Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
9c6c69a4
Commit
9c6c69a4
authored
Feb 08, 2017
by
Aleksandr Rybnikov
Committed by
Vadim Pisarevsky
Feb 08, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fixed and added tests (#987)
parent
ee79c1f4
Show whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
191 additions
and
106 deletions
+191
-106
CMakeLists.txt
modules/dnn/CMakeLists.txt
+11
-2
download_model.cmake
modules/dnn/cmake/download_model.cmake
+13
-0
caffe_googlenet.cpp
modules/dnn/samples/caffe_googlenet.cpp
+1
-0
caffe.proto
modules/dnn/src/caffe/caffe.proto
+0
-0
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+7
-8
lrn_layer.cpp
modules/dnn/src/layers/lrn_layer.cpp
+5
-5
lrn_layer.hpp
modules/dnn/src/layers/lrn_layer.hpp
+4
-4
max_unpooling_layer.cpp
modules/dnn/src/layers/max_unpooling_layer.cpp
+1
-0
reshape_layer.cpp
modules/dnn/src/layers/reshape_layer.cpp
+1
-1
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+1
-1
torch_importer.cpp
modules/dnn/src/torch/torch_importer.cpp
+5
-1
test_alexnet.cpp
modules/dnn/test/test_alexnet.cpp
+0
-81
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+66
-0
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+31
-1
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+40
-2
torch_gen_test_data.lua
modules/dnn/testdata/dnn/torch/torch_gen_test_data.lua
+5
-0
No files found.
modules/dnn/CMakeLists.txt
View file @
9c6c69a4
...
@@ -48,11 +48,20 @@ ocv_add_perf_tests()
...
@@ -48,11 +48,20 @@ ocv_add_perf_tests()
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
# Download pre-trained models for complex testing on GoogLeNet and AlexNet
# Download pre-trained models for complex testing on GoogLeNet and AlexNet
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
OCV_OPTION
(
${
the_module
}
_DOWNLOAD_
CAFFE_
MODELS
"Use GoogLeNet Caffe model for testing"
OFF IF BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH}
)
OCV_OPTION
(
${
the_module
}
_DOWNLOAD_MODELS
"Use GoogLeNet Caffe model for testing"
OFF IF BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH}
)
if
(
BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH}
AND
(
DOWNLOAD_EXTERNAL_TEST_DATA OR
${
the_module
}
_DOWNLOAD_
CAFFE_
MODELS
))
if
(
BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH}
AND
(
DOWNLOAD_EXTERNAL_TEST_DATA OR
${
the_module
}
_DOWNLOAD_MODELS
))
add_custom_command
(
TARGET opencv_test_
${
name
}
POST_BUILD
add_custom_command
(
TARGET opencv_test_
${
name
}
POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-Dmodel=GoogleNet -P
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake/download_model.cmake
)
COMMAND
${
CMAKE_COMMAND
}
-Dmodel=GoogleNet -P
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake/download_model.cmake
)
add_custom_command
(
TARGET opencv_test_
${
name
}
POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-Dmodel=Alexnet -P
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake/download_model.cmake
)
add_custom_command
(
TARGET opencv_test_
${
name
}
POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-Dmodel=Inception -P
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake/download_model.cmake
)
add_custom_command
(
TARGET opencv_test_
${
name
}
POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-Dmodel=Enet -P
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake/download_model.cmake
)
add_definitions
(
-DENABLE_CAFFE_MODEL_TESTS=1
)
add_definitions
(
-DENABLE_CAFFE_MODEL_TESTS=1
)
add_definitions
(
-DENABLE_CAFFE_ALEXNET_TEST=1
)
add_definitions
(
-DENABLE_TF_INCEPTION_TESTS=1
)
add_definitions
(
-DENABLE_TORCH_ENET_TESTS=1
)
endif
()
endif
()
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
...
...
modules/dnn/cmake/download_model.cmake
View file @
9c6c69a4
...
@@ -8,6 +8,19 @@ set(GG16_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/VGG_ILSVRC_16_layers.caffemodel")
...
@@ -8,6 +8,19 @@ set(GG16_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/VGG_ILSVRC_16_layers.caffemodel")
set
(
voc-fcn32s_url
"http://dl.caffe.berkeleyvision.org/fcn32s-heavy-pascal.caffemodel"
)
set
(
voc-fcn32s_url
"http://dl.caffe.berkeleyvision.org/fcn32s-heavy-pascal.caffemodel"
)
set
(
voc-fcn32s_dst
"$ENV{OPENCV_TEST_DATA_PATH}/dnn/fcn32s-heavy-pascal.caffemodel"
)
set
(
voc-fcn32s_dst
"$ENV{OPENCV_TEST_DATA_PATH}/dnn/fcn32s-heavy-pascal.caffemodel"
)
set
(
Alexnet_url
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel"
)
set
(
Alexnet_dst
"$ENV{OPENCV_TEST_DATA_PATH}/dnn/bvlc_alexnet.caffemodel"
)
set
(
Alexnet_sha
"9116a64c0fbe4459d18f4bb6b56d647b63920377"
)
set
(
Inception_url
"https://github.com/petewarden/tf_ios_makefile_example/raw/master/data/tensorflow_inception_graph.pb"
)
set
(
Inception_dst
"$ENV{OPENCV_TEST_DATA_PATH}/dnn/tensorflow_inception_graph.pb"
)
set
(
Enet_url
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AABoUwqQGWvClUu27Z1EWeu9a/model-best.net?dl=0"
)
set
(
Enet_dst
"$ENV{OPENCV_TEST_DATA_PATH}/dnn/Enet-model-best.net"
)
set
(
Fcn_url
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel"
)
set
(
Fcn_dst
"$ENV{OPENCV_TEST_DATA_PATH}/dnn/fcn8s-heavy-pascal.caffemodel"
)
if
(
NOT model
)
if
(
NOT model
)
set
(
model
"GoogleNet"
)
set
(
model
"GoogleNet"
)
endif
()
endif
()
...
...
modules/dnn/samples/caffe_googlenet.cpp
View file @
9c6c69a4
...
@@ -115,6 +115,7 @@ int main(int argc, char **argv)
...
@@ -115,6 +115,7 @@ int main(int argc, char **argv)
}
}
resize
(
img
,
img
,
Size
(
224
,
224
));
//GoogLeNet accepts only 224x224 RGB-images
resize
(
img
,
img
,
Size
(
224
,
224
));
//GoogLeNet accepts only 224x224 RGB-images
cv
::
cvtColor
(
img
,
img
,
cv
::
COLOR_BGR2RGB
);
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
img
);
//Convert Mat to dnn::Blob batch of images
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
img
);
//Convert Mat to dnn::Blob batch of images
//! [Prepare blob]
//! [Prepare blob]
...
...
modules/dnn/src/caffe/caffe.proto
View file @
9c6c69a4
modules/dnn/src/layers/convolution_layer.cpp
View file @
9c6c69a4
...
@@ -111,6 +111,7 @@ void BaseConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::v
...
@@ -111,6 +111,7 @@ void BaseConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::v
if
(
!
is1x1
())
if
(
!
is1x1
())
{
{
colRowBlob
.
create
(
colRowBlobShape
,
input
.
type
(),
allocFlags
);
colRowBlob
.
create
(
colRowBlobShape
,
input
.
type
(),
allocFlags
);
colRowBlob
.
setTo
(
0
);
}
}
}
}
...
@@ -250,11 +251,11 @@ void ConvolutionLayerImpl::im2row(const Mat &srcImg, Mat &dstRow)
...
@@ -250,11 +251,11 @@ void ConvolutionLayerImpl::im2row(const Mat &srcImg, Mat &dstRow)
if
(
srcImg
.
type
()
==
CV_32F
)
if
(
srcImg
.
type
()
==
CV_32F
)
im2row_CpuPBody
<
float
>::
run
(
srcImg
.
ptr
<
float
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
im2row_CpuPBody
<
float
>::
run
(
srcImg
.
ptr
<
float
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dilation
.
height
,
dilation
.
width
,
out
W
,
outH
,
colMat
.
ptr
<
float
>
());
dilation
.
height
,
dilation
.
width
,
out
H
,
outW
,
colMat
.
ptr
<
float
>
());
if
(
srcImg
.
type
()
==
CV_64F
)
if
(
srcImg
.
type
()
==
CV_64F
)
im2row_CpuPBody
<
double
>::
run
(
srcImg
.
ptr
<
double
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
im2row_CpuPBody
<
double
>::
run
(
srcImg
.
ptr
<
double
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dilation
.
height
,
dilation
.
width
,
out
W
,
outH
,
colMat
.
ptr
<
double
>
());
dilation
.
height
,
dilation
.
width
,
out
H
,
outW
,
colMat
.
ptr
<
double
>
());
dstRow
=
colMat
;
dstRow
=
colMat
;
}
}
...
@@ -268,11 +269,9 @@ void ConvolutionLayerImpl::im2row(const UMat &srcImg, UMat &dstCol)
...
@@ -268,11 +269,9 @@ void ConvolutionLayerImpl::im2row(const UMat &srcImg, UMat &dstCol)
void
DeConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
inpBlob
)
void
DeConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
inpBlob
)
{
{
BlobShape
bs0
=
blobs
[
0
].
shape
();
CV_Assert
(
!
bias
||
blobs
[
1
].
total
()
==
(
size_t
)
blobs
[
0
].
num
());
BlobShape
bs1
=
blobs
[
1
].
shape
();
CV_Assert
(
!
bias
||
blobs
[
1
].
total
()
==
(
size_t
)
blobs
[
0
].
channels
());
numOutput
=
blobs
[
0
].
channels
();
numOutput
=
blobs
[
0
].
num
();
inpH
=
inpBlob
.
rows
();
inpH
=
inpBlob
.
rows
();
inpW
=
inpBlob
.
cols
();
inpW
=
inpBlob
.
cols
();
...
@@ -282,13 +281,13 @@ void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob)
...
@@ -282,13 +281,13 @@ void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob)
outW
=
stride
.
width
*
(
inpW
-
1
)
+
kernel
.
width
-
2
*
pad
.
width
+
adjustPad
.
width
;
outW
=
stride
.
width
*
(
inpW
-
1
)
+
kernel
.
width
-
2
*
pad
.
width
+
adjustPad
.
width
;
outCn
=
numOutput
;
outCn
=
numOutput
;
group
=
inpCn
/
blobs
[
0
].
num
();
group
=
inpCn
/
blobs
[
0
].
channels
();
outGroupCn
=
outCn
/
group
;
outGroupCn
=
outCn
/
group
;
inpGroupCn
=
inpCn
/
group
;
inpGroupCn
=
inpCn
/
group
;
ksize
=
outGroupCn
*
kernel
.
height
*
kernel
.
width
;
ksize
=
outGroupCn
*
kernel
.
height
*
kernel
.
width
;
CV_Assert
(
inpCn
%
group
==
0
&&
outCn
%
group
==
0
);
CV_Assert
(
inpCn
%
group
==
0
&&
outCn
%
group
==
0
);
CV_Assert
(
blobs
[
0
].
channels
()
==
outCn
&&
blobs
[
0
].
num
()
==
inpCn
/
group
);
CV_Assert
(
blobs
[
0
].
num
()
==
outCn
&&
blobs
[
0
].
channels
()
==
inpCn
/
group
);
colRowBlobShape
=
BlobShape
(
ksize
,
inpH
*
inpW
);
colRowBlobShape
=
BlobShape
(
ksize
,
inpH
*
inpW
);
}
}
...
...
modules/dnn/src/layers/lrn_layer.cpp
View file @
9c6c69a4
...
@@ -106,23 +106,23 @@ static XMat getPlane(XMat &m, int n, int cn)
...
@@ -106,23 +106,23 @@ static XMat getPlane(XMat &m, int n, int cn)
void
LRNLayerImpl
::
channelNoramlization
(
Blob
&
src
,
Blob
&
dst
)
void
LRNLayerImpl
::
channelNoramlization
(
Blob
&
src
,
Blob
&
dst
)
{
{
if
(
!
useOpenCL
)
if
(
!
useOpenCL
)
channelNor
am
lization_
<
Mat
>
(
src
,
dst
);
channelNor
ma
lization_
<
Mat
>
(
src
,
dst
);
else
else
{
{
//channelNoramlization_ocl(src.getRefConst<UMat>(), dst.getRef<UMat>()); //consumes a lot of memory
//channelNoramlization_ocl(src.getRefConst<UMat>(), dst.getRef<UMat>()); //consumes a lot of memory
channelNor
am
lization_
<
UMat
>
(
src
,
dst
);
channelNor
ma
lization_
<
UMat
>
(
src
,
dst
);
}
}
}
}
template
<
typename
XMat
>
template
<
typename
XMat
>
void
LRNLayerImpl
::
channelNor
am
lization_
(
Blob
&
srcBlob
,
Blob
&
dstBlob
)
void
LRNLayerImpl
::
channelNor
ma
lization_
(
Blob
&
srcBlob
,
Blob
&
dstBlob
)
{
{
int
num
=
srcBlob
.
num
();
int
num
=
srcBlob
.
num
();
int
channels
=
srcBlob
.
channels
();
int
channels
=
srcBlob
.
channels
();
int
ksize
=
(
size
-
1
)
/
2
;
int
ksize
=
(
size
-
1
)
/
2
;
int
sizeNormFactor
=
normBySize
?
size
:
1
;
int
sizeNormFactor
=
normBySize
?
size
:
1
;
XMat
srcMat
=
srcBlob
.
getRefConst
<
XMat
>
();
XMat
srcMat
=
srcBlob
.
getRefConst
<
XMat
>
()
.
clone
()
;
XMat
dstMat
=
dstBlob
.
getRef
<
XMat
>
();
XMat
dstMat
=
dstBlob
.
getRef
<
XMat
>
();
for
(
int
n
=
0
;
n
<
num
;
n
++
)
for
(
int
n
=
0
;
n
<
num
;
n
++
)
...
@@ -156,7 +156,7 @@ void LRNLayerImpl::channelNoramlization_(Blob &srcBlob, Blob &dstBlob)
...
@@ -156,7 +156,7 @@ void LRNLayerImpl::channelNoramlization_(Blob &srcBlob, Blob &dstBlob)
}
}
}
}
bool
LRNLayerImpl
::
channelNor
am
lization_ocl
(
const
UMat
&
src
,
UMat
&
dst
)
bool
LRNLayerImpl
::
channelNor
ma
lization_ocl
(
const
UMat
&
src
,
UMat
&
dst
)
{
{
#ifdef HAVE_OPENCL
#ifdef HAVE_OPENCL
if
(
src
.
offset
!=
0
||
dst
.
offset
!=
0
)
//TODO: add offset
if
(
src
.
offset
!=
0
||
dst
.
offset
!=
0
)
//TODO: add offset
...
...
modules/dnn/src/layers/lrn_layer.hpp
View file @
9c6c69a4
...
@@ -56,8 +56,8 @@ class LRNLayerImpl : public LRNLayer
...
@@ -56,8 +56,8 @@ class LRNLayerImpl : public LRNLayer
void
channelNoramlization
(
Blob
&
src
,
Blob
&
dst
);
void
channelNoramlization
(
Blob
&
src
,
Blob
&
dst
);
template
<
typename
XMat
>
template
<
typename
XMat
>
void
channelNor
am
lization_
(
Blob
&
src
,
Blob
&
dst
);
void
channelNor
ma
lization_
(
Blob
&
src
,
Blob
&
dst
);
bool
channelNor
am
lization_ocl
(
const
UMat
&
src
,
UMat
&
dst
);
bool
channelNor
ma
lization_ocl
(
const
UMat
&
src
,
UMat
&
dst
);
void
spatialNormalization
(
Blob
&
src
,
Blob
&
dst
);
void
spatialNormalization
(
Blob
&
src
,
Blob
&
dst
);
template
<
typename
XMat
>
template
<
typename
XMat
>
...
@@ -67,8 +67,8 @@ class LRNLayerImpl : public LRNLayer
...
@@ -67,8 +67,8 @@ class LRNLayerImpl : public LRNLayer
public
:
public
:
LRNLayerImpl
(
int
type
=
CHANNEL_NRM
,
int
size
=
5
,
double
alpha
=
1
,
double
beta
=
0.75
,
double
bias
=
1
,
LRNLayerImpl
(
int
type
=
CHANNEL_NRM
,
int
size
=
5
,
double
alpha
=
1
,
bool
normBySize
=
true
);
double
beta
=
0.75
,
double
bias
=
1
,
bool
normBySize
=
true
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
};
...
...
modules/dnn/src/layers/max_unpooling_layer.cpp
View file @
9c6c69a4
...
@@ -44,6 +44,7 @@ void MaxUnpoolLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &
...
@@ -44,6 +44,7 @@ void MaxUnpoolLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &
for
(
int
i_n
=
0
;
i_n
<
outputs
.
size
();
i_n
++
)
for
(
int
i_n
=
0
;
i_n
<
outputs
.
size
();
i_n
++
)
{
{
Blob
&
outBlob
=
outputs
[
i_n
];
Blob
&
outBlob
=
outputs
[
i_n
];
outBlob
.
setTo
(
0
);
CV_Assert
(
input
.
channels
()
==
outBlob
.
channels
());
CV_Assert
(
input
.
channels
()
==
outBlob
.
channels
());
for
(
int
i_c
=
0
;
i_c
<
input
.
channels
();
i_c
++
)
for
(
int
i_c
=
0
;
i_c
<
input
.
channels
();
i_c
++
)
...
...
modules/dnn/src/layers/reshape_layer.cpp
View file @
9c6c69a4
...
@@ -73,7 +73,7 @@ void ReshapeLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou
...
@@ -73,7 +73,7 @@ void ReshapeLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou
{
{
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
{
Blob
&
srcBlob
=
*
inputs
[
i
];
Blob
srcBlob
=
*
inputs
[
i
];
BlobShape
inputShape
=
inputs
[
i
]
->
shape
();
BlobShape
inputShape
=
inputs
[
i
]
->
shape
();
bool
channelsReduced
=
inputShape
.
dims
()
>
outShapes
[
i
].
dims
()
||
bool
channelsReduced
=
inputShape
.
dims
()
>
outShapes
[
i
].
dims
()
||
(
inputShape
.
dims
()
==
4
&&
inputShape
[
1
]
>
outShapes
[
i
][
1
]);
(
inputShape
.
dims
()
==
4
&&
inputShape
[
1
]
>
outShapes
[
i
][
1
]);
...
...
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
9c6c69a4
...
@@ -640,7 +640,7 @@ void TFImporter::populateNet(Net dstNet)
...
@@ -640,7 +640,7 @@ void TFImporter::populateNet(Net dstNet)
if
(
hasLayerAttr
(
layer
,
"bias"
))
{
if
(
hasLayerAttr
(
layer
,
"bias"
))
{
layerParams
.
set
(
"bias"
,
getLayerAttr
(
layer
,
"bias"
).
f
());
layerParams
.
set
(
"bias"
,
getLayerAttr
(
layer
,
"bias"
).
f
());
}
}
layerParams
.
set
(
"norm_
sz
"
,
false
);
layerParams
.
set
(
"norm_
by_size
"
,
false
);
int
id
=
dstNet
.
addLayer
(
name
,
"LRN"
,
layerParams
);
int
id
=
dstNet
.
addLayer
(
name
,
"LRN"
,
layerParams
);
layer_id
[
name
]
=
id
;
layer_id
[
name
]
=
id
;
...
...
modules/dnn/src/torch/torch_importer.cpp
View file @
9c6c69a4
...
@@ -375,6 +375,7 @@ struct TorchImporter : public ::cv::dnn::Importer
...
@@ -375,6 +375,7 @@ struct TorchImporter : public ::cv::dnn::Importer
int
typeStorage
=
parseStorageType
(
className
);
int
typeStorage
=
parseStorageType
(
className
);
CV_Assert
(
typeStorage
>=
0
&&
typeTensor
==
typeStorage
);
CV_Assert
(
typeStorage
>=
0
&&
typeTensor
==
typeStorage
);
readTorchStorage
(
indexStorage
,
typeStorage
);
readTorchStorage
(
indexStorage
,
typeStorage
);
typeTensor
=
storages
[
indexStorage
].
type
();
readedIndexes
.
insert
(
indexStorage
);
readedIndexes
.
insert
(
indexStorage
);
}
}
...
@@ -723,7 +724,10 @@ struct TorchImporter : public ::cv::dnn::Importer
...
@@ -723,7 +724,10 @@ struct TorchImporter : public ::cv::dnn::Importer
layerParams
.
set
(
"adj_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"adjH"
)));
layerParams
.
set
(
"adj_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"adjH"
)));
layerParams
.
set
(
"num_output"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"nOutputPlane"
)));
layerParams
.
set
(
"num_output"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"nOutputPlane"
)));
layerParams
.
blobs
.
push_back
(
tensorParams
[
"weight"
].
second
);
Blob
weights
=
tensorParams
[
"weight"
].
second
;
BlobShape
shape
=
weights
.
shape
(),
reorderedShape
=
BlobShape
(
shape
[
1
],
shape
[
0
],
shape
[
2
],
shape
[
3
]);
layerParams
.
blobs
.
push_back
(
weights
.
reshape
(
reorderedShape
));
bool
bias
=
tensorParams
.
count
(
"bias"
);
bool
bias
=
tensorParams
.
count
(
"bias"
);
layerParams
.
set
(
"bias_term"
,
bias
);
layerParams
.
set
(
"bias_term"
,
bias
);
...
...
modules/dnn/test/test_alexnet.cpp
deleted
100644 → 0
View file @
ee79c1f4
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if defined(ENABLE_CAFFE_MODEL_TESTS) && defined(ENABLE_CAFFE_ALEXNET_TEST) //AlexNet is disabled now
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace
cvtest
{
using
namespace
cv
;
using
namespace
cv
::
dnn
;
template
<
typename
TString
>
static
std
::
string
_tf
(
TString
filename
)
{
return
(
getOpenCVExtraDir
()
+
"/dnn/"
)
+
filename
;
}
TEST
(
Reproducibility_AlexNet
,
Accuracy
)
{
Net
net
;
{
Ptr
<
Importer
>
importer
=
createCaffeImporter
(
_tf
(
"bvlc_alexnet.prototxt"
),
_tf
(
"bvlc_alexnet.caffemodel"
));
ASSERT_TRUE
(
importer
!=
NULL
);
importer
->
populateNet
(
net
);
}
std
::
vector
<
Mat
>
inpMats
;
inpMats
.
push_back
(
imread
(
_tf
(
"alexnet_0.png"
))
);
inpMats
.
push_back
(
imread
(
_tf
(
"alexnet_1.png"
))
);
ASSERT_TRUE
(
!
inpMats
[
0
].
empty
()
&&
!
inpMats
[
1
].
empty
());
net
.
setBlob
(
".data"
,
Blob
(
inpMats
));
net
.
forward
();
Blob
out
=
net
.
getBlob
(
"prob"
);
Blob
ref
=
blobFromNPY
(
_tf
(
"alexnet.npy"
));
normAssert
(
ref
,
out
,
"prob"
);
}
}
#endif
modules/dnn/test/test_caffe_importer.cpp
View file @
9c6c69a4
...
@@ -40,6 +40,7 @@
...
@@ -40,6 +40,7 @@
//M*/
//M*/
#include "test_precomp.hpp"
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace
cvtest
namespace
cvtest
{
{
...
@@ -73,4 +74,69 @@ TEST(Test_Caffe, read_googlenet)
...
@@ -73,4 +74,69 @@ TEST(Test_Caffe, read_googlenet)
}
}
}
}
#if defined(ENABLE_CAFFE_MODEL_TESTS)
#if defined(ENABLE_CAFFE_ALEXNET_TEST) //AlexNet is disabled now
TEST
(
Reproducibility_AlexNet
,
Accuracy
)
{
Net
net
;
{
Ptr
<
Importer
>
importer
=
createCaffeImporter
(
_tf
(
"bvlc_alexnet.prototxt"
),
_tf
(
"bvlc_alexnet.caffemodel"
));
ASSERT_TRUE
(
importer
!=
NULL
);
importer
->
populateNet
(
net
);
}
Mat
sample
=
imread
(
_tf
(
"grace_hopper_227.png"
));
ASSERT_TRUE
(
!
sample
.
empty
());
cv
::
cvtColor
(
sample
,
sample
,
cv
::
COLOR_BGR2RGB
);
Size
inputSize
(
227
,
227
);
if
(
sample
.
size
()
!=
inputSize
)
resize
(
sample
,
sample
,
inputSize
);
net
.
setBlob
(
".data"
,
dnn
::
Blob
::
fromImages
(
sample
));
net
.
forward
();
Blob
out
=
net
.
getBlob
(
"prob"
);
Blob
ref
=
blobFromNPY
(
_tf
(
"caffe_alexnet_prob.npy"
));
normAssert
(
ref
,
out
);
}
#endif
#if defined(ENABLE_CAFFE_FCN_TEST)
TEST
(
Reproducibility_FCN
,
Accuracy
)
{
Net
net
;
{
Ptr
<
Importer
>
importer
=
createCaffeImporter
(
_tf
(
"fcn8s-heavy-pascal.prototxt"
),
_tf
(
"fcn8s-heavy-pascal.caffemodel"
));
ASSERT_TRUE
(
importer
!=
NULL
);
importer
->
populateNet
(
net
);
}
Mat
sample
=
imread
(
_tf
(
"street.png"
));
ASSERT_TRUE
(
!
sample
.
empty
());
Size
inputSize
(
500
,
500
);
if
(
sample
.
size
()
!=
inputSize
)
resize
(
sample
,
sample
,
inputSize
);
cv
::
cvtColor
(
sample
,
sample
,
cv
::
COLOR_BGR2RGB
);
net
.
setBlob
(
".data"
,
dnn
::
Blob
::
fromImages
(
sample
));
net
.
forward
();
Blob
out
=
net
.
getBlob
(
"score"
);
Blob
ref
=
blobFromNPY
(
_tf
(
"caffe_fcn8s_prob.npy"
));
normAssert
(
ref
,
out
);
}
#endif
#endif
}
}
modules/dnn/test/test_tf_importer.cpp
View file @
9c6c69a4
...
@@ -9,7 +9,10 @@
...
@@ -9,7 +9,10 @@
Test for Tensorflow models loading
Test for Tensorflow models loading
*/
*/
#if defined(ENABLE_TF_INCEPTION_TESTS)
#include "test_precomp.hpp"
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace
cvtest
namespace
cvtest
{
{
...
@@ -32,7 +35,7 @@ TEST(Test_TensorFlow, read_inception)
...
@@ -32,7 +35,7 @@ TEST(Test_TensorFlow, read_inception)
importer
->
populateNet
(
net
);
importer
->
populateNet
(
net
);
}
}
Mat
sample
=
imread
(
_tf
(
"grace_hopper
.jp
g"
));
Mat
sample
=
imread
(
_tf
(
"grace_hopper
_227.pn
g"
));
ASSERT_TRUE
(
!
sample
.
empty
());
ASSERT_TRUE
(
!
sample
.
empty
());
Mat
input
;
Mat
input
;
resize
(
sample
,
input
,
Size
(
224
,
224
));
resize
(
sample
,
input
,
Size
(
224
,
224
));
...
@@ -47,4 +50,31 @@ TEST(Test_TensorFlow, read_inception)
...
@@ -47,4 +50,31 @@ TEST(Test_TensorFlow, read_inception)
std
::
cout
<<
out
.
dims
()
<<
std
::
endl
;
std
::
cout
<<
out
.
dims
()
<<
std
::
endl
;
}
}
TEST
(
Test_TensorFlow
,
inception_accuracy
)
{
Net
net
;
{
Ptr
<
Importer
>
importer
=
createTensorflowImporter
(
_tf
(
"tensorflow_inception_graph.pb"
));
ASSERT_TRUE
(
importer
!=
NULL
);
importer
->
populateNet
(
net
);
}
Mat
sample
=
imread
(
_tf
(
"grace_hopper_227.png"
));
ASSERT_TRUE
(
!
sample
.
empty
());
resize
(
sample
,
sample
,
Size
(
224
,
224
));
cv
::
cvtColor
(
sample
,
sample
,
cv
::
COLOR_BGR2RGB
);
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
sample
);
net
.
setBlob
(
".input"
,
inputBlob
);
net
.
forward
();
Blob
out
=
net
.
getBlob
(
"softmax2"
);
Blob
ref
=
blobFromNPY
(
_tf
(
"tf_inception_prob.npy"
));
normAssert
(
ref
,
out
);
}
}
}
#endif
modules/dnn/test/test_torch_importer.cpp
View file @
9c6c69a4
...
@@ -42,6 +42,7 @@
...
@@ -42,6 +42,7 @@
#if defined(ENABLE_TORCH_IMPORTER) && ENABLE_TORCH_IMPORTER
#if defined(ENABLE_TORCH_IMPORTER) && ENABLE_TORCH_IMPORTER
#if defined(ENABLE_TORCH_TESTS) && ENABLE_TORCH_TESTS
#if defined(ENABLE_TORCH_TESTS) && ENABLE_TORCH_TESTS
#include "test_precomp.hpp"
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace
cvtest
namespace
cvtest
{
{
...
@@ -52,9 +53,13 @@ using namespace cv;
...
@@ -52,9 +53,13 @@ using namespace cv;
using
namespace
cv
::
dnn
;
using
namespace
cv
::
dnn
;
template
<
typename
TStr
>
template
<
typename
TStr
>
static
std
::
string
_tf
(
TStr
filename
)
static
std
::
string
_tf
(
TStr
filename
,
bool
inTorchDir
=
true
)
{
{
return
(
getOpenCVExtraDir
()
+
"/dnn/torch/"
)
+
filename
;
String
path
=
getOpenCVExtraDir
()
+
"/dnn/"
;
if
(
inTorchDir
)
path
+=
"torch/"
;
path
+=
filename
;
return
path
;
}
}
TEST
(
Torch_Importer
,
simple_read
)
TEST
(
Torch_Importer
,
simple_read
)
...
@@ -82,6 +87,8 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary)
...
@@ -82,6 +87,8 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary)
net
.
setBlob
(
".0"
,
inp
);
net
.
setBlob
(
".0"
,
inp
);
net
.
forward
();
net
.
forward
();
if
(
outLayerName
.
empty
())
outLayerName
=
net
.
getLayerNames
().
back
();
Blob
out
=
net
.
getBlob
(
outLayerName
);
Blob
out
=
net
.
getBlob
(
outLayerName
);
normAssert
(
outRef
,
out
);
normAssert
(
outRef
,
out
);
...
@@ -123,6 +130,37 @@ TEST(Torch_Importer, run_concat)
...
@@ -123,6 +130,37 @@ TEST(Torch_Importer, run_concat)
runTorchNet
(
"net_concat"
,
"l2_torchMerge"
,
false
);
runTorchNet
(
"net_concat"
,
"l2_torchMerge"
,
false
);
}
}
TEST
(
Torch_Importer
,
run_deconv
)
{
runTorchNet
(
"net_deconv"
,
""
,
false
);
}
#if defined(ENABLE_TORCH_ENET_TESTS)
TEST
(
Torch_Importer
,
ENet_accuracy
)
{
Net
net
;
{
Ptr
<
Importer
>
importer
=
createTorchImporter
(
_tf
(
"Enet-model-best.net"
,
false
));
ASSERT_TRUE
(
importer
!=
NULL
);
importer
->
populateNet
(
net
);
}
Mat
sample
=
imread
(
_tf
(
"street.png"
,
false
));
cv
::
cvtColor
(
sample
,
sample
,
cv
::
COLOR_BGR2RGB
);
sample
.
convertTo
(
sample
,
CV_32F
,
1
/
255.0
);
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
sample
);
net
.
setBlob
(
""
,
inputBlob
);
net
.
forward
();
dnn
::
Blob
out
=
net
.
getBlob
(
net
.
getLayerNames
().
back
());
Blob
ref
=
blobFromNPY
(
_tf
(
"torch_enet_prob.npy"
,
false
));
normAssert
(
ref
,
out
);
}
#endif
}
}
#endif
#endif
#endif
#endif
modules/dnn/testdata/dnn/torch/torch_gen_test_data.lua
View file @
9c6c69a4
...
@@ -65,3 +65,7 @@ net_concat:add(nn.ReLU())
...
@@ -65,3 +65,7 @@ net_concat:add(nn.ReLU())
net_concat
:
add
(
nn
.
Tanh
())
net_concat
:
add
(
nn
.
Tanh
())
net_concat
:
add
(
nn
.
Sigmoid
())
net_concat
:
add
(
nn
.
Sigmoid
())
save
(
net_concat
,
torch
.
rand
(
2
,
6
,
4
,
3
)
-
0
.
5
,
'net_concat'
)
save
(
net_concat
,
torch
.
rand
(
2
,
6
,
4
,
3
)
-
0
.
5
,
'net_concat'
)
local
net_deconv
=
nn
.
Sequential
()
net_deconv
:
add
(
nn
.
SpatialFullConvolution
(
3
,
9
,
4
,
5
,
1
,
2
,
0
,
1
,
0
,
1
))
save
(
net_deconv
,
torch
.
rand
(
2
,
3
,
4
,
3
)
-
0
.
5
,
'net_deconv'
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment