Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
a8f9344e
Commit
a8f9344e
authored
Jul 03, 2014
by
Vlad Shakhuro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Derive WaldBoost from Algorithm
parent
a9599990
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
43 additions
and
65 deletions
+43
-65
xobjdetect.hpp
modules/xobjdetect/include/opencv2/xobjdetect.hpp
+8
-57
icfdetector.cpp
modules/xobjdetect/src/icfdetector.cpp
+2
-2
precomp.hpp
modules/xobjdetect/src/precomp.hpp
+1
-0
waldboost.cpp
modules/xobjdetect/src/waldboost.cpp
+32
-6
No files found.
modules/xobjdetect/include/opencv2/xobjdetect.hpp
View file @
a8f9344e
...
@@ -108,56 +108,10 @@ struct CV_EXPORTS WaldBoostParams
...
@@ -108,56 +108,10 @@ struct CV_EXPORTS WaldBoostParams
};
};
class
CV_EXPORTS
Stump
{
public
:
/* Initialize zero stump */
Stump
()
:
threshold_
(
0
),
polarity_
(
1
),
pos_value_
(
1
),
neg_value_
(
-
1
)
{}
/* Initialize stump with given threshold, polarity
and classification values */
Stump
(
int
threshold
,
int
polarity
,
float
pos_value
,
float
neg_value
)
:
threshold_
(
threshold
),
polarity_
(
polarity
),
pos_value_
(
pos_value
),
neg_value_
(
neg_value
)
{}
/* Train stump for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
weights — matrix of sample weights, size 1 x N
Returns chosen feature index. Feature enumeration starts from 0
*/
int
train
(
const
Mat
&
data
,
const
Mat
&
labels
,
const
Mat
&
weights
);
/* Predict object class given
value — feature value. Feature must be the same as was chosen
during training stump
Returns real value, sign(value) means class
*/
float
predict
(
int
value
)
const
;
private
:
/* Stump decision threshold */
int
threshold_
;
/* Stump polarity, can be from {-1, +1} */
int
polarity_
;
/* Classification values for positive and negative classes */
float
pos_value_
,
neg_value_
;
};
class
CV_EXPORTS
WaldBoost
:
public
Algorithm
class
CV_EXPORTS
WaldBoost
:
public
Algorithm
{
{
public
:
public
:
/* Initialize WaldBoost cascade with default of specified parameters */
WaldBoost
(
const
WaldBoostParams
&
params
=
WaldBoostParams
());
/* Train WaldBoost cascade for given data
/* Train WaldBoost cascade for given data
data — matrix of feature values, size M x N, one feature per row
data — matrix of feature values, size M x N, one feature per row
...
@@ -168,8 +122,8 @@ public:
...
@@ -168,8 +122,8 @@ public:
Returns feature indices chosen for cascade.
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
Feature enumeration starts from 0
*/
*/
std
::
vector
<
int
>
train
(
const
Mat
&
data
,
virtual
std
::
vector
<
int
>
train
(
const
Mat
&
data
,
const
Mat
&
labels
)
;
const
Mat
&
labels
)
=
0
;
/* Predict object class given object that can compute object features
/* Predict object class given object that can compute object features
...
@@ -178,17 +132,14 @@ public:
...
@@ -178,17 +132,14 @@ public:
Returns confidence_value — measure of confidense that object
Returns confidence_value — measure of confidense that object
is from class +1
is from class +1
*/
*/
float
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
);
virtual
float
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
)
const
=
0
;
private
:
/* Parameters for cascade training */
WaldBoostParams
params_
;
/* Stumps in cascade */
std
::
vector
<
Stump
>
stumps_
;
/* Rejection thresholds for linear combination at every stump evaluation */
std
::
vector
<
float
>
thresholds_
;
};
};
CV_EXPORTS
Ptr
<
WaldBoost
>
createWaldBoost
(
const
WaldBoostParams
&
params
=
WaldBoostParams
());
struct
CV_EXPORTS
ICFDetectorParams
struct
CV_EXPORTS
ICFDetectorParams
{
{
int
feature_count
;
int
feature_count
;
...
...
modules/xobjdetect/src/icfdetector.cpp
View file @
a8f9344e
...
@@ -137,8 +137,8 @@ void ICFDetector::train(const vector<string>& image_filenames,
...
@@ -137,8 +137,8 @@ void ICFDetector::train(const vector<string>& image_filenames,
wparams
.
weak_count
=
params
.
weak_count
;
wparams
.
weak_count
=
params
.
weak_count
;
wparams
.
alpha
=
0.001
f
;
wparams
.
alpha
=
0.001
f
;
WaldBoost
waldb
oost
(
wparams
);
Ptr
<
WaldBoost
>
waldboost
=
createWaldB
oost
(
wparams
);
waldboost
.
train
(
data
,
labels
);
waldboost
->
train
(
data
,
labels
);
}
}
bool
ICFDetector
::
save
(
const
string
&
)
bool
ICFDetector
::
save
(
const
string
&
)
...
...
modules/xobjdetect/src/precomp.hpp
View file @
a8f9344e
...
@@ -43,6 +43,7 @@ the use of this software, even if advised of the possibility of such damage.
...
@@ -43,6 +43,7 @@ the use of this software, even if advised of the possibility of such damage.
#define __OPENCV_XOBJDETECT_PRECOMP_HPP__
#define __OPENCV_XOBJDETECT_PRECOMP_HPP__
#include <opencv2/xobjdetect.hpp>
#include <opencv2/xobjdetect.hpp>
#include <opencv2/xobjdetect/private.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgproc/types_c.h>
#include <opencv2/imgproc/types_c.h>
...
...
modules/xobjdetect/src/waldboost.cpp
View file @
a8f9344e
...
@@ -41,7 +41,6 @@ the use of this software, even if advised of the possibility of such damage.
...
@@ -41,7 +41,6 @@ the use of this software, even if advised of the possibility of such damage.
#include "precomp.hpp"
#include "precomp.hpp"
using
std
::
swap
;
using
std
::
swap
;
using
std
::
vector
;
using
std
::
vector
;
...
@@ -51,11 +50,30 @@ namespace cv
...
@@ -51,11 +50,30 @@ namespace cv
namespace
xobjdetect
namespace
xobjdetect
{
{
WaldBoost
::
WaldBoost
(
const
WaldBoostParams
&
params
)
:
params_
(
params
)
class
WaldBoostImpl
:
public
WaldBoost
{
{
}
public
:
/* Initialize WaldBoost cascade with default of specified parameters */
vector
<
int
>
WaldBoost
::
train
(
const
Mat
&
data
,
const
Mat
&
labels
)
WaldBoostImpl
(
const
WaldBoostParams
&
params
)
:
params_
(
params
)
{}
virtual
std
::
vector
<
int
>
train
(
const
Mat
&
data
,
const
Mat
&
labels
);
virtual
float
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
)
const
;
private
:
/* Parameters for cascade training */
WaldBoostParams
params_
;
/* Stumps in cascade */
std
::
vector
<
Stump
>
stumps_
;
/* Rejection thresholds for linear combination at every stump evaluation */
std
::
vector
<
float
>
thresholds_
;
};
vector
<
int
>
WaldBoostImpl
::
train
(
const
Mat
&
data
,
const
Mat
&
labels
)
{
{
CV_Assert
(
labels
.
rows
==
1
&&
labels
.
cols
==
data
.
cols
);
CV_Assert
(
labels
.
rows
==
1
&&
labels
.
cols
==
data
.
cols
);
...
@@ -144,7 +162,8 @@ vector<int> WaldBoost::train(const Mat& data, const Mat& labels)
...
@@ -144,7 +162,8 @@ vector<int> WaldBoost::train(const Mat& data, const Mat& labels)
return
feature_indices
;
return
feature_indices
;
}
}
float
WaldBoost
::
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
)
float
WaldBoostImpl
::
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
)
const
{
{
float
trace
=
0
;
float
trace
=
0
;
for
(
size_t
i
=
0
;
i
<
stumps_
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
stumps_
.
size
();
++
i
)
...
@@ -157,5 +176,12 @@ float WaldBoost::predict(const Ptr<ACFFeatureEvaluator>& feature_evaluator)
...
@@ -157,5 +176,12 @@ float WaldBoost::predict(const Ptr<ACFFeatureEvaluator>& feature_evaluator)
return
trace
;
return
trace
;
}
}
Ptr
<
WaldBoost
>
createWaldBoost
(
const
WaldBoostParams
&
params
)
{
return
Ptr
<
WaldBoost
>
(
new
WaldBoostImpl
(
params
));
}
}
/* namespace xobjdetect */
}
/* namespace xobjdetect */
}
/* namespace cv */
}
/* namespace cv */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment