Commit 9e787377 authored by Pavel Rojtberg's avatar Pavel Rojtberg

kinfu: allow basic wrapping for bindings

for this
- move Params struct out of class
- use static create instead of pimpl
- allow demo to be compiled without VIZ
parent e351caed
......@@ -15,134 +15,134 @@ namespace kinfu {
//! @addtogroup kinect_fusion
//! @{
/** @brief KinectFusion implementation
struct CV_EXPORTS_W Params
{
/** @brief Default parameters
A set of parameters which provides better model quality, can be very slow.
*/
CV_WRAP static Ptr<Params> defaultParams();
This class implements a 3d reconstruction algorithm described in
@cite kinectfusion paper.
/** @brief Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
*/
CV_WRAP static Ptr<Params> coarseParams();
It takes a sequence of depth images taken from depth sensor
(or any depth images source such as stereo camera matching algorithm or even raymarching renderer).
The output can be obtained as a vector of points and their normals
or can be Phong-rendered from given camera pose.
enum PlatformType
{
An internal representation of a model is a voxel cube that keeps TSDF values
which are a sort of distances to the surface (for details read the @cite kinectfusion article about TSDF).
There is no interface to that representation yet.
PLATFORM_CPU, PLATFORM_GPU
};
This implementation is based on (kinfu-remake)[https://github.com/Nerei/kinfu_remake].
*/
class CV_EXPORTS KinFu
{
public:
struct CV_EXPORTS Params
{
/** @brief Default parameters
A set of parameters which provides better model quality, can be very slow.
*/
static Params defaultParams();
/** @brief A platform on which to run the algorithm.
*
Currently KinFu supports only one platform which is a CPU.
GPU platform is to be implemented in the future.
*/
PlatformType platform;
/** @brief Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
*/
static Params coarseParams();
/** @brief frame size in pixels */
CV_PROP_RW Size frameSize;
enum PlatformType
{
/** @brief camera intrinsics */
CV_PROP Matx33f intr;
PLATFORM_CPU, PLATFORM_GPU
};
/** @brief pre-scale per 1 meter for input values
/** @brief A platform on which to run the algorithm.
*
Currently KinFu supports only one platform which is a CPU.
GPU platform is to be implemented in the future.
*/
PlatformType platform;
Typical values are:
* 5000 per 1 meter for the 16-bit PNG files of TUM database
* 1 per 1 meter for the 32-bit float images in the ROS bag files
*/
CV_PROP_RW float depthFactor;
/** @brief frame size in pixels */
Size frameSize;
/** @brief Depth sigma in meters for bilateral smooth */
CV_PROP_RW float bilateral_sigma_depth;
/** @brief Spatial sigma in pixels for bilateral smooth */
CV_PROP_RW float bilateral_sigma_spatial;
/** @brief Kernel size in pixels for bilateral smooth */
CV_PROP_RW int bilateral_kernel_size;
/** @brief camera intrinsics */
Matx33f intr;
/** @brief Number of pyramid levels for ICP */
CV_PROP_RW int pyramidLevels;
/** @brief pre-scale per 1 meter for input values
/** @brief Resolution of voxel cube
Typical values are:
* 5000 per 1 meter for the 16-bit PNG files of TUM database
* 1 per 1 meter for the 32-bit float images in the ROS bag files
*/
float depthFactor;
Number of voxels in each cube edge.
*/
CV_PROP_RW int volumeDims;
/** @brief Size of voxel cube side in meters */
CV_PROP_RW float volumeSize;
/** @brief Depth sigma in meters for bilateral smooth */
float bilateral_sigma_depth;
/** @brief Spatial sigma in pixels for bilateral smooth */
float bilateral_sigma_spatial;
/** @brief Kernel size in pixels for bilateral smooth */
int bilateral_kernel_size;
/** @brief Minimal camera movement in meters
/** @brief Number of pyramid levels for ICP */
int pyramidLevels;
Integrate new depth frame only if camera movement exceeds this value.
*/
CV_PROP_RW float tsdf_min_camera_movement;
/** @brief Resolution of voxel cube
/** @brief initial volume pose in meters */
Affine3f volumePose;
Number of voxels in each cube edge.
*/
int volumeDims;
/** @brief Size of voxel cube side in meters */
float volumeSize;
/** @brief distance to truncate in meters
/** @brief Minimal camera movement in meters
Distances that exceed this value will be truncated in voxel cube values.
*/
CV_PROP_RW float tsdf_trunc_dist;
Integrate new depth frame only if camera movement exceeds this value.
*/
float tsdf_min_camera_movement;
/** @brief max number of frames per voxel
/** @brief initial volume pose in meters */
Affine3f volumePose;
Each voxel keeps running average of distances no longer than this value.
*/
CV_PROP_RW int tsdf_max_weight;
/** @brief distance to truncate in meters
/** @brief A length of one raycast step
Distances that exceed this value will be truncated in voxel cube values.
*/
float tsdf_trunc_dist;
How much voxel sizes we skip each raycast step
*/
CV_PROP_RW float raycast_step_factor;
/** @brief max number of frames per voxel
// gradient delta in voxel sizes
// fixed at 1.0f
// float gradient_delta_factor;
Each voxel keeps running average of distances no longer than this value.
*/
int tsdf_max_weight;
/** @brief light pose for rendering in meters */
CV_PROP Vec3f lightPose;
/** @brief A length of one raycast step
/** @brief distance theshold for ICP in meters */
CV_PROP_RW float icpDistThresh;
/** angle threshold for ICP in radians */
CV_PROP_RW float icpAngleThresh;
/** number of ICP iterations for each pyramid level */
CV_PROP std::vector<int> icpIterations;
How much voxel sizes we skip each raycast step
*/
float raycast_step_factor;
// depth truncation is not used by default
// float icp_truncate_depth_dist; //meters
};
// gradient delta in voxel sizes
// fixed at 1.0f
// float gradient_delta_factor;
/** @brief KinectFusion implementation
/** @brief light pose for rendering in meters */
Vec3f lightPose;
This class implements a 3d reconstruction algorithm described in
@cite kinectfusion paper.
/** @brief distance theshold for ICP in meters */
float icpDistThresh;
/** angle threshold for ICP in radians */
float icpAngleThresh;
/** number of ICP iterations for each pyramid level */
std::vector<int> icpIterations;
It takes a sequence of depth images taken from depth sensor
(or any depth images source such as stereo camera matching algorithm or even raymarching renderer).
The output can be obtained as a vector of points and their normals
or can be Phong-rendered from given camera pose.
// depth truncation is not used by default
// float icp_truncate_depth_dist; //meters
};
An internal representation of a model is a voxel cube that keeps TSDF values
which are a sort of distances to the surface (for details read the @cite kinectfusion article about TSDF).
There is no interface to that representation yet.
KinFu(const Params& _params);
This implementation is based on (kinfu-remake)[https://github.com/Nerei/kinfu_remake].
*/
class CV_EXPORTS_W KinFu
{
public:
CV_WRAP static Ptr<KinFu> create(const Ptr<Params>& _params);
virtual ~KinFu();
/** @brief Get current parameters */
const Params& getParams() const;
void setParams(const Params&);
virtual const Params& getParams() const = 0;
virtual void setParams(const Params&) = 0;
/** @brief Renders a volume into an image
......@@ -154,7 +154,7 @@ public:
which is a last frame camera pose.
*/
void render(OutputArray image, const Affine3f cameraPose = Affine3f::Identity()) const;
CV_WRAP virtual void render(OutputArray image, const Matx44f& cameraPose = Matx44f::eye()) const = 0;
/** @brief Gets points and normals of current 3d mesh
......@@ -164,7 +164,7 @@ public:
@param points vector of points which are 4-float vectors
@param normals vector of normals which are 4-float vectors
*/
void getCloud(OutputArray points, OutputArray normals) const;
CV_WRAP virtual void getCloud(OutputArray points, OutputArray normals) const = 0;
/** @brief Gets points of current 3d mesh
......@@ -172,22 +172,22 @@ public:
@param points vector of points which are 4-float vectors
*/
void getPoints(OutputArray points) const;
CV_WRAP virtual void getPoints(OutputArray points) const = 0;
/** @brief Calculates normals for given points
@param points input vector of points which are 4-float vectors
@param normals output vector of corresponding normals which are 4-float vectors
*/
void getNormals(InputArray points, OutputArray normals) const;
CV_WRAP virtual void getNormals(InputArray points, OutputArray normals) const = 0;
/** @brief Resets the algorithm
Clears current model and resets a pose.
*/
void reset();
CV_WRAP virtual void reset() = 0;
/** @brief Get current pose in voxel cube space */
const Affine3f getPose() const;
virtual const Affine3f getPose() const = 0;
/** @brief Process next depth frame
......@@ -197,12 +197,10 @@ public:
@param depth one-channel image which size and depth scale is described in algorithm's parameters
@return true if succeded to align new frame with current scene, false if opposite
*/
bool update(InputArray depth);
CV_WRAP virtual bool update(InputArray depth) = 0;
private:
class KinFuImpl;
cv::Ptr<KinFuImpl> impl;
};
//! @}
......
......@@ -10,14 +10,14 @@
#include <opencv2/highgui.hpp>
#include <opencv2/rgbd/kinfu.hpp>
#ifdef HAVE_OPENCV_VIZ
#include <opencv2/viz.hpp>
using namespace cv;
using namespace cv::kinfu;
using namespace std;
#ifdef HAVE_OPENCV_VIZ
#include <opencv2/viz.hpp>
#endif
static vector<string> readDepth(std::string fileList);
static vector<string> readDepth(std::string fileList)
......@@ -113,7 +113,7 @@ public:
return depthFileList.empty() && !(vc.isOpened());
}
void updateParams(KinFu::Params& params)
void updateParams(Params& params)
{
if (vc.isOpened())
{
......@@ -143,6 +143,7 @@ public:
bool useKinect2Workarounds;
};
#ifdef HAVE_OPENCV_VIZ
const std::string vizWindowName = "cloud";
struct PauseCallbackArgs
......@@ -163,11 +164,12 @@ void pauseCallback(const viz::MouseEvent& me, void* args)
PauseCallbackArgs pca = *((PauseCallbackArgs*)(args));
viz::Viz3d window(vizWindowName);
Mat rendered;
pca.kf.render(rendered, window.getViewerPose());
pca.kf.render(rendered, window.getViewerPose().matrix);
imshow("render", rendered);
waitKey(1);
}
}
#endif
static const char* keys =
{
......@@ -220,23 +222,26 @@ int main(int argc, char **argv)
return -1;
}
KinFu::Params params;
Ptr<Params> params;
if(coarse)
params = KinFu::Params::coarseParams();
params = Params::coarseParams();
else
params = KinFu::Params::defaultParams();
params = Params::defaultParams();
// These params can be different for each depth sensor
ds.updateParams(params);
ds.updateParams(*params);
// Scene-specific params should be tuned for each scene individually
//params.volumePose = params.volumePose.translate(Vec3f(0.f, 0.f, 0.5f));
//params.tsdf_max_weight = 16;
KinFu kf(params);
Ptr<KinFu> kf = KinFu::create(params);
#ifdef HAVE_OPENCV_VIZ
cv::viz::Viz3d window(vizWindowName);
window.setViewerPose(Affine3f::Identity());
bool pause = false;
#endif
// TODO: can we use UMats for that?
Mat rendered;
......@@ -245,13 +250,12 @@ int main(int argc, char **argv)
int64 prevTime = getTickCount();
bool pause = false;
for(Mat frame = ds.getDepth(); !frame.empty(); frame = ds.getDepth())
{
#ifdef HAVE_OPENCV_VIZ
if(pause)
{
kf.getCloud(points, normals);
kf->getCloud(points, normals);
if(!points.empty() && !normals.empty())
{
viz::WCloud cloudWidget(points, viz::Color::white());
......@@ -260,9 +264,9 @@ int main(int argc, char **argv)
window.showWidget("normals", cloudNormals);
window.showWidget("cube", viz::WCube(Vec3d::all(0),
Vec3d::all(kf.getParams().volumeSize)),
kf.getParams().volumePose);
PauseCallbackArgs pca(kf);
Vec3d::all(kf->getParams().volumeSize)),
kf->getParams().volumePose);
PauseCallbackArgs pca(*kf);
window.registerMouseCallback(pauseCallback, (void*)&pca);
window.showWidget("text", viz::WText(cv::String("Move camera in this window. "
"Close the window or press Q to resume"), Point()));
......@@ -274,22 +278,24 @@ int main(int argc, char **argv)
pause = false;
}
else
#endif
{
Mat cvt8;
float depthFactor = kf.getParams().depthFactor;
float depthFactor = kf->getParams().depthFactor;
convertScaleAbs(frame, cvt8, 0.25*256. / depthFactor);
imshow("depth", cvt8);
if(!kf.update(frame))
if(!kf->update(frame))
{
kf.reset();
kf->reset();
std::cout << "reset" << std::endl;
}
#ifdef HAVE_OPENCV_VIZ
else
{
if(coarse)
{
kf.getCloud(points, normals);
kf->getCloud(points, normals);
if(!points.empty() && !normals.empty())
{
viz::WCloud cloudWidget(points, viz::Color::white());
......@@ -301,13 +307,14 @@ int main(int argc, char **argv)
//window.showWidget("worldAxes", viz::WCoordinateSystem());
window.showWidget("cube", viz::WCube(Vec3d::all(0),
Vec3d::all(kf.getParams().volumeSize)),
kf.getParams().volumePose);
window.setViewerPose(kf.getPose());
Vec3d::all(kf->getParams().volumeSize)),
kf->getParams().volumePose);
window.setViewerPose(kf->getPose());
window.spinOnce(1, true);
}
#endif
kf.render(rendered);
kf->render(rendered);
}
int64 newTime = getTickCount();
......@@ -322,12 +329,14 @@ int main(int argc, char **argv)
switch (c)
{
case 'r':
kf.reset();
kf->reset();
break;
case 'q':
return 0;
#ifdef HAVE_OPENCV_VIZ
case 'p':
pause = true;
#endif
default:
break;
}
......@@ -335,12 +344,3 @@ int main(int argc, char **argv)
return 0;
}
#else
int main(int /* argc */, char ** /* argv */)
{
std::cout << "This demo requires viz module" << std::endl;
return 0;
}
#endif
......@@ -500,15 +500,15 @@ bool ICPGPU::estimateTransform(cv::Affine3f& /*transform*/, cv::Ptr<Frame> /*_ol
throw std::runtime_error("Not implemented");
}
cv::Ptr<ICP> makeICP(cv::kinfu::KinFu::Params::PlatformType t,
cv::Ptr<ICP> makeICP(cv::kinfu::Params::PlatformType t,
const cv::kinfu::Intr _intrinsics, const std::vector<int> &_iterations,
float _angleThreshold, float _distanceThreshold)
{
switch (t)
{
case cv::kinfu::KinFu::Params::PlatformType::PLATFORM_CPU:
case cv::kinfu::Params::PlatformType::PLATFORM_CPU:
return cv::makePtr<ICPCPU>(_intrinsics, _iterations, _angleThreshold, _distanceThreshold);
case cv::kinfu::KinFu::Params::PlatformType::PLATFORM_GPU:
case cv::kinfu::Params::PlatformType::PLATFORM_GPU:
return cv::makePtr<ICPGPU>(_intrinsics, _iterations, _angleThreshold, _distanceThreshold);
default:
return cv::Ptr<ICP>();
......
......@@ -30,7 +30,7 @@ protected:
cv::kinfu::Intr intrinsics;
};
cv::Ptr<ICP> makeICP(cv::kinfu::KinFu::Params::PlatformType t,
cv::Ptr<ICP> makeICP(cv::kinfu::Params::PlatformType t,
const cv::kinfu::Intr _intrinsics, const std::vector<int> &_iterations,
float _angleThreshold, float _distanceThreshold);
......
......@@ -12,29 +12,29 @@
namespace cv {
namespace kinfu {
class KinFu::KinFuImpl
class KinFu::KinFuImpl : public KinFu
{
public:
KinFuImpl(const KinFu::Params& _params);
KinFuImpl(const Params& _params);
virtual ~KinFuImpl();
const KinFu::Params& getParams() const;
void setParams(const KinFu::Params&);
const Params& getParams() const CV_OVERRIDE;
void setParams(const Params&) CV_OVERRIDE;
void render(OutputArray image, const Affine3f cameraPose = Affine3f::Identity()) const;
void render(OutputArray image, const Matx44f& cameraPose) const CV_OVERRIDE;
void getCloud(OutputArray points, OutputArray normals) const;
void getPoints(OutputArray points) const;
void getNormals(InputArray points, OutputArray normals) const;
void getCloud(OutputArray points, OutputArray normals) const CV_OVERRIDE;
void getPoints(OutputArray points) const CV_OVERRIDE;
void getNormals(InputArray points, OutputArray normals) const CV_OVERRIDE;
void reset();
void reset() CV_OVERRIDE;
const Affine3f getPose() const;
const Affine3f getPose() const CV_OVERRIDE;
bool update(InputArray depth);
bool update(InputArray depth) CV_OVERRIDE;
private:
KinFu::Params params;
Params params;
cv::Ptr<FrameGenerator> frameGenerator;
cv::Ptr<ICP> icp;
......@@ -45,7 +45,7 @@ private:
cv::Ptr<Frame> frame;
};
KinFu::Params KinFu::Params::defaultParams()
Ptr<Params> Params::defaultParams()
{
Params p;
......@@ -107,36 +107,36 @@ KinFu::Params KinFu::Params::defaultParams()
// depth truncation is not used by default
//p.icp_truncate_depth_dist = 0.f; //meters, disabled
return p;
return makePtr<Params>(p);
}
KinFu::Params KinFu::Params::coarseParams()
Ptr<Params> Params::coarseParams()
{
Params p = defaultParams();
Ptr<Params> p = defaultParams();
// first non-zero numbers are accepted
const int iters[] = {5, 3, 2};
p.icpIterations.clear();
p->icpIterations.clear();
for(size_t i = 0; i < sizeof(iters)/sizeof(int); i++)
{
if(iters[i])
{
p.icpIterations.push_back(iters[i]);
p->icpIterations.push_back(iters[i]);
}
else
break;
}
p.pyramidLevels = (int)p.icpIterations.size();
p->pyramidLevels = (int)p->icpIterations.size();
p.volumeDims = 128; //number of voxels
p->volumeDims = 128; //number of voxels
p.raycast_step_factor = 0.75f; //in voxel sizes
p->raycast_step_factor = 0.75f; //in voxel sizes
return p;
}
KinFu::KinFuImpl::KinFuImpl(const KinFu::Params &_params) :
KinFu::KinFuImpl::KinFuImpl(const Params &_params) :
params(_params),
frameGenerator(makeFrameGenerator(params.platform)),
icp(makeICP(params.platform, params.intr, params.icpIterations, params.icpAngleThresh, params.icpDistThresh)),
......@@ -160,12 +160,12 @@ KinFu::KinFuImpl::~KinFuImpl()
}
const KinFu::Params& KinFu::KinFuImpl::getParams() const
const Params& KinFu::KinFuImpl::getParams() const
{
return params;
}
void KinFu::KinFuImpl::setParams(const KinFu::Params& p)
void KinFu::KinFuImpl::setParams(const Params& p)
{
params = p;
}
......@@ -225,10 +225,12 @@ bool KinFu::KinFuImpl::update(InputArray _depth)
}
void KinFu::KinFuImpl::render(OutputArray image, const Affine3f cameraPose) const
void KinFu::KinFuImpl::render(OutputArray image, const Matx44f& _cameraPose) const
{
ScopeTime st("kinfu render");
Affine3f cameraPose(_cameraPose);
const Affine3f id = Affine3f::Identity();
if((cameraPose.rotation() == pose.rotation() && cameraPose.translation() == pose.translation()) ||
(cameraPose.rotation() == id.rotation() && cameraPose.translation() == id.translation()))
......@@ -263,57 +265,12 @@ void KinFu::KinFuImpl::getNormals(InputArray points, OutputArray normals) const
// importing class
KinFu::KinFu(const Params& _params)
{
impl = makePtr<KinFu::KinFuImpl>(_params);
}
KinFu::~KinFu() { }
const KinFu::Params& KinFu::getParams() const
Ptr<KinFu> KinFu::create(const Ptr<Params>& _params)
{
return impl->getParams();
return makePtr<KinFu::KinFuImpl>(*_params);
}
void KinFu::setParams(const Params& p)
{
impl->setParams(p);
}
const Affine3f KinFu::getPose() const
{
return impl->getPose();
}
void KinFu::reset()
{
impl->reset();
}
void KinFu::getCloud(cv::OutputArray points, cv::OutputArray normals) const
{
impl->getCloud(points, normals);
}
void KinFu::getPoints(OutputArray points) const
{
impl->getPoints(points);
}
void KinFu::getNormals(InputArray points, OutputArray normals) const
{
impl->getNormals(points, normals);
}
bool KinFu::update(InputArray depth)
{
return impl->update(depth);
}
void KinFu::render(cv::OutputArray image, const Affine3f cameraPose) const
{
impl->render(image, cameraPose);
}
KinFu::~KinFu() {}
} // namespace kinfu
} // namespace cv
......@@ -442,13 +442,13 @@ void FrameGPU::getDepth(OutputArray /* depth */) const
throw std::runtime_error("Not implemented");
}
cv::Ptr<FrameGenerator> makeFrameGenerator(cv::kinfu::KinFu::Params::PlatformType t)
cv::Ptr<FrameGenerator> makeFrameGenerator(cv::kinfu::Params::PlatformType t)
{
switch (t)
{
case cv::kinfu::KinFu::Params::PlatformType::PLATFORM_CPU:
case cv::kinfu::Params::PlatformType::PLATFORM_CPU:
return cv::makePtr<FrameGeneratorCPU>();
case cv::kinfu::KinFu::Params::PlatformType::PLATFORM_GPU:
case cv::kinfu::Params::PlatformType::PLATFORM_GPU:
return cv::makePtr<FrameGeneratorGPU>();
default:
return cv::Ptr<FrameGenerator>();
......
......@@ -115,7 +115,7 @@ public:
virtual ~FrameGenerator() {}
};
cv::Ptr<FrameGenerator> makeFrameGenerator(cv::kinfu::KinFu::Params::PlatformType t);
cv::Ptr<FrameGenerator> makeFrameGenerator(cv::kinfu::Params::PlatformType t);
} // namespace kinfu
} // namespace cv
......
......@@ -1482,7 +1482,7 @@ Size FastICPOdometry::prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType
// mask isn't used by FastICP
Ptr<FrameGenerator> fg = makeFrameGenerator(KinFu::Params::PlatformType::PLATFORM_CPU);
Ptr<FrameGenerator> fg = makeFrameGenerator(Params::PlatformType::PLATFORM_CPU);
Ptr<FrameCPU> f = (*fg)().dynamicCast<FrameCPU>();
Intr intr(cameraMatrix);
float depthFactor = 1.f; // user should rescale depth manually
......@@ -1517,7 +1517,7 @@ bool FastICPOdometry::computeImpl(const Ptr<OdometryFrame>& srcFrame,
{
kinfu::Intr intr(cameraMatrix);
std::vector<int> iterations = iterCounts;
Ptr<kinfu::ICP> icp = kinfu::makeICP(kinfu::KinFu::Params::PlatformType::PLATFORM_CPU,
Ptr<kinfu::ICP> icp = kinfu::makeICP(kinfu::Params::PlatformType::PLATFORM_CPU,
intr,
iterations,
angleThreshold,
......
......@@ -1199,16 +1199,16 @@ void TSDFVolumeGPU::fetchPointsNormals(OutputArray /*points*/, OutputArray /*nor
throw std::runtime_error("Not implemented");
}
cv::Ptr<TSDFVolume> makeTSDFVolume(cv::kinfu::KinFu::Params::PlatformType t,
cv::Ptr<TSDFVolume> makeTSDFVolume(cv::kinfu::Params::PlatformType t,
int _res, float _size, cv::Affine3f _pose, float _truncDist, int _maxWeight,
float _raycastStepFactor)
{
switch (t)
{
case cv::kinfu::KinFu::Params::PlatformType::PLATFORM_CPU:
case cv::kinfu::Params::PlatformType::PLATFORM_CPU:
return cv::makePtr<TSDFVolumeCPU>(_res, _size, _pose, _truncDist, _maxWeight,
_raycastStepFactor);
case cv::kinfu::KinFu::Params::PlatformType::PLATFORM_GPU:
case cv::kinfu::Params::PlatformType::PLATFORM_GPU:
return cv::makePtr<TSDFVolumeGPU>(_res, _size, _pose, _truncDist, _maxWeight,
_raycastStepFactor);
default:
......
......@@ -38,7 +38,7 @@ public:
cv::Affine3f pose;
};
cv::Ptr<TSDFVolume> makeTSDFVolume(cv::kinfu::KinFu::Params::PlatformType t,
cv::Ptr<TSDFVolume> makeTSDFVolume(cv::kinfu::Params::PlatformType t,
int _res, float _size, cv::Affine3f _pose, float _truncDist, int _maxWeight,
float _raycastStepFactor);
......
......@@ -262,12 +262,11 @@ static const bool display = false;
TEST( KinectFusion, lowDense )
{
kinfu::KinFu::Params params;
params = kinfu::KinFu::Params::coarseParams();
Ptr<kinfu::Params> params = kinfu::Params::coarseParams();
RotatingScene scene(params.frameSize, params.intr, params.depthFactor);
RotatingScene scene(params->frameSize, params->intr, params->depthFactor);
kinfu::KinFu kf(params);
Ptr<kinfu::KinFu> kf = kinfu::KinFu::create(params);
std::vector<Affine3f> poses = scene.getPoses();
Affine3f startPoseGT = poses[0], startPoseKF;
......@@ -278,9 +277,9 @@ TEST( KinectFusion, lowDense )
Mat depth = scene.depth(pose);
ASSERT_TRUE(kf.update(depth));
ASSERT_TRUE(kf->update(depth));
kfPose = kf.getPose();
kfPose = kf->getPose();
if(i == 0)
startPoseKF = kfPose;
......@@ -288,9 +287,9 @@ TEST( KinectFusion, lowDense )
if(display)
{
imshow("depth", depth*(1.f/params.depthFactor/4.f));
imshow("depth", depth*(1.f/params->depthFactor/4.f));
Mat rendered;
kf.render(rendered);
kf->render(rendered);
imshow("render", rendered);
waitKey(10);
}
......@@ -302,12 +301,10 @@ TEST( KinectFusion, lowDense )
TEST( KinectFusion, highDense )
{
kinfu::KinFu::Params params;
Ptr<kinfu::Params> params = kinfu::Params::defaultParams();
CubeSpheresScene scene(params->frameSize, params->intr, params->depthFactor);
params = kinfu::KinFu::Params::defaultParams();
CubeSpheresScene scene(params.frameSize, params.intr, params.depthFactor);
kinfu::KinFu kf(params);
Ptr<kinfu::KinFu> kf = kinfu::KinFu::create(params);
std::vector<Affine3f> poses = scene.getPoses();
Affine3f startPoseGT = poses[0], startPoseKF;
......@@ -318,9 +315,9 @@ TEST( KinectFusion, highDense )
Mat depth = scene.depth(pose);
ASSERT_TRUE(kf.update(depth));
ASSERT_TRUE(kf->update(depth));
kfPose = kf.getPose();
kfPose = kf->getPose();
if(i == 0)
startPoseKF = kfPose;
......@@ -328,9 +325,9 @@ TEST( KinectFusion, highDense )
if(display)
{
imshow("depth", depth*(1.f/params.depthFactor/4.f));
imshow("depth", depth*(1.f/params->depthFactor/4.f));
Mat rendered;
kf.render(rendered);
kf->render(rendered);
imshow("render", rendered);
waitKey(10);
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment