Commit 9eefb191 authored by Bellaktris's avatar Bellaktris

parallelization and bug fixes

parent 8b7e001f
set(the_description "Addon to basic photo module") set(the_description "Addon to basic photo module")
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef) ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef)
ocv_define_module(xphoto opencv_core opencv_imgproc OPTIONAL opencv_highgui) ocv_define_module(xphoto opencv_core opencv_imgproc OPTIONAL opencv_photo opencv_highgui)
\ No newline at end of file \ No newline at end of file
...@@ -54,30 +54,95 @@ ...@@ -54,30 +54,95 @@
namespace cv namespace cv
{ {
struct grayDctDenoisingInvoker : public ParallelLoopBody
{
public:
grayDctDenoisingInvoker(const Mat_<float> &src, std::vector < Mat_<float> > &patches, const double sigma, const int psize);
~grayDctDenoisingInvoker();
void operator() (const Range &range) const;
private:
const Mat_<float> &src;
std::vector < Mat_<float> > &patches; // image decomposition into sliding patches
const int psize; // size of block to compute dct
const double sigma; // expected noise standard deviation
const double thresh; // thresholding estimate
};
grayDctDenoisingInvoker::grayDctDenoisingInvoker(const Mat_<float> &src, std::vector < Mat_<float> > &patches,
const double sigma, const int psize)
: src(src), patches(patches), sigma(sigma), thresh(3*sigma), psize(psize) {}
grayDctDenoisingInvoker::~grayDctDenoisingInvoker(){}
void grayDctDenoisingInvoker::operator() (const Range &range) const
{
for (int i = range.start; i <= range.end - 1; ++i)
{
int y = i / (src.cols - psize);
int x = i % (src.cols - psize);
Rect patchNum( x, y, psize, psize );
Mat_<float> patch(psize, psize);
src(patchNum).copyTo( patch );
dct(patch, patch);
float *data = (float *) patch.data;
for (int k = 0; k < psize*psize; ++k)
data[k] *= fabs(data[k]) > thresh;
idct(patch, patches[i]);
}
}
void grayDctDenoising(const Mat_<float> &src, Mat_<float> &dst, const double sigma, const int psize) void grayDctDenoising(const Mat_<float> &src, Mat_<float> &dst, const double sigma, const int psize)
{ {
CV_Assert( src.channels() == 1 ); CV_Assert( src.channels() == 1 );
//Mat_<float> res( src.size(), 0.0f ),
// num( src.size(), 0.0f );
//
//double threshold = 3*sigma;
//
//for (int i = 0; i <= src.rows - psize; ++i)
// for (int j = 0; j <= src.cols - psize; ++j)
// {
// Mat_<float> patch = src( Rect(j, i, psize, psize) ).clone();
//
// dct(patch, patch);
// float * ptr = (float *) patch.data;
// for (int k = 0; k < psize*psize; ++k)
// if (fabs(ptr[k]) < threshold)
// ptr[k] = 0.0f;
// idct(patch, patch);
//
// res( Rect(j, i, psize, psize) ) += patch;
// num( Rect(j, i, psize, psize) ) += Mat_<float>::ones(psize, psize);
// }
//res /= num;
//
//res.convertTo( dst, src.type() );
int npixels = (src.rows - psize)*(src.cols - psize);
std::vector < Mat_<float> > patches;
for (int i = 0; i < npixels; ++i)
patches.push_back( Mat_<float>(psize, psize) );
parallel_for_( cv::Range(0, npixels),
grayDctDenoisingInvoker(src, patches, sigma, psize) );
Mat_<float> res( src.size(), 0.0f ), Mat_<float> res( src.size(), 0.0f ),
num( src.size(), 0.0f ); num( src.size(), 0.0f );
double threshold = 2.0*log(psize)*sigma; for (int k = 0; k < npixels; ++k)
{
for (int i = 0; i <= src.rows - psize; ++i) int i = k / (src.cols - psize);
for (int j = 0; j <= src.cols - psize; ++j) int j = k % (src.cols - psize);
{
Mat_<float> patch = src( Rect(j, i, psize, psize) ).clone();
dct(patch, patch);
float * ptr = (float *) patch.data;
for (int k = 0; k < psize*psize; ++k)
if (fabs(ptr[k]) < threshold)
ptr[k] = 0.0f;
idct(patch, patch);
res( Rect(j, i, psize, psize) ) += patch; res( Rect(j, i, psize, psize) ) += patches[k];
num( Rect(j, i, psize, psize) ) += Mat_<float>::ones(psize, psize); num( Rect(j, i, psize, psize) ) += Mat_<float>::ones(psize, psize);
} }
res /= num; res /= num;
res.convertTo( dst, src.type() ); res.convertTo( dst, src.type() );
...@@ -96,9 +161,9 @@ namespace cv ...@@ -96,9 +161,9 @@ namespace cv
for (Mat_<Vec3f>::const_iterator it = src.begin(); it != src.end(); ++it, ++outIt) for (Mat_<Vec3f>::const_iterator it = src.begin(); it != src.end(); ++it, ++outIt)
{ {
Vec3f rgb = *it; Vec3f rgb = *it;
*outIt = Vec3f(M[0]*rgb[0] + M[3]*rgb[1] + M[6]*rgb[2], *outIt = Vec3f(M[0]*rgb[0] + M[1]*rgb[1] + M[2]*rgb[2],
M[1]*rgb[0] + M[4]*rgb[1] + M[7]*rgb[2], M[3]*rgb[0] + M[4]*rgb[1] + M[5]*rgb[2],
M[2]*rgb[0] + M[5]*rgb[1] + M[8]*rgb[2]); M[6]*rgb[0] + M[7]*rgb[1] + M[8]*rgb[2]);
} }
/*************************************/ /*************************************/
...@@ -106,7 +171,7 @@ namespace cv ...@@ -106,7 +171,7 @@ namespace cv
split(dst, mv); split(dst, mv);
for (int i = 0; i < mv.size(); ++i) for (int i = 0; i < mv.size(); ++i)
grayDctDenoising(mv[0], mv[0], sigma, psize); grayDctDenoising(mv[i], mv[i], sigma, psize);
merge(mv, dst); merge(mv, dst);
/*************************************/ /*************************************/
...@@ -114,9 +179,9 @@ namespace cv ...@@ -114,9 +179,9 @@ namespace cv
for (Mat_<Vec3f>::iterator it = dst.begin(); it != dst.end(); ++it) for (Mat_<Vec3f>::iterator it = dst.begin(); it != dst.end(); ++it)
{ {
Vec3f rgb = *it; Vec3f rgb = *it;
*it = Vec3f(M[0]*rgb[0] + M[1]*rgb[1] + M[2]*rgb[2], *it = Vec3f(M[0]*rgb[0] + M[3]*rgb[1] + M[6]*rgb[2],
M[3]*rgb[0] + M[4]*rgb[1] + M[5]*rgb[2], M[1]*rgb[0] + M[4]*rgb[1] + M[7]*rgb[2],
M[6]*rgb[0] + M[7]*rgb[1] + M[8]*rgb[2]); M[2]*rgb[0] + M[5]*rgb[1] + M[8]*rgb[2]);
} }
} }
......
#include "test_precomp.hpp" #include "test_precomp.hpp"
#define NO_COMPARISON
namespace cvtest namespace cvtest
{ {
TEST(xphoto_dctimagedenoising, regression) TEST(xphoto_dctimagedenoising, regression)
{ {
cv::String dir = cvtest::TS::ptr()->get_data_path() + "dct_image_denoising/"; cv::String dir = cvtest::TS::ptr()->get_data_path() + "dct_image_denoising/";
int nTests = 12; int nTests = 1;
float psnrThreshold[] = {0.5};
int psize = 3.0; int psize[] = {8};
float psnrThreshold = 40.0; double sigma[] = {9.0};
float sigma = 15.0;
for (int i = 0; i < nTests; ++i) for (int i = 0; i < nTests; ++i)
{ {
...@@ -19,16 +22,51 @@ namespace cvtest ...@@ -19,16 +22,51 @@ namespace cvtest
cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 ); cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 );
cv::Mat previousResult = cv::imread( previousResultName, 1 ); cv::Mat previousResult = cv::imread( previousResultName, 1 );
cv::Mat sqrError = ( src - previousResult ).mul( src - previousResult );
cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() );
double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2]));
cv::Mat currentResult, fastNlMeansResult; cv::Mat currentResult, fastNlMeansResult;
cv::dctDenoising(src, currentResult, sigma, psize);
//cv::fastNlMeansDenoising(src, fastNlMeansResult);
cv::Mat sqrError = ( currentResult - previousResult ) #ifndef NO_COMPARISON
double currentTime = clock() / double(CLOCKS_PER_SEC);
#endif
cv::dctDenoising(src, currentResult, sigma[i], psize[i]);
#ifndef NO_COMPARISON
currentTime = clock() / double(CLOCKS_PER_SEC) - currentTime;
std::cout << "---- dct denoising time = " << currentTime << " (sec) ----" << std::endl;
#endif
cv::Mat sqrError1 = ( currentResult - previousResult )
.mul( currentResult - previousResult ); .mul( currentResult - previousResult );
cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() ); cv::Scalar mse1 = cv::sum(sqrError1) / cv::Scalar::all( sqrError1.total()*sqrError1.channels() );
double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2])); double psnr1 = 10*log10(3*255*255/(mse1[0] + mse1[1] + mse1[2])) - psnr;
#ifndef NO_COMPARISON
std::cout << "---- dct PSNR rate = " << psnr1 << " ----" << std::endl;
#endif
#ifndef NO_COMPARISON
double fastNlMeansTime = clock() / double(CLOCKS_PER_SEC);
if ( src.channels() == 3 )
cv::fastNlMeansDenoisingColored(src, fastNlMeansResult);
else if ( src.channels() == 1 )
cv::fastNlMeansDenoising(src, fastNlMeansResult);
fastNlMeansTime = clock() / double(CLOCKS_PER_SEC) - fastNlMeansTime;
#ifdef NO_COMPARISON
std::cout << "---- nonlocal means denoising time = " << fastNlMeansTime << " (sec) ----" << std::endl;
#endif
cv::Mat sqrError2 = ( fastNlMeansResult - previousResult )
.mul( fastNlMeansResult - previousResult );
cv::Scalar mse2 = cv::sum(sqrError2) / cv::Scalar::all( sqrError2.total()*sqrError2.channels() );
double psnr2 = 10*log10(3*255*255/(mse2[0] + mse2[1] + mse2[2])) - psnr;
std::cout << "---- nonlocal means PSNR rate = " << psnr2 << " ----" << std::endl;
#endif
EXPECT_GE( psnr, psnrThreshold ); EXPECT_GE( psnr1, psnrThreshold[i] );
} }
} }
} }
\ No newline at end of file
...@@ -13,8 +13,11 @@ ...@@ -13,8 +13,11 @@
#include "opencv2/imgproc.hpp" #include "opencv2/imgproc.hpp"
#include "opencv2/imgproc/types_c.h" #include "opencv2/imgproc/types_c.h"
#include "opencv2/highgui.hpp" #include "opencv2/highgui.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/xphoto.hpp" #include "opencv2/xphoto.hpp"
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include <ctime>
#include <iostream> #include <iostream>
#endif #endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment