOutNum, splitId, 0);
std::vector<int> branchIds;
for (int i = 0; i < (int)module->modules.size(); i++)
{
newId = fill(module->modules[i], addedModules, splitId, i);
net.connect(newId, 0, mergeId, i);
branchIds.push_back(newId);
}
mergeId = net.addLayer(generateLayerName("torchMerge"), "Concat", mergeParams);
for (int i = 0; i < branchIds.size(); i++)
{
net.connect(branchIds[i], 0, mergeId, i);
}
addedModules.push_back(std::make_pair(mergeId, module));
......@@ -847,15 +854,22 @@ struct TorchImporter : public ::cv::dnn::Importer
reshapeParams.set("num_axes", 1);
splitId = net.addLayer(generateLayerName("torchSplit"), "Slice", splitParams);
mergeId = net.addLayer(generateLayerName("torchMerge"), "Concat", mergeParams);
reshapeId = net.addLayer(generateLayerName("torchReshape"), "Reshape", reshapeParams);
net.connect(prevLayerId, prevOutNum, splitId, 0);
std::vector<int> branchIds;
for (int i = 0; i < (int)module->modules.size(); i++)
{
net.connect(splitId, i, reshapeId, i);
newId = fill(module->modules[i], addedModules, reshapeId, i);
net.connect(newId, 0, mergeId, i);
branchIds.push_back(newId);
}
mergeId = net.addLayer(generateLayerName("torchMerge"), "Concat", mergeParams);
for (int i = 0; i < branchIds.size(); i++)
{
net.connect(branchIds[i], 0, mergeId, i);
}
addedModules.push_back(std::make_pair(mergeId, module));
......
......@@ -94,10 +94,8 @@ TEST(Reproducibility_AlexNet, Accuracy)
if (sample.size() != inputSize)
resize(sample, sample, inputSize);
net.setBlob(".data", blobFromImage(sample, 1.));
net.forward();
Mat out = net.getBlob("prob");
net.setInput(blobFromImage(sample, 1.), "data");
Mat out = net.forward("prob");
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
normAssert(ref, out);
}
......@@ -125,10 +123,8 @@ TEST(Reproducibility_FCN, Accuracy)
std::vector<size_t> weights, blobs;
net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs);
net.setBlob(".data", blobFromImage(sample, 1.));
net.forward();
Mat out = net.getBlob("score");
net.setInput(blobFromImage(sample, 1.), "data");
Mat out = net.forward("score");
Mat ref = blobFromNPY(_tf("caffe_fcn8s_prob.npy"));
normAssert(ref, out);
}
......@@ -155,9 +151,8 @@ TEST(Reproducibility_SSD, Accuracy)
resize(sample, sample, Size(300, 300));
Mat in_blob = blobFromImage(sample);
net.setBlob(".data", in_blob);
net.forward();
Mat out = net.getBlob("detection_out");
net.setInput(in_blob, "data");
Mat out = net.forward("detection_out");
Mat ref = blobFromNPY(_tf("ssd_out.npy"));
normAssert(ref, out);
......
......@@ -72,12 +72,30 @@ static void launchGoogleNetTest()
inpMats.push_back( imread(_tf("googlenet_1.png")) );
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
net.setBlob(".data", blobFromImages(inpMats));
net.forward();
net.setInput(blobFromImages(inpMats), "data");
Mat out = net.forward("prob");
Mat out = net.getBlob("prob");
Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
normAssert(out, ref);
std::vector<String> blobsNames;
blobsNames.push_back("conv1/7x7_s2");
blobsNames.push_back("conv1/relu_7x7");
blobsNames.push_back("inception_4c/1x1");
blobsNames.push_back("inception_4c/relu_1x1");
std::vector<Mat> outs;
Mat in = blobFromImage(inpMats[0]);
net.setInput(in, "data");
net.forward(outs, blobsNames);
CV_Assert(outs.size() == blobsNames.size());
for (int i = 0; i < blobsNames.size(); i++)
{
std::string filename = blobsNames[i];
std::replace( filename.begin(), filename.end(), '/', '#');
Mat ref = blobFromNPY(_tf("googlenet_" + filename + ".npy"));
normAssert(outs[i], ref, "", 1E-4, 1E-2);
}
}
TEST(Reproducibility_GoogLeNet, Accuracy)
......
......@@ -118,9 +118,8 @@ void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool
Mat inp = blobFromNPY(inpfile);
Mat ref = blobFromNPY(outfile);
net.setBlob(".input", inp);
net.forward();
Mat out = net.getBlob("output");
net.setInput(inp, "input");
Mat out = net.forward("output");
normAssert(ref, out);
}
......@@ -244,9 +243,8 @@ static void test_Reshape_Split_Slice_layers()
RNG rng(0);
rng.fill(input, RNG::UNIFORM, -1, 1);
net.setBlob(".input", input);
net.forward();
Mat output = net.getBlob("output");
net.setInput(input, "input");
Mat output = net.forward("output");
normAssert(input, output);
}
......
......@@ -42,10 +42,9 @@ TEST(Test_TensorFlow, read_inception)
Mat inputBlob = blobFromImage(input, 1.);
net.setBlob("_input.input", inputBlob);
net.forward();
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
Mat out = net.getBlob("softmax2");
std::cout << out.dims << std::endl;
}
......@@ -64,10 +63,9 @@ TEST(Test_TensorFlow, inception_accuracy)
resize(sample, sample, Size(224, 224));
Mat inputBlob = blobFromImage(sample, 1.);
net.setBlob(".input", inputBlob);
net.forward();
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
Mat out = net.getBlob("softmax2");
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
normAssert(ref, out);
......
......@@ -87,17 +87,17 @@ static void runTorchNet(String prefix, String outLayerName = "",
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
net.setBlob(".0", inp);
net.forward();
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
Mat out = net.getBlob(outLayerName);
normAssert(outRef, out);
net.setInput(inp, "0");
std::vector<Mat> outBlobs;
net.forward(outBlobs, outLayerName);
normAssert(outRef, outBlobs[0]);
if (check2ndBlob)
{
Mat out2 = net.getBlob(outLayerName + ".1");
Mat out2 = outBlobs[1];
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2);
}
......@@ -132,12 +132,12 @@ TEST(Torch_Importer, run_linear)
TEST(Torch_Importer, run_paralel)
{
runTorchNet("net_parallel", "l2_torchMerge");
runTorchNet("net_parallel", "l5_torchMerge");
}
TEST(Torch_Importer, run_concat)
{
runTorchNet("net_concat", "l2_torchMerge");
runTorchNet("net_concat", "l5_torchMerge");
}
TEST(Torch_Importer, run_deconv)
......@@ -185,14 +185,21 @@ TEST(Torch_Importer, ENet_accuracy)
Mat sample = imread(_tf("street.png", false));
Mat inputBlob = blobFromImage(sample, 1./255);
net.setBlob("", inputBlob);
net.forward();
Mat out = net.getBlob(net.getLayerNames().back());
net.setInput(inputBlob, "");
Mat out = net.forward();
Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
// Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
// thresholds for ENet must be changed. Accuracy of resuults was checked on
// Cityscapes dataset and difference in mIOU with Torch is 10E-4%
normAssert(ref, out, "", 0.00044, 0.44);
const int N = 3;
for (int i = 0; i < N; i++)
{
net.setInput(inputBlob, "");
Mat out = net.forward();
normAssert(ref, out, "", 0.00044, 0.44);
}
}
}
......
......@@ -172,11 +172,10 @@ bool TrackerGOTURNImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
Mat targetBlob = dnn::blobFromImage(targetPatch);
Mat searchBlob = dnn::blobFromImage(searchPatch);
net.setBlob(".data1", targetBlob);
net.setBlob(".data2", searchBlob);
net.setInput(targetBlob, ".data1");
net.setInput(searchBlob, ".data2");
net.forward();
Mat resMat = net.getBlob("scale").reshape(1, 1);
Mat resMat = net.forward("scale").reshape(1, 1);
curBB.x = targetPatchRect.x + (resMat.at<float>(0) * targetPatchRect.width / INPUT_SIZE) - targetPatchRect.width;
curBB.y = targetPatchRect.y + (resMat.at<float>(1) * targetPatchRect.height / INPUT_SIZE) - targetPatchRect.height;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment