Commit a2582d43 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #892 from spacetrain:fast_line_detector

parents fa8839bb a7dada15
......@@ -47,6 +47,15 @@
publisher={Springer}
}
@inproceedings{Lee14,
title={Outdoor place recognition in urban environments using straight lines},
author={Lee, Jin Han and Lee, Sehyung and Zhang, Guoxuan and Lim, Jongwoo and Chung, Wan Kyun and Suh, Il Hong},
booktitle={2014 IEEE International Conference on Robotics and Automation (ICRA)},
pages={5550--5557},
year={2014},
organization={IEEE}
}
@inproceedings{Lim2013,
title={Sketch tokens: A learned mid-level representation for contour and object detection},
author={Lim, Joseph J and Zitnick, C Lawrence and Doll{\'a}r, Piotr},
......
......@@ -2,26 +2,26 @@
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
......@@ -49,6 +49,7 @@
#include "ximgproc/slic.hpp"
#include "ximgproc/lsc.hpp"
#include "ximgproc/paillou_filter.hpp"
#include "ximgproc/fast_line_detector.hpp"
/** @defgroup ximgproc Extended Image Processing
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_FAST_LINE_DETECTOR_HPP__
#define __OPENCV_FAST_LINE_DETECTOR_HPP__
#include <opencv2/core.hpp>
namespace cv
{
namespace ximgproc
{
//! @addtogroup ximgproc_feature
//! @{
/** @brief Class implementing the FLD (Fast Line Detector) algorithm described
in @cite Lee14 .
*/
//! @include samples/fld_lines.cpp
class CV_EXPORTS_W FastLineDetector : public Algorithm
{
public:
/** @example fld_lines.cpp
An example using the FastLineDetector
*/
/** @brief Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above
shown image.
![image](pics/corridor_fld.jpg)
@param _image A grayscale (CV_8UC1) input image. If only a roi needs to be
selected, use: `fld_ptr-\>detect(image(roi), lines, ...);
lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
@param _lines A vector of Vec4f elements specifying the beginning
and ending point of a line. Where Vec4f is (x1, y1, x2, y2), point
1 is the start, point 2 - end. Returned lines are directed so that the
brighter side is on their left.
*/
CV_WRAP virtual void detect(InputArray _image, OutputArray _lines) = 0;
/** @brief Draws the line segments on a given image.
@param _image The image, where the lines will be drawn. Should be bigger
or equal to the image, where the lines were found.
@param lines A vector of the lines that needed to be drawn.
@param draw_arrow If true, arrow heads will be drawn.
*/
CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines,
bool draw_arrow = false) = 0;
virtual ~FastLineDetector() { }
};
/** @brief Creates a smart pointer to a FastLineDetector object and initializes it
@param _length_threshold 10 - Segment shorter than this will be discarded
@param _distance_threshold 1.41421356 - A point placed from a hypothesis line
segment farther than this will be
regarded as an outlier
@param _canny_th1 50 - First threshold for
hysteresis procedure in Canny()
@param _canny_th2 50 - Second threshold for
hysteresis procedure in Canny()
@param _canny_aperture_size 3 - Aperturesize for the sobel
operator in Canny()
@param _do_merge false - If true, incremental merging of segments
will be perfomred
*/
CV_EXPORTS_W Ptr<FastLineDetector> createFastLineDetector(
int _length_threshold = 10, float _distance_threshold = 1.414213562f,
double _canny_th1 = 50.0, double _canny_th2 = 50.0, int _canny_aperture_size = 3,
bool _do_merge = false);
//! @} ximgproc_feature
}
}
#endif
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/ximgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
using namespace cv::ximgproc;
int main(int argc, char** argv)
{
std::string in;
cv::CommandLineParser parser(argc, argv, "{@input|../samples/data/corridor.jpg|input image}{help h||show help message}");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
in = parser.get<string>("@input");
Mat image = imread(in, IMREAD_GRAYSCALE);
if( image.empty() )
{
return -1;
}
// Create LSD detector
Ptr<LineSegmentDetector> lsd = createLineSegmentDetector();
vector<Vec4f> lines_lsd;
// Create FLD detector
// Param Default value Description
// length_threshold 10 - Segments shorter than this will be discarded
// distance_threshold 1.41421356 - A point placed from a hypothesis line
// segment farther than this will be
// regarded as an outlier
// canny_th1 50 - First threshold for
// hysteresis procedure in Canny()
// canny_th2 50 - Second threshold for
// hysteresis procedure in Canny()
// canny_aperture_size 3 - Aperturesize for the sobel
// operator in Canny()
// do_merge false - If true, incremental merging of segments
// will be perfomred
int length_threshold = 10;
float distance_threshold = 1.41421356f;
double canny_th1 = 50.0;
double canny_th2 = 50.0;
int canny_aperture_size = 3;
bool do_merge = false;
Ptr<FastLineDetector> fld = createFastLineDetector(length_threshold,
distance_threshold, canny_th1, canny_th2, canny_aperture_size,
do_merge);
vector<Vec4f> lines_fld;
// Because of some CPU's power strategy, it seems that the first running of
// an algorithm takes much longer. So here we run both of the algorithmes 10
// times to see each algorithm's processing time with sufficiently warmed-up
// CPU performance.
for(int run_count = 0; run_count < 10; run_count++) {
lines_lsd.clear();
int64 start_lsd = getTickCount();
lsd->detect(image, lines_lsd);
// Detect the lines with LSD
double freq = getTickFrequency();
double duration_ms_lsd = double(getTickCount() - start_lsd) * 1000 / freq;
std::cout << "Elapsed time for LSD: " << duration_ms_lsd << " ms." << std::endl;
lines_fld.clear();
int64 start = getTickCount();
// Detect the lines with FLD
fld->detect(image, lines_fld);
double duration_ms = double(getTickCount() - start) * 1000 / freq;
std::cout << "Ealpsed time for FLD " << duration_ms << " ms." << std::endl;
}
// Show found lines with LSD
Mat line_image_lsd(image);
lsd->drawSegments(line_image_lsd, lines_lsd);
imshow("LSD result", line_image_lsd);
// Show found lines with FLD
Mat line_image_fld(image);
fld->drawSegments(line_image_fld, lines_fld);
imshow("FLD result", line_image_fld);
waitKey();
return 0;
}
This diff is collapsed.
#include "test_precomp.hpp"
#include <vector>
using namespace cv;
using namespace cv::ximgproc;
using namespace std;
const Size img_size(640, 480);
const int FLD_TEST_SEED = 0x134679;
const int EPOCHS = 20;
class FLDBase : public testing::Test
{
public:
FLDBase() { }
protected:
Mat test_image;
vector<Vec4f> lines;
RNG rng;
int passedtests;
void GenerateWhiteNoise(Mat& image);
void GenerateConstColor(Mat& image);
void GenerateLines(Mat& image, const unsigned int numLines);
void GenerateBrokenLines(Mat& image, const unsigned int numLines);
void GenerateRotatedRect(Mat& image);
virtual void SetUp();
};
class ximgproc_FLD: public FLDBase
{
public:
ximgproc_FLD() { }
protected:
};
void FLDBase::GenerateWhiteNoise(Mat& image)
{
image = Mat(img_size, CV_8UC1);
rng.fill(image, RNG::UNIFORM, 0, 256);
}
void FLDBase::GenerateConstColor(Mat& image)
{
image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 256)));
}
void FLDBase::GenerateLines(Mat& image, const unsigned int numLines)
{
image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 128)));
for(unsigned int i = 0; i < numLines; ++i)
{
int y = rng.uniform(10, img_size.width - 10);
Point p1(y, 10);
Point p2(y, img_size.height - 10);
line(image, p1, p2, Scalar(255), 2);
}
}
void FLDBase::GenerateBrokenLines(Mat& image, const unsigned int numLines)
{
image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 128)));
for(unsigned int i = 0; i < numLines; ++i)
{
int y = rng.uniform(10, img_size.width - 10);
Point p1(y, 10);
Point p2(y, img_size.height/2);
line(image, p1, p2, Scalar(255), 2);
p1 = Point2i(y, img_size.height/2 + 3);
p2 = Point2i(y, img_size.height - 10);
line(image, p1, p2, Scalar(255), 2);
}
}
void FLDBase::GenerateRotatedRect(Mat& image)
{
image = Mat::zeros(img_size, CV_8UC1);
Point center(rng.uniform(img_size.width/4, img_size.width*3/4),
rng.uniform(img_size.height/4, img_size.height*3/4));
Size rect_size(rng.uniform(img_size.width/8, img_size.width/6),
rng.uniform(img_size.height/8, img_size.height/6));
float angle = rng.uniform(0.f, 360.f);
Point2f vertices[4];
RotatedRect rRect = RotatedRect(center, rect_size, angle);
rRect.points(vertices);
for (int i = 0; i < 4; i++)
{
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255), 3);
}
}
void FLDBase::SetUp()
{
lines.clear();
test_image = Mat();
rng = RNG(FLD_TEST_SEED);
passedtests = 0;
}
TEST_F(ximgproc_FLD, whiteNoise)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateWhiteNoise(test_image);
Ptr<FastLineDetector> detector = createFastLineDetector(20);
detector->detect(test_image, lines);
if(40u >= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(ximgproc_FLD, constColor)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateConstColor(test_image);
Ptr<FastLineDetector> detector = createFastLineDetector();
detector->detect(test_image, lines);
if(0u == lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(ximgproc_FLD, lines)
{
for (int i = 0; i < EPOCHS; ++i)
{
const unsigned int numOfLines = 1;
GenerateLines(test_image, numOfLines);
Ptr<FastLineDetector> detector = createFastLineDetector();
detector->detect(test_image, lines);
if(numOfLines * 2 == lines.size()) ++passedtests; // * 2 because of Gibbs effect
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(ximgproc_FLD, mergeLines)
{
for (int i = 0; i < EPOCHS; ++i)
{
const unsigned int numOfLines = 1;
GenerateBrokenLines(test_image, numOfLines);
Ptr<FastLineDetector> detector = createFastLineDetector(10, 1.414213562f, true);
detector->detect(test_image, lines);
if(numOfLines * 2 == lines.size()) ++passedtests; // * 2 because of Gibbs effect
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(ximgproc_FLD, rotatedRect)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateRotatedRect(test_image);
Ptr<FastLineDetector> detector = createFastLineDetector();
detector->detect(test_image, lines);
if(2u <= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment