Commit a1313db9 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #159 from Str3iber/add_lucid_rc1

Locally uniform comparison image descriptor
parents 5f4cda50 25aad108
......@@ -44,3 +44,12 @@
year={2012},
organization={Ieee}
}
@incollection{LUCID,
title={Locally uniform comparison image descriptor},
author={Ziegler, Andrew, Eric Christiansen, David Kriegman, and Serge J. Belongie}
booktitle={Advances in Neural Information Processing Systems}
pages={1--9}
year={2012}
publisher={NIPS}
}
......@@ -129,6 +129,24 @@ public:
static Ptr<BriefDescriptorExtractor> create( int bytes = 32 );
};
/** @brief Class implementing the locally uniform comparison image descriptor, described in @cite LUCID
An image descriptor that can be computed very fast, while being
about as robust as, for example, SURF or BRIEF.
*/
class CV_EXPORTS LUCID : public DescriptorExtractor
{
public:
/**
* @param lucid_kernel kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
* @param blur_kernel kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
*/
static Ptr<LUCID> create(const int lucid_kernel, const int blur_kernel);
};
//! @}
}
......
// This implementation of, and any deviation from, the original algorithm as
// proposed by Ziegler et al. is not endorsed by Ziegler et al. nor does it
// claim to represent their definition of locally uniform comparison image
// descriptor. The original LUCID algorithm as proposed by Ziegler et al. remains
// the property of its respective authors. This implementation is an adaptation of
// said algorithm and contributed to OpenCV by Str3iber.
// References:
// Ziegler, Andrew, Eric Christiansen, David Kriegman, and Serge J. Belongie.
// "Locally uniform comparison image descriptor." In Advances in Neural Information
// Processing Systems, pp. 1-9. 2012.
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
namespace cv {
namespace xfeatures2d {
/*!
LUCID implementation
*/
class LUCIDImpl : public LUCID {
public:
/** Constructor
* @param lucid_kernel kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
* @param blur_kernel kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
*/
LUCIDImpl(const int lucid_kernel = 1, const int blur_kernel = 2);
/** returns the descriptor length */
virtual int descriptorSize() const;
/** returns the descriptor type */
virtual int descriptorType() const;
/** returns the default norm type */
virtual int defaultNorm() const;
virtual void compute(InputArray _src, std::vector<KeyPoint> &keypoints, OutputArray _desc);
protected:
int l_kernel, b_kernel;
};
Ptr<LUCID> LUCID::create(const int lucid_kernel, const int blur_kernel) {
return makePtr<LUCIDImpl>(lucid_kernel, blur_kernel);
}
LUCIDImpl::LUCIDImpl(const int lucid_kernel, const int blur_kernel) {
l_kernel = lucid_kernel;
b_kernel = blur_kernel*2+1;
}
int LUCIDImpl::descriptorSize() const {
return (l_kernel*2+1)*(l_kernel*2+1)*3;
}
int LUCIDImpl::descriptorType() const {
return CV_8UC1;
}
int LUCIDImpl::defaultNorm() const {
return NORM_HAMMING;
}
// gliese581h suggested filling a cv::Mat with descriptors to enable BFmatcher compatibility
// speed-ups and enhancements by gliese581h
void LUCIDImpl::compute(InputArray _src, std::vector<KeyPoint> &keypoints, OutputArray _desc) {
if (_src.getMat().empty())
return;
Mat_<Vec3b> src;
blur(_src.getMat(), src, cv::Size(b_kernel, b_kernel));
int x, y, j, d, p, m = (l_kernel*2+1)*(l_kernel*2+1)*3, width = src.cols, height = src.rows, r, c;
Mat_<uchar> desc(static_cast<int>(keypoints.size()), m);
for (std::size_t i = 0; i < keypoints.size(); ++i) {
x = static_cast<int>(keypoints[i].pt.x)-l_kernel, y = static_cast<int>(keypoints[i].pt.y)-l_kernel, d = x+2*l_kernel, p = y+2*l_kernel, j = x, r = static_cast<int>(i), c = 0;
while (x <= d) {
Vec3b &pix = src((y < 0 ? height+y : y >= height ? y-height : y), (x < 0 ? width+x : x >= width ? x-width : x));
desc(r, c++) = pix[0];
desc(r, c++) = pix[1];
desc(r, c++) = pix[2];
++x;
if (x > d) {
if (y < p) {
++y;
x = j;
}
else
break;
}
}
}
if (_desc.needed())
sort(desc, _desc, SORT_EVERY_ROW | SORT_ASCENDING);
}
}
} // END NAMESPACE CV
......@@ -1025,6 +1025,14 @@ TEST( Features2d_DescriptorExtractor_BRIEF, regression )
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_LUCID, regression )
{
CV_DescriptorExtractorTest<Hamming> test( "descriptor-lucid", 1,
LUCID::create(1, 2) );
test.safe_run();
}
/*#if CV_SSE2
TEST( Features2d_DescriptorExtractor_Calonder_uchar, regression )
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment