Commit a7a47dca authored by Anna Petrovicheva's avatar Anna Petrovicheva

Fixed concat layer

parent e4650efa
...@@ -62,6 +62,7 @@ namespace dnn ...@@ -62,6 +62,7 @@ namespace dnn
CV_Assert(axis < refShape.dims()); CV_Assert(axis < refShape.dims());
int axisSum = 0; int axisSum = 0;
for (size_t i = 0; i < inputs.size(); i++) for (size_t i = 0; i < inputs.size(); i++)
{ {
BlobShape curShape = inputs[i]->shape(); BlobShape curShape = inputs[i]->shape();
...@@ -83,18 +84,16 @@ namespace dnn ...@@ -83,18 +84,16 @@ namespace dnn
void ConcatLayer::forward(std::vector<Blob *> &inputs, std::vector<Blob> &outputs) void ConcatLayer::forward(std::vector<Blob *> &inputs, std::vector<Blob> &outputs)
{ {
const Mat& outMat = outputs[0].matRef(); // In case when Blob shape used in allocation and inner matrix shape do not match, this layer did not work in previous implementation. This implementation is just a fix and needs to be rewritten.
std::vector<Range> ranges(outputs[0].dims(), Range::all());
int sizeStart = 0; size_t usedSize = 0;
for (size_t i = 0; i < inputs.size(); i++) for (size_t i = 0; i < inputs.size(); i++)
{ {
int sizeEnd = sizeStart + inputs[i]->size(axis); Mat inMat(1, inputs[i]->total(), CV_32F, inputs[i]->ptrf());
ranges[axis] = Range(sizeStart, sizeEnd); Mat outMat(1, inputs[i]->total(), CV_32F, outputs[0].ptrf() + usedSize);
Mat outSubMat = outMat(&ranges[0]);
inputs[i]->matRef().copyTo(outSubMat);
sizeStart = sizeEnd; inMat.copyTo(outMat);
usedSize += inputs[i]->total();
} }
} }
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment