Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
a39e3623
Commit
a39e3623
authored
Jul 06, 2015
by
samontab
Committed by
Vladislav Sovrasov
Oct 17, 2016
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add Fine Grained Saliency algorithm
parent
25575af6
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
361 additions
and
0 deletions
+361
-0
saliency.bib
modules/saliency/doc/saliency.bib
+9
-0
saliencySpecializedClasses.hpp
...y/include/opencv2/saliency/saliencySpecializedClasses.hpp
+29
-0
computeSaliency.cpp
modules/saliency/samples/computeSaliency.cpp
+11
-0
saliency.cpp
modules/saliency/src/saliency.cpp
+2
-0
staticSaliencyFineGrained.cpp
modules/saliency/src/staticSaliencyFineGrained.cpp
+310
-0
No files found.
modules/saliency/doc/saliency.bib
View file @
a39e3623
...
@@ -22,3 +22,12 @@
...
@@ -22,3 +22,12 @@
year={2007},
year={2007},
organization={IEEE}
organization={IEEE}
}
}
@inproceedings{FGS,
title={Human Detection Using a Mobile Platform and Novel Features Derived from a Visual Saliency Mechanism},
author={Montabone, Sebastian and Soto, Alvaro},
booktitle={Image and Vision Computing, Vol. 28 Issue 3},
pages={391--402},
year={2010},
organization={Elsevier}
}
modules/saliency/include/opencv2/saliency/saliencySpecializedClasses.hpp
View file @
a39e3623
...
@@ -113,6 +113,35 @@ protected:
...
@@ -113,6 +113,35 @@ protected:
};
};
/** @brief the Fine Grained Saliency approach from @cite FGS
This method calculates saliency based on center-surround differences.
High resolution saliency maps are generated in real time by using integral images.
*/
class
CV_EXPORTS
StaticSaliencyFineGrained
:
public
StaticSaliency
{
public
:
StaticSaliencyFineGrained
();
virtual
~
StaticSaliencyFineGrained
();
protected
:
bool
computeSaliencyImpl
(
InputArray
image
,
OutputArray
saliencyMap
);
private
:
void
calcIntensityChannel
(
Mat
src
,
Mat
dst
);
void
copyImage
(
Mat
src
,
Mat
dst
);
void
getIntensityScaled
(
Mat
integralImage
,
Mat
gray
,
Mat
saliencyOn
,
Mat
saliencyOff
,
int
neighborhood
);
float
getMean
(
Mat
srcArg
,
Point2i
PixArg
,
int
neighbourhood
,
int
centerVal
);
void
mixScales
(
Mat
*
saliencyOn
,
Mat
intensityOn
,
Mat
*
saliencyOff
,
Mat
intensityOff
,
const
int
numScales
);
void
mixOnOff
(
Mat
intensityOn
,
Mat
intensityOff
,
Mat
intensity
);
void
getIntensity
(
Mat
srcArg
,
Mat
dstArg
,
Mat
dstOnArg
,
Mat
dstOffArg
,
bool
generateOnOff
);
};
/************************************ Specific Motion Saliency Specialized Classes ************************************/
/************************************ Specific Motion Saliency Specialized Classes ************************************/
/*!
/*!
...
...
modules/saliency/samples/computeSaliency.cpp
View file @
a39e3623
...
@@ -127,6 +127,17 @@ int main( int argc, char** argv )
...
@@ -127,6 +127,17 @@ int main( int argc, char** argv )
waitKey
(
0
);
waitKey
(
0
);
}
}
}
else
if
(
saliency_algorithm
.
find
(
"FINE_GRAINED"
)
==
0
)
{
Mat
saliencyMap
;
if
(
saliencyAlgorithm
->
computeSaliency
(
image
,
saliencyMap
)
)
{
imshow
(
"Saliency Map"
,
saliencyMap
);
imshow
(
"Original Image"
,
image
);
waitKey
(
0
);
}
}
}
else
if
(
saliency_algorithm
.
find
(
"BING"
)
==
0
)
else
if
(
saliency_algorithm
.
find
(
"BING"
)
==
0
)
{
{
...
...
modules/saliency/src/saliency.cpp
View file @
a39e3623
...
@@ -55,6 +55,8 @@ Ptr<Saliency> Saliency::create( const String& saliencyType )
...
@@ -55,6 +55,8 @@ Ptr<Saliency> Saliency::create( const String& saliencyType )
{
{
if
(
saliencyType
==
"SPECTRAL_RESIDUAL"
)
if
(
saliencyType
==
"SPECTRAL_RESIDUAL"
)
return
makePtr
<
StaticSaliencySpectralResidual
>
();
return
makePtr
<
StaticSaliencySpectralResidual
>
();
else
if
(
saliencyType
==
"FINE_GRAINED"
)
return
makePtr
<
StaticSaliencyFineGrained
>
();
else
if
(
saliencyType
==
"BING"
)
else
if
(
saliencyType
==
"BING"
)
return
makePtr
<
ObjectnessBING
>
();
return
makePtr
<
ObjectnessBING
>
();
else
if
(
saliencyType
==
"BinWangApr2014"
)
else
if
(
saliencyType
==
"BinWangApr2014"
)
...
...
modules/saliency/src/staticSaliencyFineGrained.cpp
0 → 100644
View file @
a39e3623
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace
cv
{
namespace
saliency
{
/**
* Fine Grained Saliency
*/
StaticSaliencyFineGrained
::
StaticSaliencyFineGrained
()
{
className
=
"FINE_GRAINED"
;
}
StaticSaliencyFineGrained
::~
StaticSaliencyFineGrained
()
{
}
bool
StaticSaliencyFineGrained
::
computeSaliencyImpl
(
const
InputArray
image
,
OutputArray
saliencyMap
)
{
Mat
dst
(
Size
(
image
.
getMat
().
cols
,
image
.
getMat
().
rows
),
CV_8UC1
);
calcIntensityChannel
(
image
.
getMat
(),
dst
);
dst
.
copyTo
(
saliencyMap
);
#ifdef SALIENCY_DEBUG
// visualize saliency map
imshow
(
"Saliency Map Interna"
,
saliencyMap
);
#endif
return
true
;
}
void
StaticSaliencyFineGrained
::
copyImage
(
Mat
srcArg
,
Mat
dstArg
)
{
srcArg
.
copyTo
(
dstArg
);
}
void
StaticSaliencyFineGrained
::
calcIntensityChannel
(
Mat
srcArg
,
Mat
dstArg
)
{
if
(
dstArg
.
channels
()
>
1
)
{
//("Error: Destiny image must have only one channel.\n");
return
;
}
const
int
numScales
=
6
;
Mat
intensityScaledOn
[
numScales
];
Mat
intensityScaledOff
[
numScales
];
Mat
gray
=
Mat
::
zeros
(
Size
(
srcArg
.
cols
,
srcArg
.
rows
),
CV_8UC1
);
Mat
integralImage
(
Size
(
srcArg
.
cols
+
1
,
srcArg
.
rows
+
1
),
CV_32FC1
);
Mat
intensity
(
Size
(
srcArg
.
cols
,
srcArg
.
rows
),
CV_8UC1
);
Mat
intensityOn
(
Size
(
srcArg
.
cols
,
srcArg
.
rows
),
CV_8UC1
);
Mat
intensityOff
(
Size
(
srcArg
.
cols
,
srcArg
.
rows
),
CV_8UC1
);
int
i
;
int
neighborhood
;
int
neighborhoods
[]
=
{
3
*
4
,
3
*
4
*
2
,
3
*
4
*
2
*
2
,
7
*
4
,
7
*
4
*
2
,
7
*
4
*
2
*
2
};
for
(
i
=
0
;
i
<
numScales
;
i
++
)
{
intensityScaledOn
[
i
]
=
Mat
(
Size
(
srcArg
.
cols
,
srcArg
.
rows
),
CV_8UC1
);
intensityScaledOff
[
i
]
=
Mat
(
Size
(
srcArg
.
cols
,
srcArg
.
rows
),
CV_8UC1
);
}
// Prepare the input image: put it into a grayscale image.
if
(
srcArg
.
channels
()
==
3
)
{
cvtColor
(
srcArg
,
gray
,
COLOR_BGR2GRAY
);
}
else
{
srcArg
.
copyTo
(
gray
);
}
// smooth pixels at least twice, as done by Frintrop and Itti
GaussianBlur
(
gray
,
gray
,
Size
(
3
,
3
),
0
,
0
);
GaussianBlur
(
gray
,
gray
,
Size
(
3
,
3
),
0
,
0
);
// Calculate integral image, only once.
integral
(
gray
,
integralImage
,
CV_32F
);
for
(
i
=
0
;
i
<
numScales
;
i
++
)
{
neighborhood
=
neighborhoods
[
i
]
;
getIntensityScaled
(
integralImage
,
gray
,
intensityScaledOn
[
i
],
intensityScaledOff
[
i
],
neighborhood
);
}
mixScales
(
intensityScaledOn
,
intensityOn
,
intensityScaledOff
,
intensityOff
,
numScales
);
mixOnOff
(
intensityOn
,
intensityOff
,
intensity
);
intensity
.
copyTo
(
dstArg
);
}
void
StaticSaliencyFineGrained
::
getIntensityScaled
(
Mat
integralImage
,
Mat
gray
,
Mat
intensityScaledOn
,
Mat
intensityScaledOff
,
int
neighborhood
)
{
float
value
,
meanOn
,
meanOff
;
Point2i
point
;
int
x
,
y
;
intensityScaledOn
.
setTo
(
Scalar
::
all
(
0
));
intensityScaledOff
.
setTo
(
Scalar
::
all
(
0
));
for
(
y
=
0
;
y
<
gray
.
rows
;
y
++
)
{
for
(
x
=
0
;
x
<
gray
.
cols
;
x
++
)
{
point
.
x
=
x
;
point
.
y
=
y
;
value
=
getMean
(
integralImage
,
point
,
neighborhood
,
gray
.
at
<
uchar
>
(
y
,
x
));
meanOn
=
gray
.
at
<
uchar
>
(
y
,
x
)
-
value
;
meanOff
=
value
-
gray
.
at
<
uchar
>
(
y
,
x
);
if
(
meanOn
>
0
)
intensityScaledOn
.
at
<
uchar
>
(
y
,
x
)
=
(
uchar
)
meanOn
;
else
intensityScaledOn
.
at
<
uchar
>
(
y
,
x
)
=
0
;
if
(
meanOff
>
0
)
intensityScaledOff
.
at
<
uchar
>
(
y
,
x
)
=
(
uchar
)
meanOff
;
else
intensityScaledOff
.
at
<
uchar
>
(
y
,
x
)
=
0
;
}
}
}
float
StaticSaliencyFineGrained
::
getMean
(
Mat
srcArg
,
Point2i
PixArg
,
int
neighbourhood
,
int
centerVal
)
{
Point2i
P1
,
P2
;
float
value
;
P1
.
x
=
PixArg
.
x
-
neighbourhood
+
1
;
P1
.
y
=
PixArg
.
y
-
neighbourhood
+
1
;
P2
.
x
=
PixArg
.
x
+
neighbourhood
+
1
;
P2
.
y
=
PixArg
.
y
+
neighbourhood
+
1
;
if
(
P1
.
x
<
0
)
P1
.
x
=
0
;
else
if
(
P1
.
x
>
srcArg
.
cols
-
1
)
P1
.
x
=
srcArg
.
cols
-
1
;
if
(
P2
.
x
<
0
)
P2
.
x
=
0
;
else
if
(
P2
.
x
>
srcArg
.
cols
-
1
)
P2
.
x
=
srcArg
.
cols
-
1
;
if
(
P1
.
y
<
0
)
P1
.
y
=
0
;
else
if
(
P1
.
y
>
srcArg
.
rows
-
1
)
P1
.
y
=
srcArg
.
rows
-
1
;
if
(
P2
.
y
<
0
)
P2
.
y
=
0
;
else
if
(
P2
.
y
>
srcArg
.
rows
-
1
)
P2
.
y
=
srcArg
.
rows
-
1
;
// we use the integral image to compute fast features
value
=
(
float
)
(
(
srcArg
.
at
<
float
>
(
P2
.
y
,
P2
.
x
))
+
(
srcArg
.
at
<
float
>
(
P1
.
y
,
P1
.
x
))
-
(
srcArg
.
at
<
float
>
(
P2
.
y
,
P1
.
x
))
-
(
srcArg
.
at
<
float
>
(
P1
.
y
,
P2
.
x
))
);
value
=
(
value
-
centerVal
)
/
((
(
P2
.
x
-
P1
.
x
)
*
(
P2
.
y
-
P1
.
y
))
-
1
)
;
return
value
;
}
void
StaticSaliencyFineGrained
::
mixScales
(
Mat
*
intensityScaledOn
,
Mat
intensityOn
,
Mat
*
intensityScaledOff
,
Mat
intensityOff
,
const
int
numScales
)
{
int
i
=
0
,
x
,
y
;
int
width
=
intensityScaledOn
[
0
].
cols
;
int
height
=
intensityScaledOn
[
0
].
rows
;
short
int
maxValOn
=
0
,
currValOn
=
0
;
short
int
maxValOff
=
0
,
currValOff
=
0
;
int
maxValSumOff
=
0
,
maxValSumOn
=
0
;
Mat
mixedValuesOn
(
Size
(
width
,
height
),
CV_16UC1
);
Mat
mixedValuesOff
(
Size
(
width
,
height
),
CV_16UC1
);
mixedValuesOn
.
setTo
(
Scalar
::
all
(
0
));
mixedValuesOff
.
setTo
(
Scalar
::
all
(
0
));
for
(
i
=
0
;
i
<
numScales
;
i
++
)
{
for
(
y
=
0
;
y
<
height
;
y
++
)
for
(
x
=
0
;
x
<
width
;
x
++
)
{
currValOn
=
intensityScaledOn
[
i
].
at
<
uchar
>
(
y
,
x
);
if
(
currValOn
>
maxValOn
)
maxValOn
=
currValOn
;
currValOff
=
intensityScaledOff
[
i
].
at
<
uchar
>
(
y
,
x
);
if
(
currValOff
>
maxValOff
)
maxValOff
=
currValOff
;
mixedValuesOn
.
at
<
unsigned
short
>
(
y
,
x
)
+=
currValOn
;
mixedValuesOff
.
at
<
unsigned
short
>
(
y
,
x
)
+=
currValOff
;
}
}
for
(
y
=
0
;
y
<
height
;
y
++
)
for
(
x
=
0
;
x
<
width
;
x
++
)
{
currValOn
=
mixedValuesOn
.
at
<
unsigned
short
>
(
y
,
x
);
currValOff
=
mixedValuesOff
.
at
<
unsigned
short
>
(
y
,
x
);
if
(
currValOff
>
maxValSumOff
)
maxValSumOff
=
currValOff
;
if
(
currValOn
>
maxValSumOn
)
maxValSumOn
=
currValOn
;
}
for
(
y
=
0
;
y
<
height
;
y
++
)
for
(
x
=
0
;
x
<
width
;
x
++
)
{
intensityOn
.
at
<
uchar
>
(
y
,
x
)
=
(
uchar
)(
255.
*
((
float
)(
mixedValuesOn
.
at
<
unsigned
short
>
(
y
,
x
)
/
(
float
)
maxValSumOn
)));
intensityOff
.
at
<
uchar
>
(
y
,
x
)
=
(
uchar
)(
255.
*
((
float
)(
mixedValuesOff
.
at
<
unsigned
short
>
(
y
,
x
)
/
(
float
)
maxValSumOff
)));
}
}
void
StaticSaliencyFineGrained
::
mixOnOff
(
Mat
intensityOn
,
Mat
intensityOff
,
Mat
intensityArg
)
{
int
x
,
y
;
int
width
=
intensityOn
.
cols
;
int
height
=
intensityOn
.
rows
;
int
maxVal
=
0
;
int
currValOn
,
currValOff
,
maxValSumOff
,
maxValSumOn
;
Mat
intensity
(
Size
(
width
,
height
),
CV_8UC1
);
maxValSumOff
=
0
;
maxValSumOn
=
0
;
for
(
y
=
0
;
y
<
height
;
y
++
)
for
(
x
=
0
;
x
<
width
;
x
++
)
{
currValOn
=
intensityOn
.
at
<
uchar
>
(
y
,
x
);
currValOff
=
intensityOff
.
at
<
uchar
>
(
y
,
x
);
if
(
currValOff
>
maxValSumOff
)
maxValSumOff
=
currValOff
;
if
(
currValOn
>
maxValSumOn
)
maxValSumOn
=
currValOn
;
}
if
(
maxValSumOn
>
maxValSumOff
)
maxVal
=
maxValSumOn
;
else
maxVal
=
maxValSumOff
;
for
(
y
=
0
;
y
<
height
;
y
++
)
for
(
x
=
0
;
x
<
width
;
x
++
)
{
intensity
.
at
<
uchar
>
(
y
,
x
)
=
(
uchar
)
(
255.
*
(
float
)
(
intensityOn
.
at
<
uchar
>
(
y
,
x
)
+
intensityOff
.
at
<
uchar
>
(
y
,
x
))
/
(
float
)
maxVal
);
}
intensity
.
copyTo
(
intensityArg
);
}
}
/* namespace saliency */
}
/* namespace cv */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment