Commit 9c6c69a4 authored by Aleksandr Rybnikov's avatar Aleksandr Rybnikov Committed by Vadim Pisarevsky

Fixed and added tests (#987)

parent ee79c1f4
...@@ -48,11 +48,20 @@ ocv_add_perf_tests() ...@@ -48,11 +48,20 @@ ocv_add_perf_tests()
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
# Download pre-trained models for complex testing on GoogLeNet and AlexNet # Download pre-trained models for complex testing on GoogLeNet and AlexNet
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
OCV_OPTION(${the_module}_DOWNLOAD_CAFFE_MODELS "Use GoogLeNet Caffe model for testing" OFF IF BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH}) OCV_OPTION(${the_module}_DOWNLOAD_MODELS "Use GoogLeNet Caffe model for testing" OFF IF BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH})
if(BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH} AND (DOWNLOAD_EXTERNAL_TEST_DATA OR ${the_module}_DOWNLOAD_CAFFE_MODELS)) if(BUILD_TESTS AND DEFINED ENV{OPENCV_TEST_DATA_PATH} AND (DOWNLOAD_EXTERNAL_TEST_DATA OR ${the_module}_DOWNLOAD_MODELS))
add_custom_command( TARGET opencv_test_${name} POST_BUILD add_custom_command( TARGET opencv_test_${name} POST_BUILD
COMMAND ${CMAKE_COMMAND} -Dmodel=GoogleNet -P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/download_model.cmake) COMMAND ${CMAKE_COMMAND} -Dmodel=GoogleNet -P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/download_model.cmake)
add_custom_command( TARGET opencv_test_${name} POST_BUILD
COMMAND ${CMAKE_COMMAND} -Dmodel=Alexnet -P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/download_model.cmake)
add_custom_command( TARGET opencv_test_${name} POST_BUILD
COMMAND ${CMAKE_COMMAND} -Dmodel=Inception -P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/download_model.cmake)
add_custom_command( TARGET opencv_test_${name} POST_BUILD
COMMAND ${CMAKE_COMMAND} -Dmodel=Enet -P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/download_model.cmake)
add_definitions(-DENABLE_CAFFE_MODEL_TESTS=1) add_definitions(-DENABLE_CAFFE_MODEL_TESTS=1)
add_definitions(-DENABLE_CAFFE_ALEXNET_TEST=1)
add_definitions(-DENABLE_TF_INCEPTION_TESTS=1)
add_definitions(-DENABLE_TORCH_ENET_TESTS=1)
endif() endif()
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
......
...@@ -8,6 +8,19 @@ set(GG16_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/VGG_ILSVRC_16_layers.caffemodel") ...@@ -8,6 +8,19 @@ set(GG16_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/VGG_ILSVRC_16_layers.caffemodel")
set(voc-fcn32s_url "http://dl.caffe.berkeleyvision.org/fcn32s-heavy-pascal.caffemodel") set(voc-fcn32s_url "http://dl.caffe.berkeleyvision.org/fcn32s-heavy-pascal.caffemodel")
set(voc-fcn32s_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/fcn32s-heavy-pascal.caffemodel") set(voc-fcn32s_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/fcn32s-heavy-pascal.caffemodel")
set(Alexnet_url "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
set(Alexnet_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/bvlc_alexnet.caffemodel")
set(Alexnet_sha "9116a64c0fbe4459d18f4bb6b56d647b63920377")
set(Inception_url "https://github.com/petewarden/tf_ios_makefile_example/raw/master/data/tensorflow_inception_graph.pb")
set(Inception_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/tensorflow_inception_graph.pb")
set(Enet_url "https://www.dropbox.com/sh/dywzk3gyb12hpe5/AABoUwqQGWvClUu27Z1EWeu9a/model-best.net?dl=0")
set(Enet_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/Enet-model-best.net")
set(Fcn_url "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel")
set(Fcn_dst "$ENV{OPENCV_TEST_DATA_PATH}/dnn/fcn8s-heavy-pascal.caffemodel")
if(NOT model) if(NOT model)
set(model "GoogleNet") set(model "GoogleNet")
endif() endif()
......
...@@ -115,6 +115,7 @@ int main(int argc, char **argv) ...@@ -115,6 +115,7 @@ int main(int argc, char **argv)
} }
resize(img, img, Size(224, 224)); //GoogLeNet accepts only 224x224 RGB-images resize(img, img, Size(224, 224)); //GoogLeNet accepts only 224x224 RGB-images
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
dnn::Blob inputBlob = dnn::Blob::fromImages(img); //Convert Mat to dnn::Blob batch of images dnn::Blob inputBlob = dnn::Blob::fromImages(img); //Convert Mat to dnn::Blob batch of images
//! [Prepare blob] //! [Prepare blob]
......
...@@ -111,6 +111,7 @@ void BaseConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::v ...@@ -111,6 +111,7 @@ void BaseConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::v
if (!is1x1()) if (!is1x1())
{ {
colRowBlob.create(colRowBlobShape, input.type(), allocFlags); colRowBlob.create(colRowBlobShape, input.type(), allocFlags);
colRowBlob.setTo(0);
} }
} }
...@@ -250,11 +251,11 @@ void ConvolutionLayerImpl::im2row(const Mat &srcImg, Mat &dstRow) ...@@ -250,11 +251,11 @@ void ConvolutionLayerImpl::im2row(const Mat &srcImg, Mat &dstRow)
if (srcImg.type() == CV_32F) if (srcImg.type() == CV_32F)
im2row_CpuPBody<float>::run(srcImg.ptr<float>(), inpGroupCn, inpH, inpW, kernel.height, im2row_CpuPBody<float>::run(srcImg.ptr<float>(), inpGroupCn, inpH, inpW, kernel.height,
kernel.width, pad.height, pad.width, stride.height, stride.width, kernel.width, pad.height, pad.width, stride.height, stride.width,
dilation.height, dilation.width, outW, outH, colMat.ptr<float>()); dilation.height, dilation.width, outH, outW, colMat.ptr<float>());
if (srcImg.type() == CV_64F) if (srcImg.type() == CV_64F)
im2row_CpuPBody<double>::run(srcImg.ptr<double>(), inpGroupCn, inpH, inpW, kernel.height, im2row_CpuPBody<double>::run(srcImg.ptr<double>(), inpGroupCn, inpH, inpW, kernel.height,
kernel.width, pad.height, pad.width, stride.height, stride.width, kernel.width, pad.height, pad.width, stride.height, stride.width,
dilation.height, dilation.width, outW, outH, colMat.ptr<double>()); dilation.height, dilation.width, outH, outW, colMat.ptr<double>());
dstRow = colMat; dstRow = colMat;
} }
...@@ -268,11 +269,9 @@ void ConvolutionLayerImpl::im2row(const UMat &srcImg, UMat &dstCol) ...@@ -268,11 +269,9 @@ void ConvolutionLayerImpl::im2row(const UMat &srcImg, UMat &dstCol)
void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob) void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob)
{ {
BlobShape bs0 = blobs[0].shape(); CV_Assert(!bias || blobs[1].total() == (size_t)blobs[0].num());
BlobShape bs1 = blobs[1].shape();
CV_Assert(!bias || blobs[1].total() == (size_t)blobs[0].channels());
numOutput = blobs[0].channels(); numOutput = blobs[0].num();
inpH = inpBlob.rows(); inpH = inpBlob.rows();
inpW = inpBlob.cols(); inpW = inpBlob.cols();
...@@ -282,13 +281,13 @@ void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob) ...@@ -282,13 +281,13 @@ void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob)
outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width; outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width;
outCn = numOutput; outCn = numOutput;
group = inpCn / blobs[0].num(); group = inpCn / blobs[0].channels();
outGroupCn = outCn / group; outGroupCn = outCn / group;
inpGroupCn = inpCn / group; inpGroupCn = inpCn / group;
ksize = outGroupCn * kernel.height * kernel.width; ksize = outGroupCn * kernel.height * kernel.width;
CV_Assert(inpCn % group == 0 && outCn % group == 0); CV_Assert(inpCn % group == 0 && outCn % group == 0);
CV_Assert(blobs[0].channels() == outCn && blobs[0].num() == inpCn / group); CV_Assert(blobs[0].num() == outCn && blobs[0].channels() == inpCn / group);
colRowBlobShape = BlobShape(ksize, inpH * inpW); colRowBlobShape = BlobShape(ksize, inpH * inpW);
} }
......
...@@ -106,23 +106,23 @@ static XMat getPlane(XMat &m, int n, int cn) ...@@ -106,23 +106,23 @@ static XMat getPlane(XMat &m, int n, int cn)
void LRNLayerImpl::channelNoramlization(Blob &src, Blob &dst) void LRNLayerImpl::channelNoramlization(Blob &src, Blob &dst)
{ {
if (!useOpenCL) if (!useOpenCL)
channelNoramlization_<Mat>(src, dst); channelNormalization_<Mat>(src, dst);
else else
{ {
//channelNoramlization_ocl(src.getRefConst<UMat>(), dst.getRef<UMat>()); //consumes a lot of memory //channelNoramlization_ocl(src.getRefConst<UMat>(), dst.getRef<UMat>()); //consumes a lot of memory
channelNoramlization_<UMat>(src, dst); channelNormalization_<UMat>(src, dst);
} }
} }
template<typename XMat> template<typename XMat>
void LRNLayerImpl::channelNoramlization_(Blob &srcBlob, Blob &dstBlob) void LRNLayerImpl::channelNormalization_(Blob &srcBlob, Blob &dstBlob)
{ {
int num = srcBlob.num(); int num = srcBlob.num();
int channels = srcBlob.channels(); int channels = srcBlob.channels();
int ksize = (size - 1) / 2; int ksize = (size - 1) / 2;
int sizeNormFactor = normBySize ? size : 1; int sizeNormFactor = normBySize ? size : 1;
XMat srcMat = srcBlob.getRefConst<XMat>(); XMat srcMat = srcBlob.getRefConst<XMat>().clone();
XMat dstMat = dstBlob.getRef<XMat>(); XMat dstMat = dstBlob.getRef<XMat>();
for (int n = 0; n < num; n++) for (int n = 0; n < num; n++)
...@@ -156,7 +156,7 @@ void LRNLayerImpl::channelNoramlization_(Blob &srcBlob, Blob &dstBlob) ...@@ -156,7 +156,7 @@ void LRNLayerImpl::channelNoramlization_(Blob &srcBlob, Blob &dstBlob)
} }
} }
bool LRNLayerImpl::channelNoramlization_ocl(const UMat &src, UMat &dst) bool LRNLayerImpl::channelNormalization_ocl(const UMat &src, UMat &dst)
{ {
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
if (src.offset != 0 || dst.offset != 0) //TODO: add offset if (src.offset != 0 || dst.offset != 0) //TODO: add offset
......
...@@ -56,8 +56,8 @@ class LRNLayerImpl : public LRNLayer ...@@ -56,8 +56,8 @@ class LRNLayerImpl : public LRNLayer
void channelNoramlization(Blob &src, Blob &dst); void channelNoramlization(Blob &src, Blob &dst);
template<typename XMat> template<typename XMat>
void channelNoramlization_(Blob &src, Blob &dst); void channelNormalization_(Blob &src, Blob &dst);
bool channelNoramlization_ocl(const UMat &src, UMat &dst); bool channelNormalization_ocl(const UMat &src, UMat &dst);
void spatialNormalization(Blob &src, Blob &dst); void spatialNormalization(Blob &src, Blob &dst);
template<typename XMat> template<typename XMat>
...@@ -67,8 +67,8 @@ class LRNLayerImpl : public LRNLayer ...@@ -67,8 +67,8 @@ class LRNLayerImpl : public LRNLayer
public: public:
LRNLayerImpl(int type = CHANNEL_NRM, int size = 5, double alpha = 1, double beta = 0.75, double bias = 1, LRNLayerImpl(int type = CHANNEL_NRM, int size = 5, double alpha = 1,
bool normBySize = true); double beta = 0.75, double bias = 1, bool normBySize = true);
void allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs); void allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs); void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
}; };
......
...@@ -44,6 +44,7 @@ void MaxUnpoolLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> & ...@@ -44,6 +44,7 @@ void MaxUnpoolLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &
for(int i_n = 0; i_n < outputs.size(); i_n++) for(int i_n = 0; i_n < outputs.size(); i_n++)
{ {
Blob& outBlob = outputs[i_n]; Blob& outBlob = outputs[i_n];
outBlob.setTo(0);
CV_Assert(input.channels() == outBlob.channels()); CV_Assert(input.channels() == outBlob.channels());
for (int i_c = 0; i_c < input.channels(); i_c++) for (int i_c = 0; i_c < input.channels(); i_c++)
......
...@@ -73,7 +73,7 @@ void ReshapeLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou ...@@ -73,7 +73,7 @@ void ReshapeLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou
{ {
for (size_t i = 0; i < outputs.size(); i++) for (size_t i = 0; i < outputs.size(); i++)
{ {
Blob& srcBlob = *inputs[i]; Blob srcBlob = *inputs[i];
BlobShape inputShape = inputs[i]->shape(); BlobShape inputShape = inputs[i]->shape();
bool channelsReduced = inputShape.dims() > outShapes[i].dims() || bool channelsReduced = inputShape.dims() > outShapes[i].dims() ||
(inputShape.dims() == 4 && inputShape[1] > outShapes[i][1]); (inputShape.dims() == 4 && inputShape[1] > outShapes[i][1]);
......
...@@ -640,7 +640,7 @@ void TFImporter::populateNet(Net dstNet) ...@@ -640,7 +640,7 @@ void TFImporter::populateNet(Net dstNet)
if(hasLayerAttr(layer, "bias")) { if(hasLayerAttr(layer, "bias")) {
layerParams.set("bias", getLayerAttr(layer, "bias").f()); layerParams.set("bias", getLayerAttr(layer, "bias").f());
} }
layerParams.set("norm_sz", false); layerParams.set("norm_by_size", false);
int id = dstNet.addLayer(name, "LRN", layerParams); int id = dstNet.addLayer(name, "LRN", layerParams);
layer_id[name] = id; layer_id[name] = id;
......
...@@ -375,6 +375,7 @@ struct TorchImporter : public ::cv::dnn::Importer ...@@ -375,6 +375,7 @@ struct TorchImporter : public ::cv::dnn::Importer
int typeStorage = parseStorageType(className); int typeStorage = parseStorageType(className);
CV_Assert(typeStorage >= 0 && typeTensor == typeStorage); CV_Assert(typeStorage >= 0 && typeTensor == typeStorage);
readTorchStorage(indexStorage, typeStorage); readTorchStorage(indexStorage, typeStorage);
typeTensor = storages[indexStorage].type();
readedIndexes.insert(indexStorage); readedIndexes.insert(indexStorage);
} }
...@@ -723,7 +724,10 @@ struct TorchImporter : public ::cv::dnn::Importer ...@@ -723,7 +724,10 @@ struct TorchImporter : public ::cv::dnn::Importer
layerParams.set("adj_h", static_cast<int>(scalarParams.get<double>("adjH"))); layerParams.set("adj_h", static_cast<int>(scalarParams.get<double>("adjH")));
layerParams.set("num_output", static_cast<int>(scalarParams.get<double>("nOutputPlane"))); layerParams.set("num_output", static_cast<int>(scalarParams.get<double>("nOutputPlane")));
layerParams.blobs.push_back(tensorParams["weight"].second); Blob weights = tensorParams["weight"].second;
BlobShape shape = weights.shape(),
reorderedShape = BlobShape(shape[1], shape[0], shape[2], shape[3]);
layerParams.blobs.push_back(weights.reshape(reorderedShape));
bool bias = tensorParams.count("bias"); bool bias = tensorParams.count("bias");
layerParams.set("bias_term", bias); layerParams.set("bias_term", bias);
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if defined(ENABLE_CAFFE_MODEL_TESTS) && defined(ENABLE_CAFFE_ALEXNET_TEST) //AlexNet is disabled now
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static std::string _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/") + filename;
}
TEST(Reproducibility_AlexNet, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("bvlc_alexnet.prototxt"), _tf("bvlc_alexnet.caffemodel"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
std::vector<Mat> inpMats;
inpMats.push_back( imread(_tf("alexnet_0.png")) );
inpMats.push_back( imread(_tf("alexnet_1.png")) );
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
net.setBlob(".data", Blob(inpMats));
net.forward();
Blob out = net.getBlob("prob");
Blob ref = blobFromNPY(_tf("alexnet.npy"));
normAssert(ref, out, "prob");
}
}
#endif
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
//M*/ //M*/
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest namespace cvtest
{ {
...@@ -73,4 +74,69 @@ TEST(Test_Caffe, read_googlenet) ...@@ -73,4 +74,69 @@ TEST(Test_Caffe, read_googlenet)
} }
} }
#if defined(ENABLE_CAFFE_MODEL_TESTS)
#if defined(ENABLE_CAFFE_ALEXNET_TEST) //AlexNet is disabled now
TEST(Reproducibility_AlexNet, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("bvlc_alexnet.prototxt"), _tf("bvlc_alexnet.caffemodel"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
Size inputSize(227, 227);
if (sample.size() != inputSize)
resize(sample, sample, inputSize);
net.setBlob(".data", dnn::Blob::fromImages(sample));
net.forward();
Blob out = net.getBlob("prob");
Blob ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
normAssert(ref, out);
}
#endif
#if defined(ENABLE_CAFFE_FCN_TEST)
TEST(Reproducibility_FCN, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("fcn8s-heavy-pascal.prototxt"), _tf("fcn8s-heavy-pascal.caffemodel"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("street.png"));
ASSERT_TRUE(!sample.empty());
Size inputSize(500, 500);
if (sample.size() != inputSize)
resize(sample, sample, inputSize);
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
net.setBlob(".data", dnn::Blob::fromImages(sample));
net.forward();
Blob out = net.getBlob("score");
Blob ref = blobFromNPY(_tf("caffe_fcn8s_prob.npy"));
normAssert(ref, out);
}
#endif
#endif
} }
...@@ -9,7 +9,10 @@ ...@@ -9,7 +9,10 @@
Test for Tensorflow models loading Test for Tensorflow models loading
*/ */
#if defined(ENABLE_TF_INCEPTION_TESTS)
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest namespace cvtest
{ {
...@@ -32,7 +35,7 @@ TEST(Test_TensorFlow, read_inception) ...@@ -32,7 +35,7 @@ TEST(Test_TensorFlow, read_inception)
importer->populateNet(net); importer->populateNet(net);
} }
Mat sample = imread(_tf("grace_hopper.jpg")); Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty()); ASSERT_TRUE(!sample.empty());
Mat input; Mat input;
resize(sample, input, Size(224, 224)); resize(sample, input, Size(224, 224));
...@@ -47,4 +50,31 @@ TEST(Test_TensorFlow, read_inception) ...@@ -47,4 +50,31 @@ TEST(Test_TensorFlow, read_inception)
std::cout << out.dims() << std::endl; std::cout << out.dims() << std::endl;
} }
TEST(Test_TensorFlow, inception_accuracy)
{
Net net;
{
Ptr<Importer> importer = createTensorflowImporter(_tf("tensorflow_inception_graph.pb"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
resize(sample, sample, Size(224, 224));
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
dnn::Blob inputBlob = dnn::Blob::fromImages(sample);
net.setBlob(".input", inputBlob);
net.forward();
Blob out = net.getBlob("softmax2");
Blob ref = blobFromNPY(_tf("tf_inception_prob.npy"));
normAssert(ref, out);
}
} }
#endif
...@@ -42,6 +42,7 @@ ...@@ -42,6 +42,7 @@
#if defined(ENABLE_TORCH_IMPORTER) && ENABLE_TORCH_IMPORTER #if defined(ENABLE_TORCH_IMPORTER) && ENABLE_TORCH_IMPORTER
#if defined(ENABLE_TORCH_TESTS) && ENABLE_TORCH_TESTS #if defined(ENABLE_TORCH_TESTS) && ENABLE_TORCH_TESTS
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest namespace cvtest
{ {
...@@ -52,9 +53,13 @@ using namespace cv; ...@@ -52,9 +53,13 @@ using namespace cv;
using namespace cv::dnn; using namespace cv::dnn;
template<typename TStr> template<typename TStr>
static std::string _tf(TStr filename) static std::string _tf(TStr filename, bool inTorchDir = true)
{ {
return (getOpenCVExtraDir() + "/dnn/torch/") + filename; String path = getOpenCVExtraDir() + "/dnn/";
if (inTorchDir)
path += "torch/";
path += filename;
return path;
} }
TEST(Torch_Importer, simple_read) TEST(Torch_Importer, simple_read)
...@@ -82,6 +87,8 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary) ...@@ -82,6 +87,8 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary)
net.setBlob(".0", inp); net.setBlob(".0", inp);
net.forward(); net.forward();
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
Blob out = net.getBlob(outLayerName); Blob out = net.getBlob(outLayerName);
normAssert(outRef, out); normAssert(outRef, out);
...@@ -123,6 +130,37 @@ TEST(Torch_Importer, run_concat) ...@@ -123,6 +130,37 @@ TEST(Torch_Importer, run_concat)
runTorchNet("net_concat", "l2_torchMerge", false); runTorchNet("net_concat", "l2_torchMerge", false);
} }
TEST(Torch_Importer, run_deconv)
{
runTorchNet("net_deconv", "", false);
}
#if defined(ENABLE_TORCH_ENET_TESTS)
TEST(Torch_Importer, ENet_accuracy)
{
Net net;
{
Ptr<Importer> importer = createTorchImporter(_tf("Enet-model-best.net", false));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("street.png", false));
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
sample.convertTo(sample, CV_32F, 1/255.0);
dnn::Blob inputBlob = dnn::Blob::fromImages(sample);
net.setBlob("", inputBlob);
net.forward();
dnn::Blob out = net.getBlob(net.getLayerNames().back());
Blob ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
normAssert(ref, out);
}
#endif
} }
#endif #endif
#endif #endif
...@@ -65,3 +65,7 @@ net_concat:add(nn.ReLU()) ...@@ -65,3 +65,7 @@ net_concat:add(nn.ReLU())
net_concat:add(nn.Tanh()) net_concat:add(nn.Tanh())
net_concat:add(nn.Sigmoid()) net_concat:add(nn.Sigmoid())
save(net_concat, torch.rand(2, 6, 4, 3) - 0.5, 'net_concat') save(net_concat, torch.rand(2, 6, 4, 3) - 0.5, 'net_concat')
local net_deconv = nn.Sequential()
net_deconv:add(nn.SpatialFullConvolution(3, 9, 4, 5, 1, 2, 0, 1, 0, 1))
save(net_deconv, torch.rand(2, 3, 4, 3) - 0.5, 'net_deconv')
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment