Commit 9b55c04e authored by Muresan Mircea Paul's avatar Muresan Mircea Paul

I have put all the modules in the stereo namespace

changed the ptr<StereBinaryBM> to ptr<cv::stereo::StereoBinaryBM>

modified the documentation

modified documentation for the stereo_c

documentation

doc

fixed two issues

modfified the precomp.hpp header by explicitly adding the cvdef header from core

modified comments for documentation for stereo and removed some headers

added a header and modified some function definition

test

test 2

changed exports_w to exports

removed the correct matches module
parent 0d1fd8de
...@@ -47,218 +47,232 @@ ...@@ -47,218 +47,232 @@
#include "opencv2/core.hpp" #include "opencv2/core.hpp"
#include "opencv2/features2d.hpp" #include "opencv2/features2d.hpp"
#include "opencv2/core/affine.hpp" #include "opencv2/core/affine.hpp"
#include "opencv2/core/cvdef.h"
namespace cv
{
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
OutputArray newPoints1, OutputArray newPoints2 );
/** @brief Filters off small noise blobs (speckles) in the disparity map
@param img The input 16-bit signed disparity image
@param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
*/
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
int maxSpeckleSize, double maxDiff,
InputOutputArray buf = noArray() );
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) /**
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, @defgroup stereo Stereo Correspondance Algorithms
int minDisparity, int numberOfDisparities,
int SADWindowSize );
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
int minDisparity, int numberOfDisparities,
int disp12MaxDisp = 1 );
/** @brief The base class for stereo correspondence algorithms.
*/ */
class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
enum { DISP_SHIFT = 4,
DISP_SCALE = (1 << DISP_SHIFT)
};
/** @brief Computes disparity map for the specified stereo pair
@param left Left 8-bit single-channel image.
@param right Right image of the same size and the same type as the left one.
@param disparity Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
*/
CV_WRAP virtual void compute( InputArray left, InputArray right,
OutputArray disparity ) = 0;
CV_WRAP virtual int getMinDisparity() const = 0;
CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
CV_WRAP virtual int getNumDisparities() const = 0;
CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
CV_WRAP virtual int getBlockSize() const = 0;
CV_WRAP virtual void setBlockSize(int blockSize) = 0;
CV_WRAP virtual int getSpeckleWindowSize() const = 0; namespace cv
CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
CV_WRAP virtual int getSpeckleRange() const = 0;
CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
CV_WRAP virtual int getDisp12MaxDiff() const = 0;
CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
*/
class CV_EXPORTS_W StereoBinaryBM : public StereoMatcher
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
PREFILTER_XSOBEL = 1
};
CV_WRAP virtual int getPreFilterType() const = 0;
CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
CV_WRAP virtual int getPreFilterSize() const = 0;
CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
CV_WRAP virtual int getPreFilterCap() const = 0;
CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
CV_WRAP virtual int getTextureThreshold() const = 0;
CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
CV_WRAP virtual int getUniquenessRatio() const = 0;
CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
CV_WRAP virtual int getSmallerBlockSize() const = 0;
CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
CV_WRAP virtual Rect getROI1() const = 0;
CV_WRAP virtual void setROI1(Rect roi1) = 0;
CV_WRAP virtual Rect getROI2() const = 0;
CV_WRAP virtual void setROI2(Rect roi2) = 0;
/** @brief Creates StereoBM object
@param numDisparities the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.
The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
*/
CV_WRAP static Ptr<StereoBinaryBM> create(int numDisparities = 0, int blockSize = 21);
};
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:
- By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).
@note
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
at opencv_source_code/samples/python2/stereo_match.py
*/
class CV_EXPORTS_W StereoBinarySGBM : public StereoMatcher
{ {
public: namespace stereo
enum {
{
MODE_SGBM = 0, //! @addtogroup stereo
MODE_HH = 1 //! @{
}; // void correctMatches( InputArray F, InputArray points1, InputArray points2,
// OutputArray newPoints1, OutputArray newPoints2 );
CV_WRAP virtual int getPreFilterCap() const = 0;
CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; /** @brief Filters off small noise blobs (speckles) in the disparity map
CV_WRAP virtual int getUniquenessRatio() const = 0; @param img The input 16-bit signed disparity image
CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; @param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
CV_WRAP virtual int getP1() const = 0; affected by the algorithm
CV_WRAP virtual void setP1(int P1) = 0; @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
CV_WRAP virtual int getP2() const = 0; disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
CV_WRAP virtual void setP2(int P2) = 0; account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
CV_WRAP virtual int getMode() const = 0; */
CV_WRAP virtual void setMode(int mode) = 0; void filterSpeckles( InputOutputArray img, double newVal,
int maxSpeckleSize, double maxDiff,
/** @brief Creates StereoSGBM object InputOutputArray buf = noArray() );
@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. Rect getValidDisparityROI( Rect roi1, Rect roi2,
@param numDisparities Maximum disparity minus minimum disparity. The value is always greater than int minDisparity, int numberOfDisparities,
zero. In the current implementation, this parameter must be divisible by 16. int SADWindowSize );
@param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
somewhere in the 3..11 range. //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
@param P1 The first parameter controlling the disparity smoothness. See below. void validateDisparity( InputOutputArray disparity, InputArray cost,
@param P2 The second parameter controlling the disparity smoothness. The larger the values are, int minDisparity, int numberOfDisparities,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 int disp12MaxDisp = 1 );
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good /** @brief The base class for stereo correspondence algorithms.
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and */
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). class StereoMatcher : public Algorithm
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right {
disparity check. Set it to a non-positive value to disable the check. public:
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first enum { DISP_SHIFT = 4,
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. DISP_SCALE = (1 << DISP_SHIFT)
The result values are passed to the Birchfield-Tomasi pixel cost function. };
@param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value /** @brief Computes disparity map for the specified stereo pair
within the 5-15 range is good enough.
@param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles @param left Left 8-bit single-channel image.
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the @param right Right image of the same size and the same type as the left one.
50-200 range. @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
@param speckleRange Maximum disparity variation within each connected component. If you do speckle like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
Normally, 1 or 2 is good enough. */
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming virtual void compute( InputArray left, InputArray right,
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and OutputArray disparity ) = 0;
huge for HD-size pictures. By default, it is set to false .
virtual int getMinDisparity() const = 0;
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to virtual void setMinDisparity(int minDisparity) = 0;
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value. virtual int getNumDisparities() const = 0;
*/ virtual void setNumDisparities(int numDisparities) = 0;
CV_WRAP static Ptr<StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, virtual int getBlockSize() const = 0;
int preFilterCap = 0, int uniquenessRatio = 0, virtual void setBlockSize(int blockSize) = 0;
int speckleWindowSize = 0, int speckleRange = 0,
int mode = StereoBinarySGBM::MODE_SGBM); virtual int getSpeckleWindowSize() const = 0;
}; virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
virtual int getSpeckleRange() const = 0;
virtual void setSpeckleRange(int speckleRange) = 0;
virtual int getDisp12MaxDiff() const = 0;
virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
*/
class StereoBinaryBM : public StereoMatcher
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
PREFILTER_XSOBEL = 1
};
virtual int getPreFilterType() const = 0;
virtual void setPreFilterType(int preFilterType) = 0;
virtual int getPreFilterSize() const = 0;
virtual void setPreFilterSize(int preFilterSize) = 0;
virtual int getPreFilterCap() const = 0;
virtual void setPreFilterCap(int preFilterCap) = 0;
virtual int getTextureThreshold() const = 0;
virtual void setTextureThreshold(int textureThreshold) = 0;
virtual int getUniquenessRatio() const = 0;
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
virtual int getSmallerBlockSize() const = 0;
virtual void setSmallerBlockSize(int blockSize) = 0;
virtual Rect getROI1() const = 0;
virtual void setROI1(Rect roi1) = 0;
virtual Rect getROI2() const = 0;
virtual void setROI2(Rect roi2) = 0;
/** @brief Creates StereoBM object
@param numDisparities the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.
The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
*/
CV_EXPORTS static Ptr< cv::stereo::StereoBinaryBM > create(int numDisparities = 0, int blockSize = 21);
};
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:
- By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).
@note
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
at opencv_source_code/samples/python2/stereo_match.py
*/
class StereoBinarySGBM : public StereoMatcher
{
public:
enum
{
MODE_SGBM = 0,
MODE_HH = 1
};
virtual int getPreFilterCap() const = 0;
virtual void setPreFilterCap(int preFilterCap) = 0;
virtual int getUniquenessRatio() const = 0;
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
virtual int getP1() const = 0;
virtual void setP1(int P1) = 0;
virtual int getP2() const = 0;
virtual void setP2(int P2) = 0;
virtual int getMode() const = 0;
virtual void setMode(int mode) = 0;
/** @brief Creates StereoSGBM object
@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
@param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
zero. In the current implementation, this parameter must be divisible by 16.
@param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
somewhere in the 3..11 range.
@param P1 The first parameter controlling the disparity smoothness. See below.
@param P2 The second parameter controlling the disparity smoothness. The larger the values are,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
The result values are passed to the Birchfield-Tomasi pixel cost function.
@param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.
@param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
50-200 range.
@param speckleRange Maximum disparity variation within each connected component. If you do speckle
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
Normally, 1 or 2 is good enough.
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
huge for HD-size pictures. By default, it is set to false .
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value.
*/
CV_EXPORTS static Ptr<cv::stereo::StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
int preFilterCap = 0, int uniquenessRatio = 0,
int speckleWindowSize = 0, int speckleRange = 0,
int mode = StereoBinarySGBM::MODE_SGBM);
};
//! @}
}//sterep
} // cv } // cv
#ifndef DISABLE_OPENCV_24_COMPATIBILITY #ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/calib3d/calib3d_c.h" #include "opencv2/stereo/stereo_c.h"
#endif #endif
#endif #endif
...@@ -46,3 +46,4 @@ ...@@ -46,3 +46,4 @@
#endif #endif
#include "opencv2/stereo.hpp" #include "opencv2/stereo.hpp"
...@@ -52,17 +52,14 @@ extern "C" { ...@@ -52,17 +52,14 @@ extern "C" {
/** @addtogroup stereo_c /** @addtogroup stereo_c
@{ @{
*/ **/
/****************************************************************************************\ //! stereo correspondence parameters and functions
* Stereo *
\****************************************************************************************/
/* stereo correspondence parameters and functions */
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0 #define CV_STEREO_BM_NORMALIZED_RESPONSE 0
#define CV_STEREO_BM_XSOBEL 1 #define CV_STEREO_BM_XSOBEL 1
/* Block matching algorithm structure */ //! Block matching algorithm structure
typedef struct CvStereoBinaryBMState typedef struct CvStereoBinaryBMState
{ {
// pre-filtering (normalization of input images) // pre-filtering (normalization of input images)
...@@ -109,14 +106,15 @@ CVAPI(void) cvReleaseStereoBinaryBMState( CvStereoBinaryBMState** state ); ...@@ -109,14 +106,15 @@ CVAPI(void) cvReleaseStereoBinaryBMState( CvStereoBinaryBMState** state );
CVAPI(void) cvFindStereoCorrespondenceBinaryBM( const CvArr* left, const CvArr* right, CVAPI(void) cvFindStereoCorrespondenceBinaryBM( const CvArr* left, const CvArr* right,
CvArr* disparity, CvStereoBinaryBMState* state ); CvArr* disparity, CvStereoBinaryBMState* state );
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, CVAPI(CvRect) cvStereoBinaryGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize ); int numberOfDisparities, int SADWindowSize );
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, CVAPI(void) cvStereoBinaryValidateDisparity( CvArr* disparity, const CvArr* cost,
int minDisparity, int numberOfDisparities, int minDisparity, int numberOfDisparities,
int disp12MaxDiff CV_DEFAULT(1) ); int disp12MaxDiff CV_DEFAULT(1) );
/** @} stereo_c */
#ifdef __cplusplus #ifdef __cplusplus
} // extern "C" } // extern "C"
#endif #endif
#endif /* __OPENCV_STEREO_C_H__ */ #endif /* __OPENCV_STEREO_C_H__ */
...@@ -92,7 +92,7 @@ void cvFindStereoCorrespondenceBinaryBM( const CvArr* leftarr, const CvArr* righ ...@@ -92,7 +92,7 @@ void cvFindStereoCorrespondenceBinaryBM( const CvArr* leftarr, const CvArr* righ
CV_Assert( state != 0 ); CV_Assert( state != 0 );
cv::Ptr<cv::StereoBinaryBM> sm = cv::StereoBinaryBM::create(state->numberOfDisparities, cv::Ptr<cv::stereo::StereoBinaryBM> sm = cv::stereo::StereoBinaryBM::create(state->numberOfDisparities,
state->SADWindowSize); state->SADWindowSize);
sm->setPreFilterType(state->preFilterType); sm->setPreFilterType(state->preFilterType);
sm->setPreFilterSize(state->preFilterSize); sm->setPreFilterSize(state->preFilterSize);
...@@ -108,17 +108,18 @@ void cvFindStereoCorrespondenceBinaryBM( const CvArr* leftarr, const CvArr* righ ...@@ -108,17 +108,18 @@ void cvFindStereoCorrespondenceBinaryBM( const CvArr* leftarr, const CvArr* righ
sm->compute(left, right, disp); sm->compute(left, right, disp);
} }
CvRect cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, CvRect cvStereoBinaryGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize ) int numberOfDisparities, int SADWindowSize )
{ {
return (CvRect)cv::getValidDisparityROI( roi1, roi2, minDisparity, return (CvRect)cv::stereo::getValidDisparityROI( roi1, roi2, minDisparity,
numberOfDisparities, SADWindowSize ); numberOfDisparities, SADWindowSize );
} }
void cvValidateDisparity( CvArr* _disp, const CvArr* _cost, int minDisparity, void cvStereoBinaryValidateDisparity( CvArr* _disp, const CvArr* _cost, int minDisparity,
int numberOfDisparities, int disp12MaxDiff ) int numberOfDisparities, int disp12MaxDiff )
{ {
cv::Mat disp = cv::cvarrToMat(_disp), cost = cv::cvarrToMat(_cost); cv::Mat disp = cv::cvarrToMat(_disp), cost = cv::cvarrToMat(_cost);
cv::validateDisparity( disp, cost, minDisparity, numberOfDisparities, disp12MaxDiff ); cv::stereo::validateDisparity( disp, cost, minDisparity, numberOfDisparities, disp12MaxDiff );
} }
...@@ -45,9 +45,10 @@ ...@@ -45,9 +45,10 @@
#include "opencv2/stereo.hpp" #include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp" #include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp" #include "opencv2/features2d.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp" #include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp" #include "opencv2/core/private.hpp"
#include "opencv2/core.hpp" #include "opencv2/core/cvdef.h"
#include "opencv2/highgui.hpp" #include "opencv2/highgui.hpp"
#include <algorithm> #include <algorithm>
......
...@@ -51,686 +51,687 @@ ...@@ -51,686 +51,687 @@
namespace cv namespace cv
{ {
namespace stereo
struct StereoBinaryBMParams
{ {
StereoBinaryBMParams(int _numDisparities = 64, int _SADWindowSize = 9) struct StereoBinaryBMParams
{ {
preFilterType = StereoBinaryBM::PREFILTER_XSOBEL; StereoBinaryBMParams(int _numDisparities = 64, int _SADWindowSize = 9)
preFilterSize = 9; {
preFilterCap = 31; preFilterType = StereoBinaryBM::PREFILTER_XSOBEL;
SADWindowSize = _SADWindowSize; preFilterSize = 9;
minDisparity = 0; preFilterCap = 31;
numDisparities = _numDisparities > 0 ? _numDisparities : 64; SADWindowSize = _SADWindowSize;
textureThreshold = 10; minDisparity = 0;
uniquenessRatio = 15; numDisparities = _numDisparities > 0 ? _numDisparities : 64;
speckleRange = speckleWindowSize = 0; textureThreshold = 10;
roi1 = roi2 = Rect(0, 0, 0, 0); uniquenessRatio = 15;
disp12MaxDiff = -1; speckleRange = speckleWindowSize = 0;
dispType = CV_16S; roi1 = roi2 = Rect(0, 0, 0, 0);
} disp12MaxDiff = -1;
dispType = CV_16S;
int preFilterType; }
int preFilterSize;
int preFilterCap;
int SADWindowSize;
int minDisparity;
int numDisparities;
int textureThreshold;
int uniquenessRatio;
int speckleRange;
int speckleWindowSize;
Rect roi1, roi2;
int disp12MaxDiff;
int dispType;
};
static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf)
{
int x, y, wsz2 = winsize / 2;
int* vsum = (int*)alignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32);
int scale_g = winsize*winsize / 8, scale_s = (1024 + scale_g) / (scale_g * 2);
const int OFS = 256 * 5, TABSZ = OFS * 2 + 256;
uchar tab[TABSZ];
const uchar* sptr = src.ptr();
int srcstep = (int)src.step;
Size size = src.size();
scale_g *= scale_s;
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero);
for (x = 0; x < size.width; x++)
vsum[x] = (ushort)(sptr[x] * (wsz2 + 2));
for (y = 1; y < wsz2; y++) int preFilterType;
int preFilterSize;
int preFilterCap;
int SADWindowSize;
int minDisparity;
int numDisparities;
int textureThreshold;
int uniquenessRatio;
int speckleRange;
int speckleWindowSize;
Rect roi1, roi2;
int disp12MaxDiff;
int dispType;
};
static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf)
{ {
for (x = 0; x < size.width; x++) int x, y, wsz2 = winsize / 2;
vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]); int* vsum = (int*)alignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32);
} int scale_g = winsize*winsize / 8, scale_s = (1024 + scale_g) / (scale_g * 2);
const int OFS = 256 * 5, TABSZ = OFS * 2 + 256;
uchar tab[TABSZ];
const uchar* sptr = src.ptr();
int srcstep = (int)src.step;
Size size = src.size();
for (y = 0; y < size.height; y++) scale_g *= scale_s;
{
const uchar* top = sptr + srcstep*MAX(y - wsz2 - 1, 0); for (x = 0; x < TABSZ; x++)
const uchar* bottom = sptr + srcstep*MIN(y + wsz2, size.height - 1); tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero);
const uchar* prev = sptr + srcstep*MAX(y - 1, 0);
const uchar* curr = sptr + srcstep*y;
const uchar* next = sptr + srcstep*MIN(y + 1, size.height - 1);
uchar* dptr = dst.ptr<uchar>(y);
for (x = 0; x < size.width; x++) for (x = 0; x < size.width; x++)
vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]); vsum[x] = (ushort)(sptr[x] * (wsz2 + 2));
for (x = 0; x <= wsz2; x++) for (y = 1; y < wsz2; y++)
{ {
vsum[-x - 1] = vsum[0]; for (x = 0; x < size.width; x++)
vsum[size.width + x] = vsum[size.width - 1]; vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]);
} }
int sum = vsum[0] * (wsz2 + 1); for (y = 0; y < size.height; y++)
for (x = 1; x <= wsz2; x++) {
sum += vsum[x]; const uchar* top = sptr + srcstep*MAX(y - wsz2 - 1, 0);
const uchar* bottom = sptr + srcstep*MIN(y + wsz2, size.height - 1);
const uchar* prev = sptr + srcstep*MAX(y - 1, 0);
const uchar* curr = sptr + srcstep*y;
const uchar* next = sptr + srcstep*MIN(y + 1, size.height - 1);
uchar* dptr = dst.ptr<uchar>(y);
int val = ((curr[0] * 5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10; for (x = 0; x < size.width; x++)
dptr[0] = tab[val + OFS]; vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]);
for (x = 0; x <= wsz2; x++)
{
vsum[-x - 1] = vsum[0];
vsum[size.width + x] = vsum[size.width - 1];
}
int sum = vsum[0] * (wsz2 + 1);
for (x = 1; x <= wsz2; x++)
sum += vsum[x];
int val = ((curr[0] * 5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10;
dptr[0] = tab[val + OFS];
for (x = 1; x < size.width - 1; x++)
{
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1];
val = ((curr[x] * 4 + curr[x - 1] + curr[x + 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS];
}
for (x = 1; x < size.width - 1; x++)
{
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1]; sum += vsum[x + wsz2] - vsum[x - wsz2 - 1];
val = ((curr[x] * 4 + curr[x - 1] + curr[x + 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; val = ((curr[x] * 5 + curr[x - 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS]; dptr[x] = tab[val + OFS];
} }
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1];
val = ((curr[x] * 5 + curr[x - 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS];
} }
}
static void static void
prefilterXSobel(const Mat& src, Mat& dst, int ftzero) prefilterXSobel(const Mat& src, Mat& dst, int ftzero)
{ {
int x, y; int x, y;
const int OFS = 256 * 4, TABSZ = OFS * 2 + 256; const int OFS = 256 * 4, TABSZ = OFS * 2 + 256;
uchar tab[TABSZ]; uchar tab[TABSZ];
Size size = src.size(); Size size = src.size();
for (x = 0; x < TABSZ; x++) for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero); tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero);
uchar val0 = tab[0 + OFS]; uchar val0 = tab[0 + OFS];
#if CV_SSE2 #if CV_SSE2
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2); volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif #endif
for (y = 0; y < size.height - 1; y += 2) for (y = 0; y < size.height - 1; y += 2)
{ {
const uchar* srow1 = src.ptr<uchar>(y); const uchar* srow1 = src.ptr<uchar>(y);
const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1; const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1;
const uchar* srow2 = y < size.height - 1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1; const uchar* srow2 = y < size.height - 1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1;
const uchar* srow3 = y < size.height - 2 ? srow1 + src.step * 2 : srow1; const uchar* srow3 = y < size.height - 2 ? srow1 + src.step * 2 : srow1;
uchar* dptr0 = dst.ptr<uchar>(y); uchar* dptr0 = dst.ptr<uchar>(y);
uchar* dptr1 = dptr0 + dst.step; uchar* dptr1 = dptr0 + dst.step;
dptr0[0] = dptr0[size.width - 1] = dptr1[0] = dptr1[size.width - 1] = val0; dptr0[0] = dptr0[size.width - 1] = dptr1[0] = dptr1[size.width - 1] = val0;
x = 1; x = 1;
#if CV_SSE2 #if CV_SSE2
if (useSIMD) if (useSIMD)
{
__m128i z = _mm_setzero_si128(), ftz = _mm_set1_epi16((short)ftzero),
ftz2 = _mm_set1_epi8(cv::saturate_cast<uchar>(ftzero * 2));
for (; x <= size.width - 9; x += 8)
{ {
__m128i c0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x - 1)), z); __m128i z = _mm_setzero_si128(), ftz = _mm_set1_epi16((short)ftzero),
__m128i c1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x - 1)), z); ftz2 = _mm_set1_epi8(cv::saturate_cast<uchar>(ftzero * 2));
__m128i d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x + 1)), z); for (; x <= size.width - 9; x += 8)
__m128i d1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x + 1)), z); {
__m128i c0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x - 1)), z);
__m128i c1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x - 1)), z);
__m128i d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x + 1)), z);
__m128i d1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x + 1)), z);
d0 = _mm_sub_epi16(d0, c0); d0 = _mm_sub_epi16(d0, c0);
d1 = _mm_sub_epi16(d1, c1); d1 = _mm_sub_epi16(d1, c1);
__m128i c2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x - 1)), z); __m128i c2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x - 1)), z);
__m128i c3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x - 1)), z); __m128i c3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x - 1)), z);
__m128i d2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x + 1)), z); __m128i d2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x + 1)), z);
__m128i d3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x + 1)), z); __m128i d3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x + 1)), z);
d2 = _mm_sub_epi16(d2, c2); d2 = _mm_sub_epi16(d2, c2);
d3 = _mm_sub_epi16(d3, c3); d3 = _mm_sub_epi16(d3, c3);
__m128i v0 = _mm_add_epi16(d0, _mm_add_epi16(d2, _mm_add_epi16(d1, d1))); __m128i v0 = _mm_add_epi16(d0, _mm_add_epi16(d2, _mm_add_epi16(d1, d1)));
__m128i v1 = _mm_add_epi16(d1, _mm_add_epi16(d3, _mm_add_epi16(d2, d2))); __m128i v1 = _mm_add_epi16(d1, _mm_add_epi16(d3, _mm_add_epi16(d2, d2)));
v0 = _mm_packus_epi16(_mm_add_epi16(v0, ftz), _mm_add_epi16(v1, ftz)); v0 = _mm_packus_epi16(_mm_add_epi16(v0, ftz), _mm_add_epi16(v1, ftz));
v0 = _mm_min_epu8(v0, ftz2); v0 = _mm_min_epu8(v0, ftz2);
_mm_storel_epi64((__m128i*)(dptr0 + x), v0); _mm_storel_epi64((__m128i*)(dptr0 + x), v0);
_mm_storel_epi64((__m128i*)(dptr1 + x), _mm_unpackhi_epi64(v0, v0)); _mm_storel_epi64((__m128i*)(dptr1 + x), _mm_unpackhi_epi64(v0, v0));
}
} }
}
#endif #endif
for (; x < size.width - 1; x++) for (; x < size.width - 1; x++)
{ {
int d0 = srow0[x + 1] - srow0[x - 1], d1 = srow1[x + 1] - srow1[x - 1], int d0 = srow0[x + 1] - srow0[x - 1], d1 = srow1[x + 1] - srow1[x - 1],
d2 = srow2[x + 1] - srow2[x - 1], d3 = srow3[x + 1] - srow3[x - 1]; d2 = srow2[x + 1] - srow2[x - 1], d3 = srow3[x + 1] - srow3[x - 1];
int v0 = tab[d0 + d1 * 2 + d2 + OFS]; int v0 = tab[d0 + d1 * 2 + d2 + OFS];
int v1 = tab[d1 + d2 * 2 + d3 + OFS]; int v1 = tab[d1 + d2 * 2 + d3 + OFS];
dptr0[x] = (uchar)v0; dptr0[x] = (uchar)v0;
dptr1[x] = (uchar)v1; dptr1[x] = (uchar)v1;
}
} }
}
for (; y < size.height; y++) for (; y < size.height; y++)
{
uchar* dptr = dst.ptr<uchar>(y);
for (x = 0; x < size.width; x++)
dptr[x] = val0;
}
}
static const int DISPARITY_SHIFT = 4;
static void
findStereoCorrespondenceBM(const Mat& left, const Mat& right,
Mat& disp, Mat& cost, const StereoBinaryBMParams& state,
uchar* buf, int _dy0, int _dy1)
{
const int ALIGN = 16;
int x, y, d;
int wsz = state.SADWindowSize, wsz2 = wsz / 2;
int dy0 = MIN(_dy0, wsz2 + 1), dy1 = MIN(_dy1, wsz2 + 1);
int ndisp = state.numDisparities;
int mindisp = state.minDisparity;
int lofs = MAX(ndisp - 1 + mindisp, 0);
int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left.cols, height = left.rows;
int width1 = width - rofs - ndisp + 1;
int ftzero = state.preFilterCap;
int textureThreshold = state.textureThreshold;
int uniquenessRatio = state.uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
int *sad, *hsad0, *hsad, *hsad_sub, *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left.ptr() + lofs;
const uchar* rptr0 = right.ptr() + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = disp.ptr<short>();
int sstep = (int)left.step;
int dstep = (int)(disp.step / sizeof(dptr[0]));
int cstep = (height + dy0 + dy1)*ndisp;
int costbuf = 0;
int coststep = cost.data ? (int)(cost.step / sizeof(costbuf)) : 0;
const int TABSZ = 256;
uchar tab[TABSZ];
sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN);
hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
htext = (int*)alignPtr((int*)(hsad0 + (height + dy1)*ndisp) + wsz2 + 2, ALIGN);
cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)std::abs(x - ftzero);
// initialize buffers
memset(hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]));
memset(htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]));
for (x = -wsz2 - 1; x < wsz2; x++)
{
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
lptr = lptr0 + std::min(std::max(x, -lofs), width - lofs - 1) - dy0*sstep;
rptr = rptr0 + std::min(std::max(x, -rofs), width - rofs - 1) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep)
{ {
int lval = lptr[0]; uchar* dptr = dst.ptr<uchar>(y);
for (d = 0; d < ndisp; d++) for (x = 0; x < size.width; x++)
{ dptr[x] = val0;
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (int)(hsad[d] + diff);
}
htext[y] += tab[lval];
} }
} }
// initialize the left and right borders of the disparity map static const int DISPARITY_SHIFT = 4;
for (y = 0; y < height; y++)
{
for (x = 0; x < lofs; x++)
dptr[y*dstep + x] = FILTERED;
for (x = lofs + width1; x < width; x++)
dptr[y*dstep + x] = FILTERED;
}
dptr += lofs;
for (x = 0; x < width1; x++, dptr++) static void
findStereoCorrespondenceBM(const Mat& left, const Mat& right,
Mat& disp, Mat& cost, const StereoBinaryBMParams& state,
uchar* buf, int _dy0, int _dy1)
{ {
int* costptr = cost.data ? cost.ptr<int>() + lofs + x : &costbuf; const int ALIGN = 16;
int x0 = x - wsz2 - 1, x1 = x + wsz2; int x, y, d;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; int wsz = state.SADWindowSize, wsz2 = wsz / 2;
cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; int dy0 = MIN(_dy0, wsz2 + 1), dy1 = MIN(_dy1, wsz2 + 1);
hsad = hsad0 - dy0*ndisp; int ndisp = state.numDisparities;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width - 1 - lofs) - dy0*sstep; int mindisp = state.minDisparity;
lptr = lptr0 + MIN(MAX(x1, -lofs), width - 1 - lofs) - dy0*sstep; int lofs = MAX(ndisp - 1 + mindisp, 0);
rptr = rptr0 + MIN(MAX(x1, -rofs), width - 1 - rofs) - dy0*sstep; int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left.cols, height = left.rows;
for (y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, int width1 = width - rofs - ndisp + 1;
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep) int ftzero = state.preFilterCap;
int textureThreshold = state.textureThreshold;
int uniquenessRatio = state.uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
int *sad, *hsad0, *hsad, *hsad_sub, *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left.ptr() + lofs;
const uchar* rptr0 = right.ptr() + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = disp.ptr<short>();
int sstep = (int)left.step;
int dstep = (int)(disp.step / sizeof(dptr[0]));
int cstep = (height + dy0 + dy1)*ndisp;
int costbuf = 0;
int coststep = cost.data ? (int)(cost.step / sizeof(costbuf)) : 0;
const int TABSZ = 256;
uchar tab[TABSZ];
sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN);
hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
htext = (int*)alignPtr((int*)(hsad0 + (height + dy1)*ndisp) + wsz2 + 2, ALIGN);
cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)std::abs(x - ftzero);
// initialize buffers
memset(hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]));
memset(htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]));
for (x = -wsz2 - 1; x < wsz2; x++)
{ {
int lval = lptr[0]; hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
for (d = 0; d < ndisp; d++) lptr = lptr0 + std::min(std::max(x, -lofs), width - lofs - 1) - dy0*sstep;
rptr = rptr0 + std::min(std::max(x, -rofs), width - rofs - 1) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep)
{ {
int diff = std::abs(lval - rptr[d]); int lval = lptr[0];
cbuf[d] = (uchar)diff; for (d = 0; d < ndisp; d++)
hsad[d] = hsad[d] + diff - cbuf_sub[d]; {
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (int)(hsad[d] + diff);
}
htext[y] += tab[lval];
} }
htext[y] += tab[lval] - tab[lptr_sub[0]];
} }
// fill borders // initialize the left and right borders of the disparity map
for (y = dy1; y <= wsz2; y++) for (y = 0; y < height; y++)
htext[height + y] = htext[height + dy1 - 1];
for (y = -wsz2 - 1; y < -dy0; y++)
htext[y] = htext[-dy0];
// initialize sums
int tsum = 0;
{ {
for (d = 0; d < ndisp; d++) for (x = 0; x < lofs; x++)
sad[d] = (int)(hsad0[d - ndisp*dy0] * (wsz2 + 2 - dy0)); dptr[y*dstep + x] = FILTERED;
for (x = lofs + width1; x < width; x++)
hsad = hsad0 + (1 - dy0)*ndisp; dptr[y*dstep + x] = FILTERED;
for (y = 1 - dy0; y < wsz2; y++, hsad += ndisp)
for (d = 0; d < ndisp; d++)
sad[d] = (int)(sad[d] + hsad[d]);
for (y = -wsz2 - 1; y < wsz2; y++)
tsum += htext[y];
} }
// finally, start the real processing dptr += lofs;
for (x = 0; x < width1; x++, dptr++)
{ {
for (y = 0; y < height; y++) int* costptr = cost.data ? cost.ptr<int>() + lofs + x : &costbuf;
int x0 = x - wsz2 - 1, x1 = x + wsz2;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
hsad = hsad0 - dy0*ndisp;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width - 1 - lofs) - dy0*sstep;
lptr = lptr0 + MIN(MAX(x1, -lofs), width - 1 - lofs) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x1, -rofs), width - 1 - rofs) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep)
{ {
int minsad = INT_MAX, mind = -1; int lval = lptr[0];
hsad = hsad0 + MIN(y + wsz2, height + dy1 - 1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
for (d = 0; d < ndisp; d++) for (d = 0; d < ndisp; d++)
{ {
int currsad = sad[d] + hsad[d] - hsad_sub[d]; int diff = std::abs(lval - rptr[d]);
sad[d] = currsad; cbuf[d] = (uchar)diff;
if (currsad < minsad) hsad[d] = hsad[d] + diff - cbuf_sub[d];
{
minsad = currsad;
mind = d;
}
} }
htext[y] += tab[lval] - tab[lptr_sub[0]];
}
tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; // fill borders
if (tsum < textureThreshold) for (y = dy1; y <= wsz2; y++)
{ htext[height + y] = htext[height + dy1 - 1];
dptr[y*dstep] = FILTERED; for (y = -wsz2 - 1; y < -dy0; y++)
continue; htext[y] = htext[-dy0];
}
if (uniquenessRatio > 0) // initialize sums
int tsum = 0;
{
for (d = 0; d < ndisp; d++)
sad[d] = (int)(hsad0[d - ndisp*dy0] * (wsz2 + 2 - dy0));
hsad = hsad0 + (1 - dy0)*ndisp;
for (y = 1 - dy0; y < wsz2; y++, hsad += ndisp)
for (d = 0; d < ndisp; d++)
sad[d] = (int)(sad[d] + hsad[d]);
for (y = -wsz2 - 1; y < wsz2; y++)
tsum += htext[y];
}
// finally, start the real processing
{
for (y = 0; y < height; y++)
{ {
int thresh = minsad + (minsad * uniquenessRatio / 100); int minsad = INT_MAX, mind = -1;
hsad = hsad0 + MIN(y + wsz2, height + dy1 - 1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
for (d = 0; d < ndisp; d++) for (d = 0; d < ndisp; d++)
{ {
if ((d < mind - 1 || d > mind + 1) && sad[d] <= thresh) int currsad = sad[d] + hsad[d] - hsad_sub[d];
break; sad[d] = currsad;
if (currsad < minsad)
{
minsad = currsad;
mind = d;
}
} }
if (d < ndisp)
tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
if (tsum < textureThreshold)
{ {
dptr[y*dstep] = FILTERED; dptr[y*dstep] = FILTERED;
continue; continue;
} }
}
{ if (uniquenessRatio > 0)
sad[-1] = sad[1]; {
sad[ndisp] = sad[ndisp - 2]; int thresh = minsad + (minsad * uniquenessRatio / 100);
int p = sad[mind + 1], n = sad[mind - 1]; for (d = 0; d < ndisp; d++)
d = p + n - 2 * sad[mind] + std::abs(p - n); {
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp) * 256 + (d != 0 ? (p - n) * 256 / d : 0) + 15) >> 4); if ((d < mind - 1 || d > mind + 1) && sad[d] <= thresh)
costptr[y*coststep] = sad[mind]; break;
} }
if (d < ndisp)
{
dptr[y*dstep] = FILTERED;
continue;
}
}
{
sad[-1] = sad[1];
sad[ndisp] = sad[ndisp - 2];
int p = sad[mind + 1], n = sad[mind - 1];
d = p + n - 2 * sad[mind] + std::abs(p - n);
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp) * 256 + (d != 0 ? (p - n) * 256 / d : 0) + 15) >> 4);
costptr[y*coststep] = sad[mind];
}
}
} }
} }
} }
}
struct PrefilterInvoker : public ParallelLoopBody struct PrefilterInvoker : public ParallelLoopBody
{
PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right,
uchar* buf0, uchar* buf1, StereoBinaryBMParams* _state)
{ {
imgs0[0] = &left0; imgs0[1] = &right0; PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right,
imgs[0] = &left; imgs[1] = &right; uchar* buf0, uchar* buf1, StereoBinaryBMParams* _state)
buf[0] = buf0; buf[1] = buf1;
state = _state;
}
void operator()(const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{ {
if (state->preFilterType == StereoBinaryBM::PREFILTER_NORMALIZED_RESPONSE) imgs0[0] = &left0; imgs0[1] = &right0;
prefilterNorm(*imgs0[i], *imgs[i], state->preFilterSize, state->preFilterCap, buf[i]); imgs[0] = &left; imgs[1] = &right;
else buf[0] = buf0; buf[1] = buf1;
prefilterXSobel(*imgs0[i], *imgs[i], state->preFilterCap); state = _state;
} }
}
const Mat* imgs0[2]; void operator()(const Range& range) const
Mat* imgs[2]; {
uchar* buf[2]; for (int i = range.start; i < range.end; i++)
StereoBinaryBMParams* state; {
}; if (state->preFilterType == StereoBinaryBM::PREFILTER_NORMALIZED_RESPONSE)
prefilterNorm(*imgs0[i], *imgs[i], state->preFilterSize, state->preFilterCap, buf[i]);
else
prefilterXSobel(*imgs0[i], *imgs[i], state->preFilterCap);
}
}
struct FindStereoCorrespInvoker : public ParallelLoopBody const Mat* imgs0[2];
{ Mat* imgs[2];
FindStereoCorrespInvoker(const Mat& _left, const Mat& _right, uchar* buf[2];
Mat& _disp, StereoBinaryBMParams* _state, StereoBinaryBMParams* state;
int _nstripes, size_t _stripeBufSize, };
bool _useShorts, Rect _validDisparityRect,
Mat& _slidingSumBuf, Mat& _cost)
{
left = &_left; right = &_right;
disp = &_disp; state = _state;
nstripes = _nstripes; stripeBufSize = _stripeBufSize;
useShorts = _useShorts;
validDisparityRect = _validDisparityRect;
slidingSumBuf = &_slidingSumBuf;
cost = &_cost;
}
void operator()(const Range& range) const struct FindStereoCorrespInvoker : public ParallelLoopBody
{ {
int cols = left->cols, rows = left->rows; FindStereoCorrespInvoker(const Mat& _left, const Mat& _right,
int _row0 = std::min(cvRound(range.start * rows / nstripes), rows); Mat& _disp, StereoBinaryBMParams* _state,
int _row1 = std::min(cvRound(range.end * rows / nstripes), rows); int _nstripes, size_t _stripeBufSize,
uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize; bool _useShorts, Rect _validDisparityRect,
int FILTERED = (state->minDisparity - 1) * 16; Mat& _slidingSumBuf, Mat& _cost)
Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0);
if (roi.height == 0)
return;
int row0 = roi.y;
int row1 = roi.y + roi.height;
Mat part;
if (row0 > _row0)
{ {
part = disp->rowRange(_row0, row0); left = &_left; right = &_right;
part = Scalar::all(FILTERED); disp = &_disp; state = _state;
nstripes = _nstripes; stripeBufSize = _stripeBufSize;
useShorts = _useShorts;
validDisparityRect = _validDisparityRect;
slidingSumBuf = &_slidingSumBuf;
cost = &_cost;
} }
if (_row1 > row1)
void operator()(const Range& range) const
{ {
part = disp->rowRange(row1, _row1); int cols = left->cols, rows = left->rows;
part = Scalar::all(FILTERED); int _row0 = std::min(cvRound(range.start * rows / nstripes), rows);
} int _row1 = std::min(cvRound(range.end * rows / nstripes), rows);
uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize;
int FILTERED = (state->minDisparity - 1) * 16;
Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0);
if (roi.height == 0)
return;
int row0 = roi.y;
int row1 = roi.y + roi.height;
Mat part;
if (row0 > _row0)
{
part = disp->rowRange(_row0, row0);
part = Scalar::all(FILTERED);
}
if (_row1 > row1)
{
part = disp->rowRange(row1, _row1);
part = Scalar::all(FILTERED);
}
Mat left_i = left->rowRange(row0, row1); Mat left_i = left->rowRange(row0, row1);
Mat right_i = right->rowRange(row0, row1); Mat right_i = right->rowRange(row0, row1);
Mat disp_i = disp->rowRange(row0, row1); Mat disp_i = disp->rowRange(row0, row1);
Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat(); Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat();
findStereoCorrespondenceBM(left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1); findStereoCorrespondenceBM(left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1);
if (state->disp12MaxDiff >= 0) if (state->disp12MaxDiff >= 0)
validateDisparity(disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff); validateDisparity(disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff);
if (roi.x > 0) if (roi.x > 0)
{ {
part = disp_i.colRange(0, roi.x); part = disp_i.colRange(0, roi.x);
part = Scalar::all(FILTERED); part = Scalar::all(FILTERED);
} }
if (roi.x + roi.width < cols) if (roi.x + roi.width < cols)
{ {
part = disp_i.colRange(roi.x + roi.width, cols); part = disp_i.colRange(roi.x + roi.width, cols);
part = Scalar::all(FILTERED); part = Scalar::all(FILTERED);
}
} }
}
protected: protected:
const Mat *left, *right; const Mat *left, *right;
Mat* disp, *slidingSumBuf, *cost; Mat* disp, *slidingSumBuf, *cost;
StereoBinaryBMParams *state; StereoBinaryBMParams *state;
int nstripes; int nstripes;
size_t stripeBufSize; size_t stripeBufSize;
bool useShorts; bool useShorts;
Rect validDisparityRect; Rect validDisparityRect;
}; };
class StereoBinaryBMImpl : public StereoBinaryBM class StereoBinaryBMImpl : public StereoBinaryBM
{
public:
StereoBinaryBMImpl()
{ {
params = StereoBinaryBMParams(); public:
} StereoBinaryBMImpl()
{
params = StereoBinaryBMParams();
}
StereoBinaryBMImpl(int _numDisparities, int _SADWindowSize) StereoBinaryBMImpl(int _numDisparities, int _SADWindowSize)
{ {
params = StereoBinaryBMParams(_numDisparities, _SADWindowSize); params = StereoBinaryBMParams(_numDisparities, _SADWindowSize);
} }
void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr) void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr)
{ {
int dtype = disparr.fixedType() ? disparr.type() : params.dispType; int dtype = disparr.fixedType() ? disparr.type() : params.dispType;
Size leftsize = leftarr.size(); Size leftsize = leftarr.size();
if (leftarr.size() != rightarr.size()) if (leftarr.size() != rightarr.size())
CV_Error(Error::StsUnmatchedSizes, "All the images must have the same size"); CV_Error(Error::StsUnmatchedSizes, "All the images must have the same size");
if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1) if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1)
CV_Error(Error::StsUnsupportedFormat, "Both input images must have CV_8UC1"); CV_Error(Error::StsUnsupportedFormat, "Both input images must have CV_8UC1");
if (dtype != CV_16SC1 && dtype != CV_32FC1) if (dtype != CV_16SC1 && dtype != CV_32FC1)
CV_Error(Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format"); CV_Error(Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format");
if (params.preFilterType != PREFILTER_NORMALIZED_RESPONSE && if (params.preFilterType != PREFILTER_NORMALIZED_RESPONSE &&
params.preFilterType != PREFILTER_XSOBEL) params.preFilterType != PREFILTER_XSOBEL)
CV_Error(Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE"); CV_Error(Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE");
if (params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0) if (params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0)
CV_Error(Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255"); CV_Error(Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255");
if (params.preFilterCap < 1 || params.preFilterCap > 63) if (params.preFilterCap < 1 || params.preFilterCap > 63)
CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63"); CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63");
if (params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 || if (params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 ||
params.SADWindowSize >= std::min(leftsize.width, leftsize.height)) params.SADWindowSize >= std::min(leftsize.width, leftsize.height))
CV_Error(Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height"); CV_Error(Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height");
if (params.numDisparities <= 0 || params.numDisparities % 16 != 0) if (params.numDisparities <= 0 || params.numDisparities % 16 != 0)
CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16"); CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16");
if (params.textureThreshold < 0) if (params.textureThreshold < 0)
CV_Error(Error::StsOutOfRange, "texture threshold must be non-negative"); CV_Error(Error::StsOutOfRange, "texture threshold must be non-negative");
if (params.uniquenessRatio < 0) if (params.uniquenessRatio < 0)
CV_Error(Error::StsOutOfRange, "uniqueness ratio must be non-negative"); CV_Error(Error::StsOutOfRange, "uniqueness ratio must be non-negative");
int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT; int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT;
Mat left0 = leftarr.getMat(), right0 = rightarr.getMat(); Mat left0 = leftarr.getMat(), right0 = rightarr.getMat();
disparr.create(left0.size(), dtype); disparr.create(left0.size(), dtype);
Mat disp0 = disparr.getMat(); Mat disp0 = disparr.getMat();
preFilteredImg0.create(left0.size(), CV_8U); preFilteredImg0.create(left0.size(), CV_8U);
preFilteredImg1.create(left0.size(), CV_8U); preFilteredImg1.create(left0.size(), CV_8U);
cost.create(left0.size(), CV_16S); cost.create(left0.size(), CV_16S);
Mat left = preFilteredImg0, right = preFilteredImg1; Mat left = preFilteredImg0, right = preFilteredImg1;
int mindisp = params.minDisparity; int mindisp = params.minDisparity;
int ndisp = params.numDisparities; int ndisp = params.numDisparities;
int width = left0.cols; int width = left0.cols;
int height = left0.rows; int height = left0.rows;
int lofs = std::max(ndisp - 1 + mindisp, 0); int lofs = std::max(ndisp - 1 + mindisp, 0);
int rofs = -std::min(ndisp - 1 + mindisp, 0); int rofs = -std::min(ndisp - 1 + mindisp, 0);
int width1 = width - rofs - ndisp + 1; int width1 = width - rofs - ndisp + 1;
if (lofs >= width || rofs >= width || width1 < 1) if (lofs >= width || rofs >= width || width1 < 1)
{ {
disp0 = Scalar::all(FILTERED * (disp0.type() < CV_32F ? 1 : 1. / (1 << DISPARITY_SHIFT))); disp0 = Scalar::all(FILTERED * (disp0.type() < CV_32F ? 1 : 1. / (1 << DISPARITY_SHIFT)));
return; return;
} }
Mat disp = disp0; Mat disp = disp0;
if (dtype == CV_32F) if (dtype == CV_32F)
{ {
dispbuf.create(disp0.size(), CV_16S); dispbuf.create(disp0.size(), CV_16S);
disp = dispbuf; disp = dispbuf;
} }
int wsz = params.SADWindowSize; int wsz = params.SADWindowSize;
int bufSize0 = (int)((ndisp + 2)*sizeof(int)); int bufSize0 = (int)((ndisp + 2)*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256); bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256);
int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256); int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256);
int bufSize2 = 0; int bufSize2 = 0;
if (params.speckleRange >= 0 && params.speckleWindowSize > 0) if (params.speckleRange >= 0 && params.speckleWindowSize > 0)
bufSize2 = width*height*(sizeof(Point_<short>) + sizeof(int) + sizeof(uchar)); bufSize2 = width*height*(sizeof(Point_<short>) + sizeof(int) + sizeof(uchar));
#if CV_SSE2 #if CV_SSE2
bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2); bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2);
#else #else
const bool useShorts = false; const bool useShorts = false;
#endif #endif
const double SAD_overhead_coeff = 10.0; const double SAD_overhead_coeff = 10.0;
double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread
double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz - 1) * SAD_overhead_coeff), (double)height); double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz - 1) * SAD_overhead_coeff), (double)height);
int nstripes = cvCeil(height / maxStripeSize); int nstripes = cvCeil(height / maxStripeSize);
int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2)); int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2));
if (slidingSumBuf.cols < bufSize) if (slidingSumBuf.cols < bufSize)
slidingSumBuf.create(1, bufSize, CV_8U); slidingSumBuf.create(1, bufSize, CV_8U);
uchar *_buf = slidingSumBuf.ptr(); uchar *_buf = slidingSumBuf.ptr();
parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, &params), 1); parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, &params), 1);
Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2; Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2;
validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
params.minDisparity, params.numDisparities, params.minDisparity, params.numDisparities,
params.SADWindowSize); params.SADWindowSize);
parallel_for_(Range(0, nstripes), parallel_for_(Range(0, nstripes),
FindStereoCorrespInvoker(left, right, disp, &params, nstripes, FindStereoCorrespInvoker(left, right, disp, &params, nstripes,
bufSize0, useShorts, validDisparityRect, bufSize0, useShorts, validDisparityRect,
slidingSumBuf, cost)); slidingSumBuf, cost));
if (params.speckleRange >= 0 && params.speckleWindowSize > 0) if (params.speckleRange >= 0 && params.speckleWindowSize > 0)
filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf); filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf);
if (disp0.data != disp.data) if (disp0.data != disp.data)
disp.convertTo(disp0, disp0.type(), 1. / (1 << DISPARITY_SHIFT), 0); disp.convertTo(disp0, disp0.type(), 1. / (1 << DISPARITY_SHIFT), 0);
} }
int getMinDisparity() const { return params.minDisparity; } int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; } void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
int getNumDisparities() const { return params.numDisparities; } int getNumDisparities() const { return params.numDisparities; }
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; } void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }
int getBlockSize() const { return params.SADWindowSize; } int getBlockSize() const { return params.SADWindowSize; }
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; } void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }
int getSpeckleWindowSize() const { return params.speckleWindowSize; } int getSpeckleWindowSize() const { return params.speckleWindowSize; }
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; } void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }
int getSpeckleRange() const { return params.speckleRange; } int getSpeckleRange() const { return params.speckleRange; }
void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; } void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }
int getDisp12MaxDiff() const { return params.disp12MaxDiff; } int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; } void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }
int getPreFilterType() const { return params.preFilterType; } int getPreFilterType() const { return params.preFilterType; }
void setPreFilterType(int preFilterType) { params.preFilterType = preFilterType; } void setPreFilterType(int preFilterType) { params.preFilterType = preFilterType; }
int getPreFilterSize() const { return params.preFilterSize; } int getPreFilterSize() const { return params.preFilterSize; }
void setPreFilterSize(int preFilterSize) { params.preFilterSize = preFilterSize; } void setPreFilterSize(int preFilterSize) { params.preFilterSize = preFilterSize; }
int getPreFilterCap() const { return params.preFilterCap; } int getPreFilterCap() const { return params.preFilterCap; }
void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; } void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }
int getTextureThreshold() const { return params.textureThreshold; } int getTextureThreshold() const { return params.textureThreshold; }
void setTextureThreshold(int textureThreshold) { params.textureThreshold = textureThreshold; } void setTextureThreshold(int textureThreshold) { params.textureThreshold = textureThreshold; }
int getUniquenessRatio() const { return params.uniquenessRatio; } int getUniquenessRatio() const { return params.uniquenessRatio; }
void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; } void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }
int getSmallerBlockSize() const { return 0; } int getSmallerBlockSize() const { return 0; }
void setSmallerBlockSize(int) {} void setSmallerBlockSize(int) {}
Rect getROI1() const { return params.roi1; } Rect getROI1() const { return params.roi1; }
void setROI1(Rect roi1) { params.roi1 = roi1; } void setROI1(Rect roi1) { params.roi1 = roi1; }
Rect getROI2() const { return params.roi2; } Rect getROI2() const { return params.roi2; }
void setROI2(Rect roi2) { params.roi2 = roi2; } void setROI2(Rect roi2) { params.roi2 = roi2; }
void write(FileStorage& fs) const void write(FileStorage& fs) const
{ {
fs << "name" << name_ fs << "name" << name_
<< "minDisparity" << params.minDisparity << "minDisparity" << params.minDisparity
<< "numDisparities" << params.numDisparities << "numDisparities" << params.numDisparities
<< "blockSize" << params.SADWindowSize << "blockSize" << params.SADWindowSize
<< "speckleWindowSize" << params.speckleWindowSize << "speckleWindowSize" << params.speckleWindowSize
<< "speckleRange" << params.speckleRange << "speckleRange" << params.speckleRange
<< "disp12MaxDiff" << params.disp12MaxDiff << "disp12MaxDiff" << params.disp12MaxDiff
<< "preFilterType" << params.preFilterType << "preFilterType" << params.preFilterType
<< "preFilterSize" << params.preFilterSize << "preFilterSize" << params.preFilterSize
<< "preFilterCap" << params.preFilterCap << "preFilterCap" << params.preFilterCap
<< "textureThreshold" << params.textureThreshold << "textureThreshold" << params.textureThreshold
<< "uniquenessRatio" << params.uniquenessRatio; << "uniquenessRatio" << params.uniquenessRatio;
} }
void read(const FileNode& fn) void read(const FileNode& fn)
{ {
FileNode n = fn["name"]; FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name_); CV_Assert(n.isString() && String(n) == name_);
params.minDisparity = (int)fn["minDisparity"]; params.minDisparity = (int)fn["minDisparity"];
params.numDisparities = (int)fn["numDisparities"]; params.numDisparities = (int)fn["numDisparities"];
params.SADWindowSize = (int)fn["blockSize"]; params.SADWindowSize = (int)fn["blockSize"];
params.speckleWindowSize = (int)fn["speckleWindowSize"]; params.speckleWindowSize = (int)fn["speckleWindowSize"];
params.speckleRange = (int)fn["speckleRange"]; params.speckleRange = (int)fn["speckleRange"];
params.disp12MaxDiff = (int)fn["disp12MaxDiff"]; params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
params.preFilterType = (int)fn["preFilterType"]; params.preFilterType = (int)fn["preFilterType"];
params.preFilterSize = (int)fn["preFilterSize"]; params.preFilterSize = (int)fn["preFilterSize"];
params.preFilterCap = (int)fn["preFilterCap"]; params.preFilterCap = (int)fn["preFilterCap"];
params.textureThreshold = (int)fn["textureThreshold"]; params.textureThreshold = (int)fn["textureThreshold"];
params.uniquenessRatio = (int)fn["uniquenessRatio"]; params.uniquenessRatio = (int)fn["uniquenessRatio"];
params.roi1 = params.roi2 = Rect(); params.roi1 = params.roi2 = Rect();
} }
StereoBinaryBMParams params; StereoBinaryBMParams params;
Mat preFilteredImg0, preFilteredImg1, cost, dispbuf; Mat preFilteredImg0, preFilteredImg1, cost, dispbuf;
Mat slidingSumBuf; Mat slidingSumBuf;
static const char* name_; static const char* name_;
}; };
const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM"; const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM";
Ptr<StereoBinaryBM> StereoBinaryBM::create(int _numDisparities, int _SADWindowSize) Ptr<StereoBinaryBM> StereoBinaryBM::create(int _numDisparities, int _SADWindowSize)
{ {
return makePtr<StereoBinaryBMImpl>(_numDisparities, _SADWindowSize); return makePtr<StereoBinaryBMImpl>(_numDisparities, _SADWindowSize);
}
} }
} }
/* End of file. */ /* End of file. */
......
...@@ -42,1162 +42,1163 @@ ...@@ -42,1162 +42,1163 @@
//M*/ //M*/
/* /*
This is a variation of This is a variation of
"Stereo Processing by Semiglobal Matching and Mutual Information" "Stereo Processing by Semiglobal Matching and Mutual Information"
by Heiko Hirschmuller. by Heiko Hirschmuller.
We match blocks rather than individual pixels, thus the algorithm is called We match blocks rather than individual pixels, thus the algorithm is called
SGBM (Semi-global block matching) SGBM (Semi-global block matching)
*/ */
#include "precomp.hpp" #include "precomp.hpp"
#include <limits.h> #include <limits.h>
namespace cv namespace cv
{ {
namespace stereo
typedef uchar PixType; {
typedef short CostType; typedef uchar PixType;
typedef short DispType; typedef short CostType;
typedef short DispType;
enum { NR = 16, NR2 = NR/2 };
enum { NR = 16, NR2 = NR/2 };
struct StereoBinarySGBMParams
{ struct StereoBinarySGBMParams
StereoBinarySGBMParams() {
{ StereoBinarySGBMParams()
minDisparity = numDisparities = 0; {
SADWindowSize = 0; minDisparity = numDisparities = 0;
P1 = P2 = 0; SADWindowSize = 0;
disp12MaxDiff = 0; P1 = P2 = 0;
preFilterCap = 0; disp12MaxDiff = 0;
uniquenessRatio = 0; preFilterCap = 0;
speckleWindowSize = 0; uniquenessRatio = 0;
speckleRange = 0; speckleWindowSize = 0;
mode = StereoBinarySGBM::MODE_SGBM; speckleRange = 0;
} mode = StereoBinarySGBM::MODE_SGBM;
}
StereoBinarySGBMParams( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap, StereoBinarySGBMParams( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange, int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _mode ) int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
{ int _mode )
minDisparity = _minDisparity; {
numDisparities = _numDisparities; minDisparity = _minDisparity;
SADWindowSize = _SADWindowSize; numDisparities = _numDisparities;
P1 = _P1; SADWindowSize = _SADWindowSize;
P2 = _P2; P1 = _P1;
disp12MaxDiff = _disp12MaxDiff; P2 = _P2;
preFilterCap = _preFilterCap; disp12MaxDiff = _disp12MaxDiff;
uniquenessRatio = _uniquenessRatio; preFilterCap = _preFilterCap;
speckleWindowSize = _speckleWindowSize; uniquenessRatio = _uniquenessRatio;
speckleRange = _speckleRange; speckleWindowSize = _speckleWindowSize;
mode = _mode; speckleRange = _speckleRange;
} mode = _mode;
}
int minDisparity;
int numDisparities; int minDisparity;
int SADWindowSize; int numDisparities;
int preFilterCap; int SADWindowSize;
int uniquenessRatio; int preFilterCap;
int P1; int uniquenessRatio;
int P2; int P1;
int speckleWindowSize; int P2;
int speckleRange; int speckleWindowSize;
int disp12MaxDiff; int speckleRange;
int mode; int disp12MaxDiff;
}; int mode;
};
/*
For each pixel row1[x], max(-maxD, 0) <= minX <= x < maxX <= width - max(0, -minD), /*
and for each disparity minD<=d<maxD the function For each pixel row1[x], max(-maxD, 0) <= minX <= x < maxX <= width - max(0, -minD),
computes the cost (cost[(x-minX)*(maxD - minD) + (d - minD)]), depending on the difference between and for each disparity minD<=d<maxD the function
row1[x] and row2[x-d]. The subpixel algorithm from computes the cost (cost[(x-minX)*(maxD - minD) + (d - minD)]), depending on the difference between
"Depth Discontinuities by Pixel-to-Pixel Stereo" by Stan Birchfield and C. Tomasi row1[x] and row2[x-d]. The subpixel algorithm from
is used, hence the suffix BT. "Depth Discontinuities by Pixel-to-Pixel Stereo" by Stan Birchfield and C. Tomasi
is used, hence the suffix BT.
the temporary buffer should contain width2*2 elements
*/ the temporary buffer should contain width2*2 elements
static void calcPixelCostBT( const Mat& img1, const Mat& img2, int y, */
int minD, int maxD, CostType* cost, static void calcPixelCostBT( const Mat& img1, const Mat& img2, int y,
PixType* buffer, const PixType* tab, int minD, int maxD, CostType* cost,
int tabOfs, int ) PixType* buffer, const PixType* tab,
{ int tabOfs, int )
int x, c, width = img1.cols, cn = img1.channels(); {
int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0); int x, c, width = img1.cols, cn = img1.channels();
int minX2 = std::max(minX1 - maxD, 0), maxX2 = std::min(maxX1 - minD, width); int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
int D = maxD - minD, width1 = maxX1 - minX1, width2 = maxX2 - minX2; int minX2 = std::max(minX1 - maxD, 0), maxX2 = std::min(maxX1 - minD, width);
const PixType *row1 = img1.ptr<PixType>(y), *row2 = img2.ptr<PixType>(y); int D = maxD - minD, width1 = maxX1 - minX1, width2 = maxX2 - minX2;
PixType *prow1 = buffer + width2*2, *prow2 = prow1 + width*cn*2; const PixType *row1 = img1.ptr<PixType>(y), *row2 = img2.ptr<PixType>(y);
PixType *prow1 = buffer + width2*2, *prow2 = prow1 + width*cn*2;
tab += tabOfs;
tab += tabOfs;
for( c = 0; c < cn*2; c++ )
{ for( c = 0; c < cn*2; c++ )
prow1[width*c] = prow1[width*c + width-1] = {
prow2[width*c] = prow2[width*c + width-1] = tab[0]; prow1[width*c] = prow1[width*c + width-1] =
} prow2[width*c] = prow2[width*c + width-1] = tab[0];
}
int n1 = y > 0 ? -(int)img1.step : 0, s1 = y < img1.rows-1 ? (int)img1.step : 0;
int n2 = y > 0 ? -(int)img2.step : 0, s2 = y < img2.rows-1 ? (int)img2.step : 0; int n1 = y > 0 ? -(int)img1.step : 0, s1 = y < img1.rows-1 ? (int)img1.step : 0;
int n2 = y > 0 ? -(int)img2.step : 0, s2 = y < img2.rows-1 ? (int)img2.step : 0;
if( cn == 1 )
{ if( cn == 1 )
for( x = 1; x < width-1; x++ ) {
{ for( x = 1; x < width-1; x++ )
prow1[x] = tab[(row1[x+1] - row1[x-1])*2 + row1[x+n1+1] - row1[x+n1-1] + row1[x+s1+1] - row1[x+s1-1]]; {
prow2[width-1-x] = tab[(row2[x+1] - row2[x-1])*2 + row2[x+n2+1] - row2[x+n2-1] + row2[x+s2+1] - row2[x+s2-1]]; prow1[x] = tab[(row1[x+1] - row1[x-1])*2 + row1[x+n1+1] - row1[x+n1-1] + row1[x+s1+1] - row1[x+s1-1]];
prow2[width-1-x] = tab[(row2[x+1] - row2[x-1])*2 + row2[x+n2+1] - row2[x+n2-1] + row2[x+s2+1] - row2[x+s2-1]];
prow1[x+width] = row1[x];
prow2[width-1-x+width] = row2[x]; prow1[x+width] = row1[x];
} prow2[width-1-x+width] = row2[x];
} }
else }
{ else
for( x = 1; x < width-1; x++ ) {
{ for( x = 1; x < width-1; x++ )
prow1[x] = tab[(row1[x*3+3] - row1[x*3-3])*2 + row1[x*3+n1+3] - row1[x*3+n1-3] + row1[x*3+s1+3] - row1[x*3+s1-3]]; {
prow1[x+width] = tab[(row1[x*3+4] - row1[x*3-2])*2 + row1[x*3+n1+4] - row1[x*3+n1-2] + row1[x*3+s1+4] - row1[x*3+s1-2]]; prow1[x] = tab[(row1[x*3+3] - row1[x*3-3])*2 + row1[x*3+n1+3] - row1[x*3+n1-3] + row1[x*3+s1+3] - row1[x*3+s1-3]];
prow1[x+width*2] = tab[(row1[x*3+5] - row1[x*3-1])*2 + row1[x*3+n1+5] - row1[x*3+n1-1] + row1[x*3+s1+5] - row1[x*3+s1-1]]; prow1[x+width] = tab[(row1[x*3+4] - row1[x*3-2])*2 + row1[x*3+n1+4] - row1[x*3+n1-2] + row1[x*3+s1+4] - row1[x*3+s1-2]];
prow1[x+width*2] = tab[(row1[x*3+5] - row1[x*3-1])*2 + row1[x*3+n1+5] - row1[x*3+n1-1] + row1[x*3+s1+5] - row1[x*3+s1-1]];
prow2[width-1-x] = tab[(row2[x*3+3] - row2[x*3-3])*2 + row2[x*3+n2+3] - row2[x*3+n2-3] + row2[x*3+s2+3] - row2[x*3+s2-3]];
prow2[width-1-x+width] = tab[(row2[x*3+4] - row2[x*3-2])*2 + row2[x*3+n2+4] - row2[x*3+n2-2] + row2[x*3+s2+4] - row2[x*3+s2-2]]; prow2[width-1-x] = tab[(row2[x*3+3] - row2[x*3-3])*2 + row2[x*3+n2+3] - row2[x*3+n2-3] + row2[x*3+s2+3] - row2[x*3+s2-3]];
prow2[width-1-x+width*2] = tab[(row2[x*3+5] - row2[x*3-1])*2 + row2[x*3+n2+5] - row2[x*3+n2-1] + row2[x*3+s2+5] - row2[x*3+s2-1]]; prow2[width-1-x+width] = tab[(row2[x*3+4] - row2[x*3-2])*2 + row2[x*3+n2+4] - row2[x*3+n2-2] + row2[x*3+s2+4] - row2[x*3+s2-2]];
prow2[width-1-x+width*2] = tab[(row2[x*3+5] - row2[x*3-1])*2 + row2[x*3+n2+5] - row2[x*3+n2-1] + row2[x*3+s2+5] - row2[x*3+s2-1]];
prow1[x+width*3] = row1[x*3];
prow1[x+width*4] = row1[x*3+1]; prow1[x+width*3] = row1[x*3];
prow1[x+width*5] = row1[x*3+2]; prow1[x+width*4] = row1[x*3+1];
prow1[x+width*5] = row1[x*3+2];
prow2[width-1-x+width*3] = row2[x*3];
prow2[width-1-x+width*4] = row2[x*3+1]; prow2[width-1-x+width*3] = row2[x*3];
prow2[width-1-x+width*5] = row2[x*3+2]; prow2[width-1-x+width*4] = row2[x*3+1];
} prow2[width-1-x+width*5] = row2[x*3+2];
} }
}
memset( cost, 0, width1*D*sizeof(cost[0]) );
memset( cost, 0, width1*D*sizeof(cost[0]) );
buffer -= minX2;
cost -= minX1*D + minD; // simplify the cost indices inside the loop buffer -= minX2;
cost -= minX1*D + minD; // simplify the cost indices inside the loop
#if CV_SSE2 #if CV_SSE2
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2); volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif #endif
#if 1 #if 1
for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width ) for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width )
{ {
int diff_scale = c < cn ? 0 : 2; int diff_scale = c < cn ? 0 : 2;
// precompute // precompute
// v0 = min(row2[x-1/2], row2[x], row2[x+1/2]) and // v0 = min(row2[x-1/2], row2[x], row2[x+1/2]) and
// v1 = max(row2[x-1/2], row2[x], row2[x+1/2]) and // v1 = max(row2[x-1/2], row2[x], row2[x+1/2]) and
for( x = minX2; x < maxX2; x++ ) for( x = minX2; x < maxX2; x++ )
{ {
int v = prow2[x]; int v = prow2[x];
int vl = x > 0 ? (v + prow2[x-1])/2 : v; int vl = x > 0 ? (v + prow2[x-1])/2 : v;
int vr = x < width-1 ? (v + prow2[x+1])/2 : v; int vr = x < width-1 ? (v + prow2[x+1])/2 : v;
int v0 = std::min(vl, vr); v0 = std::min(v0, v); int v0 = std::min(vl, vr); v0 = std::min(v0, v);
int v1 = std::max(vl, vr); v1 = std::max(v1, v); int v1 = std::max(vl, vr); v1 = std::max(v1, v);
buffer[x] = (PixType)v0; buffer[x] = (PixType)v0;
buffer[x + width2] = (PixType)v1; buffer[x + width2] = (PixType)v1;
} }
for( x = minX1; x < maxX1; x++ ) for( x = minX1; x < maxX1; x++ )
{ {
int u = prow1[x]; int u = prow1[x];
int ul = x > 0 ? (u + prow1[x-1])/2 : u; int ul = x > 0 ? (u + prow1[x-1])/2 : u;
int ur = x < width-1 ? (u + prow1[x+1])/2 : u; int ur = x < width-1 ? (u + prow1[x+1])/2 : u;
int u0 = std::min(ul, ur); u0 = std::min(u0, u); int u0 = std::min(ul, ur); u0 = std::min(u0, u);
int u1 = std::max(ul, ur); u1 = std::max(u1, u); int u1 = std::max(ul, ur); u1 = std::max(u1, u);
#if CV_SSE2 #if CV_SSE2
if( useSIMD ) if( useSIMD )
{ {
__m128i _u = _mm_set1_epi8((char)u), _u0 = _mm_set1_epi8((char)u0); __m128i _u = _mm_set1_epi8((char)u), _u0 = _mm_set1_epi8((char)u0);
__m128i _u1 = _mm_set1_epi8((char)u1), z = _mm_setzero_si128(); __m128i _u1 = _mm_set1_epi8((char)u1), z = _mm_setzero_si128();
__m128i ds = _mm_cvtsi32_si128(diff_scale); __m128i ds = _mm_cvtsi32_si128(diff_scale);
for( int d = minD; d < maxD; d += 16 ) for( int d = minD; d < maxD; d += 16 )
{ {
__m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-x-1 + d)); __m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-x-1 + d));
__m128i _v0 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d)); __m128i _v0 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d));
__m128i _v1 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d + width2)); __m128i _v1 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d + width2));
__m128i c0 = _mm_max_epu8(_mm_subs_epu8(_u, _v1), _mm_subs_epu8(_v0, _u)); __m128i c0 = _mm_max_epu8(_mm_subs_epu8(_u, _v1), _mm_subs_epu8(_v0, _u));
__m128i c1 = _mm_max_epu8(_mm_subs_epu8(_v, _u1), _mm_subs_epu8(_u0, _v)); __m128i c1 = _mm_max_epu8(_mm_subs_epu8(_v, _u1), _mm_subs_epu8(_u0, _v));
__m128i diff = _mm_min_epu8(c0, c1); __m128i diff = _mm_min_epu8(c0, c1);
c0 = _mm_load_si128((__m128i*)(cost + x*D + d)); c0 = _mm_load_si128((__m128i*)(cost + x*D + d));
c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8)); c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8));
_mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_srl_epi16(_mm_unpacklo_epi8(diff,z), ds))); _mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_srl_epi16(_mm_unpacklo_epi8(diff,z), ds)));
_mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_srl_epi16(_mm_unpackhi_epi8(diff,z), ds))); _mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_srl_epi16(_mm_unpackhi_epi8(diff,z), ds)));
} }
} }
else else
#endif #endif
{ {
for( int d = minD; d < maxD; d++ ) for( int d = minD; d < maxD; d++ )
{ {
int v = prow2[width-x-1 + d]; int v = prow2[width-x-1 + d];
int v0 = buffer[width-x-1 + d]; int v0 = buffer[width-x-1 + d];
int v1 = buffer[width-x-1 + d + width2]; int v1 = buffer[width-x-1 + d + width2];
int c0 = std::max(0, u - v1); c0 = std::max(c0, v0 - u); int c0 = std::max(0, u - v1); c0 = std::max(c0, v0 - u);
int c1 = std::max(0, v - u1); c1 = std::max(c1, u0 - v); int c1 = std::max(0, v - u1); c1 = std::max(c1, u0 - v);
cost[x*D + d] = (CostType)(cost[x*D+d] + (std::min(c0, c1) >> diff_scale)); cost[x*D + d] = (CostType)(cost[x*D+d] + (std::min(c0, c1) >> diff_scale));
} }
} }
} }
} }
#else #else
for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width ) for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width )
{ {
for( x = minX1; x < maxX1; x++ ) for( x = minX1; x < maxX1; x++ )
{ {
int u = prow1[x]; int u = prow1[x];
#if CV_SSE2 #if CV_SSE2
if( useSIMD ) if( useSIMD )
{ {
__m128i _u = _mm_set1_epi8(u), z = _mm_setzero_si128(); __m128i _u = _mm_set1_epi8(u), z = _mm_setzero_si128();
for( int d = minD; d < maxD; d += 16 ) for( int d = minD; d < maxD; d += 16 )
{ {
__m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-1-x + d)); __m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-1-x + d));
__m128i diff = _mm_adds_epu8(_mm_subs_epu8(_u,_v), _mm_subs_epu8(_v,_u)); __m128i diff = _mm_adds_epu8(_mm_subs_epu8(_u,_v), _mm_subs_epu8(_v,_u));
__m128i c0 = _mm_load_si128((__m128i*)(cost + x*D + d)); __m128i c0 = _mm_load_si128((__m128i*)(cost + x*D + d));
__m128i c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8)); __m128i c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8));
_mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_unpacklo_epi8(diff,z))); _mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_unpacklo_epi8(diff,z)));
_mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_unpackhi_epi8(diff,z))); _mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_unpackhi_epi8(diff,z)));
} }
} }
else else
#endif #endif
{ {
for( int d = minD; d < maxD; d++ ) for( int d = minD; d < maxD; d++ )
{ {
int v = prow2[width-1-x + d]; int v = prow2[width-1-x + d];
cost[x*D + d] = (CostType)(cost[x*D + d] + (CostType)std::abs(u - v)); cost[x*D + d] = (CostType)(cost[x*D + d] + (CostType)std::abs(u - v));
} }
} }
} }
} }
#endif
}
/*
computes disparity for "roi" in img1 w.r.t. img2 and write it to disp1buf.
that is, disp1buf(x, y)=d means that img1(x+roi.x, y+roi.y) ~ img2(x+roi.x-d, y+roi.y).
minD <= d < maxD.
disp2full is the reverse disparity map, that is:
disp2full(x+roi.x,y+roi.y)=d means that img2(x+roi.x, y+roi.y) ~ img1(x+roi.x+d, y+roi.y)
note that disp1buf will have the same size as the roi and
disp2full will have the same size as img1 (or img2).
On exit disp2buf is not the final disparity, it is an intermediate result that becomes
final after all the tiles are processed.
the disparity in disp1buf is written with sub-pixel accuracy
(4 fractional bits, see StereoSGBM::DISP_SCALE),
using quadratic interpolation, while the disparity in disp2buf
is written as is, without interpolation.
disp2cost also has the same size as img1 (or img2).
It contains the minimum current cost, used to find the best disparity, corresponding to the minimal cost.
*/
static void computeDisparityBinarySGBM( const Mat& img1, const Mat& img2,
Mat& disp1, const StereoBinarySGBMParams& params,
Mat& buffer )
{
#if CV_SSE2
static const uchar LSBTab[] =
{
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif #endif
}
const int ALIGN = 16;
const int DISP_SHIFT = StereoMatcher::DISP_SHIFT;
const int DISP_SCALE = (1 << DISP_SHIFT);
const CostType MAX_COST = SHRT_MAX;
int minD = params.minDisparity, maxD = minD + params.numDisparities;
Size SADWindowSize;
SADWindowSize.width = SADWindowSize.height = params.SADWindowSize > 0 ? params.SADWindowSize : 5;
int ftzero = std::max(params.preFilterCap, 15) | 1;
int uniquenessRatio = params.uniquenessRatio >= 0 ? params.uniquenessRatio : 10;
int disp12MaxDiff = params.disp12MaxDiff > 0 ? params.disp12MaxDiff : 1;
int P1 = params.P1 > 0 ? params.P1 : 2, P2 = std::max(params.P2 > 0 ? params.P2 : 5, P1+1);
int k, width = disp1.cols, height = disp1.rows;
int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
int D = maxD - minD, width1 = maxX1 - minX1;
int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE;
int SW2 = SADWindowSize.width/2, SH2 = SADWindowSize.height/2;
bool fullDP = params.mode == StereoBinarySGBM::MODE_HH;
int npasses = fullDP ? 2 : 1;
const int TAB_OFS = 256*4, TAB_SIZE = 256 + TAB_OFS*2;
PixType clipTab[TAB_SIZE];
for( k = 0; k < TAB_SIZE; k++ )
clipTab[k] = (PixType)(std::min(std::max(k - TAB_OFS, -ftzero), ftzero) + ftzero);
if( minX1 >= maxX1 )
{
disp1 = Scalar::all(INVALID_DISP_SCALED);
return;
}
CV_Assert( D % 16 == 0 );
// NR - the number of directions. the loop on x below that computes Lr assumes that NR == 8.
// if you change NR, please, modify the loop as well.
int D2 = D+16, NRD2 = NR2*D2;
// the number of L_r(.,.) and min_k L_r(.,.) lines in the buffer:
// for 8-way dynamic programming we need the current row and
// the previous row, i.e. 2 rows in total
const int NLR = 2;
const int LrBorder = NLR - 1;
// for each possible stereo match (img1(x,y) <=> img2(x-d,y))
// we keep pixel difference cost (C) and the summary cost over NR directions (S).
// we also keep all the partial costs for the previous line L_r(x,d) and also min_k L_r(x, k)
size_t costBufSize = width1*D;
size_t CSBufSize = costBufSize*(fullDP ? height : 1);
size_t minLrSize = (width1 + LrBorder*2)*NR2, LrSize = minLrSize*D2;
int hsumBufNRows = SH2*2 + 2;
size_t totalBufSize = (LrSize + minLrSize)*NLR*sizeof(CostType) + // minLr[] and Lr[]
costBufSize*(hsumBufNRows + 1)*sizeof(CostType) + // hsumBuf, pixdiff
CSBufSize*2*sizeof(CostType) + // C, S
width*16*img1.channels()*sizeof(PixType) + // temp buffer for computing per-pixel cost
width*(sizeof(CostType) + sizeof(DispType)) + 1024; // disp2cost + disp2
if( buffer.empty() || !buffer.isContinuous() ||
buffer.cols*buffer.rows*buffer.elemSize() < totalBufSize )
buffer.create(1, (int)totalBufSize, CV_8U);
// summary cost over different (nDirs) directions
CostType* Cbuf = (CostType*)alignPtr(buffer.ptr(), ALIGN);
CostType* Sbuf = Cbuf + CSBufSize;
CostType* hsumBuf = Sbuf + CSBufSize;
CostType* pixDiff = hsumBuf + costBufSize*hsumBufNRows;
CostType* disp2cost = pixDiff + costBufSize + (LrSize + minLrSize)*NLR;
DispType* disp2ptr = (DispType*)(disp2cost + width);
PixType* tempBuf = (PixType*)(disp2ptr + width);
// add P2 to every C(x,y). it saves a few operations in the inner loops
for( k = 0; k < width1*D; k++ )
Cbuf[k] = (CostType)P2;
for( int pass = 1; pass <= npasses; pass++ )
{
int x1, y1, x2, y2, dx, dy;
if( pass == 1 )
{
y1 = 0; y2 = height; dy = 1;
x1 = 0; x2 = width1; dx = 1;
}
else
{
y1 = height-1; y2 = -1; dy = -1;
x1 = width1-1; x2 = -1; dx = -1;
}
CostType *Lr[NLR]={0}, *minLr[NLR]={0};
for( k = 0; k < NLR; k++ )
{
// shift Lr[k] and minLr[k] pointers, because we allocated them with the borders,
// and will occasionally use negative indices with the arrays
// we need to shift Lr[k] pointers by 1, to give the space for d=-1.
// however, then the alignment will be imperfect, i.e. bad for SSE,
// thus we shift the pointers by 8 (8*sizeof(short) == 16 - ideal alignment)
Lr[k] = pixDiff + costBufSize + LrSize*k + NRD2*LrBorder + 8;
memset( Lr[k] - LrBorder*NRD2 - 8, 0, LrSize*sizeof(CostType) );
minLr[k] = pixDiff + costBufSize + LrSize*NLR + minLrSize*k + NR2*LrBorder;
memset( minLr[k] - LrBorder*NR2, 0, minLrSize*sizeof(CostType) );
}
for( int y = y1; y != y2; y += dy )
{
int x, d;
DispType* disp1ptr = disp1.ptr<DispType>(y);
CostType* C = Cbuf + (!fullDP ? 0 : y*costBufSize);
CostType* S = Sbuf + (!fullDP ? 0 : y*costBufSize);
if( pass == 1 ) // compute C on the first pass, and reuse it on the second pass, if any.
{
int dy1 = y == 0 ? 0 : y + SH2, dy2 = y == 0 ? SH2 : dy1;
for( k = dy1; k <= dy2; k++ )
{
CostType* hsumAdd = hsumBuf + (std::min(k, height-1) % hsumBufNRows)*costBufSize;
if( k < height )
{
calcPixelCostBT( img1, img2, k, minD, maxD, pixDiff, tempBuf, clipTab, TAB_OFS, ftzero );
memset(hsumAdd, 0, D*sizeof(CostType));
for( x = 0; x <= SW2*D; x += D )
{
int scale = x == 0 ? SW2 + 1 : 1;
for( d = 0; d < D; d++ )
hsumAdd[d] = (CostType)(hsumAdd[d] + pixDiff[x + d]*scale);
}
if( y > 0 )
{
const CostType* hsumSub = hsumBuf + (std::max(y - SH2 - 1, 0) % hsumBufNRows)*costBufSize;
const CostType* Cprev = !fullDP || y == 0 ? C : C - costBufSize;
for( x = D; x < width1*D; x += D )
{
const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);
/*
computes disparity for "roi" in img1 w.r.t. img2 and write it to disp1buf.
that is, disp1buf(x, y)=d means that img1(x+roi.x, y+roi.y) ~ img2(x+roi.x-d, y+roi.y).
minD <= d < maxD.
disp2full is the reverse disparity map, that is:
disp2full(x+roi.x,y+roi.y)=d means that img2(x+roi.x, y+roi.y) ~ img1(x+roi.x+d, y+roi.y)
note that disp1buf will have the same size as the roi and
disp2full will have the same size as img1 (or img2).
On exit disp2buf is not the final disparity, it is an intermediate result that becomes
final after all the tiles are processed.
the disparity in disp1buf is written with sub-pixel accuracy
(4 fractional bits, see StereoSGBM::DISP_SCALE),
using quadratic interpolation, while the disparity in disp2buf
is written as is, without interpolation.
disp2cost also has the same size as img1 (or img2).
It contains the minimum current cost, used to find the best disparity, corresponding to the minimal cost.
*/
static void computeDisparityBinarySGBM( const Mat& img1, const Mat& img2,
Mat& disp1, const StereoBinarySGBMParams& params,
Mat& buffer )
{
#if CV_SSE2 #if CV_SSE2
static const uchar LSBTab[] = if( useSIMD )
{ {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, for( d = 0; d < D; d += 8 )
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, {
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, __m128i hv = _mm_load_si128((const __m128i*)(hsumAdd + x - D + d));
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, __m128i Cx = _mm_load_si128((__m128i*)(Cprev + x + d));
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, hv = _mm_adds_epi16(_mm_subs_epi16(hv,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, _mm_load_si128((const __m128i*)(pixSub + d))),
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, _mm_load_si128((const __m128i*)(pixAdd + d)));
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 Cx = _mm_adds_epi16(_mm_subs_epi16(Cx,
}; _mm_load_si128((const __m128i*)(hsumSub + x + d))),
hv);
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2); _mm_store_si128((__m128i*)(hsumAdd + x + d), hv);
_mm_store_si128((__m128i*)(C + x + d), Cx);
}
}
else
#endif #endif
{
for( d = 0; d < D; d++ )
{
int hv = hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
C[x + d] = (CostType)(Cprev[x + d] + hv - hsumSub[x + d]);
}
}
}
}
else
{
for( x = D; x < width1*D; x += D )
{
const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);
for( d = 0; d < D; d++ )
hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
}
}
}
if( y == 0 )
{
int scale = k == 0 ? SH2 + 1 : 1;
for( x = 0; x < width1*D; x++ )
C[x] = (CostType)(C[x] + hsumAdd[x]*scale);
}
}
// also, clear the S buffer
for( k = 0; k < width1*D; k++ )
S[k] = 0;
}
// clear the left and the right borders
memset( Lr[0] - NRD2*LrBorder - 8, 0, NRD2*LrBorder*sizeof(CostType) );
memset( Lr[0] + width1*NRD2 - 8, 0, NRD2*LrBorder*sizeof(CostType) );
memset( minLr[0] - NR2*LrBorder, 0, NR2*LrBorder*sizeof(CostType) );
memset( minLr[0] + width1*NR2, 0, NR2*LrBorder*sizeof(CostType) );
/*
[formula 13 in the paper]
compute L_r(p, d) = C(p, d) +
min(L_r(p-r, d),
L_r(p-r, d-1) + P1,
L_r(p-r, d+1) + P1,
min_k L_r(p-r, k) + P2) - min_k L_r(p-r, k)
where p = (x,y), r is one of the directions.
we process all the directions at once:
0: r=(-dx, 0)
1: r=(-1, -dy)
2: r=(0, -dy)
3: r=(1, -dy)
4: r=(-2, -dy)
5: r=(-1, -dy*2)
6: r=(1, -dy*2)
7: r=(2, -dy)
*/
for( x = x1; x != x2; x += dx )
{
int xm = x*NR2, xd = xm*D2;
int delta0 = minLr[0][xm - dx*NR2] + P2, delta1 = minLr[1][xm - NR2 + 1] + P2;
int delta2 = minLr[1][xm + 2] + P2, delta3 = minLr[1][xm + NR2 + 3] + P2;
CostType* Lr_p0 = Lr[0] + xd - dx*NRD2;
CostType* Lr_p1 = Lr[1] + xd - NRD2 + D2;
CostType* Lr_p2 = Lr[1] + xd + D2*2;
CostType* Lr_p3 = Lr[1] + xd + NRD2 + D2*3;
Lr_p0[-1] = Lr_p0[D] = Lr_p1[-1] = Lr_p1[D] =
Lr_p2[-1] = Lr_p2[D] = Lr_p3[-1] = Lr_p3[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x*D;
CostType* Sp = S + x*D;
const int ALIGN = 16; #if CV_SSE2
const int DISP_SHIFT = StereoMatcher::DISP_SHIFT; if( useSIMD )
const int DISP_SCALE = (1 << DISP_SHIFT); {
const CostType MAX_COST = SHRT_MAX; __m128i _P1 = _mm_set1_epi16((short)P1);
int minD = params.minDisparity, maxD = minD + params.numDisparities;
Size SADWindowSize;
SADWindowSize.width = SADWindowSize.height = params.SADWindowSize > 0 ? params.SADWindowSize : 5;
int ftzero = std::max(params.preFilterCap, 15) | 1;
int uniquenessRatio = params.uniquenessRatio >= 0 ? params.uniquenessRatio : 10;
int disp12MaxDiff = params.disp12MaxDiff > 0 ? params.disp12MaxDiff : 1;
int P1 = params.P1 > 0 ? params.P1 : 2, P2 = std::max(params.P2 > 0 ? params.P2 : 5, P1+1);
int k, width = disp1.cols, height = disp1.rows;
int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
int D = maxD - minD, width1 = maxX1 - minX1;
int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE;
int SW2 = SADWindowSize.width/2, SH2 = SADWindowSize.height/2;
bool fullDP = params.mode == StereoBinarySGBM::MODE_HH;
int npasses = fullDP ? 2 : 1;
const int TAB_OFS = 256*4, TAB_SIZE = 256 + TAB_OFS*2;
PixType clipTab[TAB_SIZE];
for( k = 0; k < TAB_SIZE; k++ )
clipTab[k] = (PixType)(std::min(std::max(k - TAB_OFS, -ftzero), ftzero) + ftzero);
if( minX1 >= maxX1 )
{
disp1 = Scalar::all(INVALID_DISP_SCALED);
return;
}
CV_Assert( D % 16 == 0 );
// NR - the number of directions. the loop on x below that computes Lr assumes that NR == 8.
// if you change NR, please, modify the loop as well.
int D2 = D+16, NRD2 = NR2*D2;
// the number of L_r(.,.) and min_k L_r(.,.) lines in the buffer:
// for 8-way dynamic programming we need the current row and
// the previous row, i.e. 2 rows in total
const int NLR = 2;
const int LrBorder = NLR - 1;
// for each possible stereo match (img1(x,y) <=> img2(x-d,y))
// we keep pixel difference cost (C) and the summary cost over NR directions (S).
// we also keep all the partial costs for the previous line L_r(x,d) and also min_k L_r(x, k)
size_t costBufSize = width1*D;
size_t CSBufSize = costBufSize*(fullDP ? height : 1);
size_t minLrSize = (width1 + LrBorder*2)*NR2, LrSize = minLrSize*D2;
int hsumBufNRows = SH2*2 + 2;
size_t totalBufSize = (LrSize + minLrSize)*NLR*sizeof(CostType) + // minLr[] and Lr[]
costBufSize*(hsumBufNRows + 1)*sizeof(CostType) + // hsumBuf, pixdiff
CSBufSize*2*sizeof(CostType) + // C, S
width*16*img1.channels()*sizeof(PixType) + // temp buffer for computing per-pixel cost
width*(sizeof(CostType) + sizeof(DispType)) + 1024; // disp2cost + disp2
if( buffer.empty() || !buffer.isContinuous() ||
buffer.cols*buffer.rows*buffer.elemSize() < totalBufSize )
buffer.create(1, (int)totalBufSize, CV_8U);
// summary cost over different (nDirs) directions
CostType* Cbuf = (CostType*)alignPtr(buffer.ptr(), ALIGN);
CostType* Sbuf = Cbuf + CSBufSize;
CostType* hsumBuf = Sbuf + CSBufSize;
CostType* pixDiff = hsumBuf + costBufSize*hsumBufNRows;
CostType* disp2cost = pixDiff + costBufSize + (LrSize + minLrSize)*NLR;
DispType* disp2ptr = (DispType*)(disp2cost + width);
PixType* tempBuf = (PixType*)(disp2ptr + width);
// add P2 to every C(x,y). it saves a few operations in the inner loops
for( k = 0; k < width1*D; k++ )
Cbuf[k] = (CostType)P2;
for( int pass = 1; pass <= npasses; pass++ )
{
int x1, y1, x2, y2, dx, dy;
if( pass == 1 )
{
y1 = 0; y2 = height; dy = 1;
x1 = 0; x2 = width1; dx = 1;
}
else
{
y1 = height-1; y2 = -1; dy = -1;
x1 = width1-1; x2 = -1; dx = -1;
}
CostType *Lr[NLR]={0}, *minLr[NLR]={0};
for( k = 0; k < NLR; k++ )
{
// shift Lr[k] and minLr[k] pointers, because we allocated them with the borders,
// and will occasionally use negative indices with the arrays
// we need to shift Lr[k] pointers by 1, to give the space for d=-1.
// however, then the alignment will be imperfect, i.e. bad for SSE,
// thus we shift the pointers by 8 (8*sizeof(short) == 16 - ideal alignment)
Lr[k] = pixDiff + costBufSize + LrSize*k + NRD2*LrBorder + 8;
memset( Lr[k] - LrBorder*NRD2 - 8, 0, LrSize*sizeof(CostType) );
minLr[k] = pixDiff + costBufSize + LrSize*NLR + minLrSize*k + NR2*LrBorder;
memset( minLr[k] - LrBorder*NR2, 0, minLrSize*sizeof(CostType) );
}
for( int y = y1; y != y2; y += dy )
{
int x, d;
DispType* disp1ptr = disp1.ptr<DispType>(y);
CostType* C = Cbuf + (!fullDP ? 0 : y*costBufSize);
CostType* S = Sbuf + (!fullDP ? 0 : y*costBufSize);
if( pass == 1 ) // compute C on the first pass, and reuse it on the second pass, if any.
{
int dy1 = y == 0 ? 0 : y + SH2, dy2 = y == 0 ? SH2 : dy1;
for( k = dy1; k <= dy2; k++ )
{
CostType* hsumAdd = hsumBuf + (std::min(k, height-1) % hsumBufNRows)*costBufSize;
if( k < height )
{
calcPixelCostBT( img1, img2, k, minD, maxD, pixDiff, tempBuf, clipTab, TAB_OFS, ftzero );
memset(hsumAdd, 0, D*sizeof(CostType));
for( x = 0; x <= SW2*D; x += D )
{
int scale = x == 0 ? SW2 + 1 : 1;
for( d = 0; d < D; d++ )
hsumAdd[d] = (CostType)(hsumAdd[d] + pixDiff[x + d]*scale);
}
if( y > 0 )
{
const CostType* hsumSub = hsumBuf + (std::max(y - SH2 - 1, 0) % hsumBufNRows)*costBufSize;
const CostType* Cprev = !fullDP || y == 0 ? C : C - costBufSize;
for( x = D; x < width1*D; x += D )
{
const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);
#if CV_SSE2
if( useSIMD )
{
for( d = 0; d < D; d += 8 )
{
__m128i hv = _mm_load_si128((const __m128i*)(hsumAdd + x - D + d));
__m128i Cx = _mm_load_si128((__m128i*)(Cprev + x + d));
hv = _mm_adds_epi16(_mm_subs_epi16(hv,
_mm_load_si128((const __m128i*)(pixSub + d))),
_mm_load_si128((const __m128i*)(pixAdd + d)));
Cx = _mm_adds_epi16(_mm_subs_epi16(Cx,
_mm_load_si128((const __m128i*)(hsumSub + x + d))),
hv);
_mm_store_si128((__m128i*)(hsumAdd + x + d), hv);
_mm_store_si128((__m128i*)(C + x + d), Cx);
}
}
else
#endif
{
for( d = 0; d < D; d++ )
{
int hv = hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
C[x + d] = (CostType)(Cprev[x + d] + hv - hsumSub[x + d]);
}
}
}
}
else
{
for( x = D; x < width1*D; x += D )
{
const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);
for( d = 0; d < D; d++ )
hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
}
}
}
if( y == 0 )
{
int scale = k == 0 ? SH2 + 1 : 1;
for( x = 0; x < width1*D; x++ )
C[x] = (CostType)(C[x] + hsumAdd[x]*scale);
}
}
// also, clear the S buffer
for( k = 0; k < width1*D; k++ )
S[k] = 0;
}
// clear the left and the right borders
memset( Lr[0] - NRD2*LrBorder - 8, 0, NRD2*LrBorder*sizeof(CostType) );
memset( Lr[0] + width1*NRD2 - 8, 0, NRD2*LrBorder*sizeof(CostType) );
memset( minLr[0] - NR2*LrBorder, 0, NR2*LrBorder*sizeof(CostType) );
memset( minLr[0] + width1*NR2, 0, NR2*LrBorder*sizeof(CostType) );
/*
[formula 13 in the paper]
compute L_r(p, d) = C(p, d) +
min(L_r(p-r, d),
L_r(p-r, d-1) + P1,
L_r(p-r, d+1) + P1,
min_k L_r(p-r, k) + P2) - min_k L_r(p-r, k)
where p = (x,y), r is one of the directions.
we process all the directions at once:
0: r=(-dx, 0)
1: r=(-1, -dy)
2: r=(0, -dy)
3: r=(1, -dy)
4: r=(-2, -dy)
5: r=(-1, -dy*2)
6: r=(1, -dy*2)
7: r=(2, -dy)
*/
for( x = x1; x != x2; x += dx )
{
int xm = x*NR2, xd = xm*D2;
int delta0 = minLr[0][xm - dx*NR2] + P2, delta1 = minLr[1][xm - NR2 + 1] + P2;
int delta2 = minLr[1][xm + 2] + P2, delta3 = minLr[1][xm + NR2 + 3] + P2;
CostType* Lr_p0 = Lr[0] + xd - dx*NRD2;
CostType* Lr_p1 = Lr[1] + xd - NRD2 + D2;
CostType* Lr_p2 = Lr[1] + xd + D2*2;
CostType* Lr_p3 = Lr[1] + xd + NRD2 + D2*3;
Lr_p0[-1] = Lr_p0[D] = Lr_p1[-1] = Lr_p1[D] =
Lr_p2[-1] = Lr_p2[D] = Lr_p3[-1] = Lr_p3[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x*D;
CostType* Sp = S + x*D;
#if CV_SSE2
if( useSIMD )
{
__m128i _P1 = _mm_set1_epi16((short)P1);
__m128i _delta0 = _mm_set1_epi16((short)delta0);
__m128i _delta1 = _mm_set1_epi16((short)delta1);
__m128i _delta2 = _mm_set1_epi16((short)delta2);
__m128i _delta3 = _mm_set1_epi16((short)delta3);
__m128i _minL0 = _mm_set1_epi16((short)MAX_COST);
for( d = 0; d < D; d += 8 )
{
__m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d));
__m128i L0, L1, L2, L3;
L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
L1 = _mm_load_si128((const __m128i*)(Lr_p1 + d));
L2 = _mm_load_si128((const __m128i*)(Lr_p2 + d));
L3 = _mm_load_si128((const __m128i*)(Lr_p3 + d));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d - 1)), _P1));
L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d + 1)), _P1));
L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d - 1)), _P1));
L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d + 1)), _P1));
L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d - 1)), _P1));
L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d + 1)), _P1));
L0 = _mm_min_epi16(L0, _delta0);
L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);
L1 = _mm_min_epi16(L1, _delta1);
L1 = _mm_adds_epi16(_mm_subs_epi16(L1, _delta1), Cpd);
L2 = _mm_min_epi16(L2, _delta2);
L2 = _mm_adds_epi16(_mm_subs_epi16(L2, _delta2), Cpd);
L3 = _mm_min_epi16(L3, _delta3);
L3 = _mm_adds_epi16(_mm_subs_epi16(L3, _delta3), Cpd);
_mm_store_si128( (__m128i*)(Lr_p + d), L0);
_mm_store_si128( (__m128i*)(Lr_p + d + D2), L1);
_mm_store_si128( (__m128i*)(Lr_p + d + D2*2), L2);
_mm_store_si128( (__m128i*)(Lr_p + d + D2*3), L3);
__m128i t0 = _mm_min_epi16(_mm_unpacklo_epi16(L0, L2), _mm_unpackhi_epi16(L0, L2));
__m128i t1 = _mm_min_epi16(_mm_unpacklo_epi16(L1, L3), _mm_unpackhi_epi16(L1, L3));
t0 = _mm_min_epi16(_mm_unpacklo_epi16(t0, t1), _mm_unpackhi_epi16(t0, t1));
_minL0 = _mm_min_epi16(_minL0, t0);
__m128i Sval = _mm_load_si128((const __m128i*)(Sp + d));
L0 = _mm_adds_epi16(L0, L1);
L2 = _mm_adds_epi16(L2, L3);
Sval = _mm_adds_epi16(Sval, L0);
Sval = _mm_adds_epi16(Sval, L2);
_mm_store_si128((__m128i*)(Sp + d), Sval);
}
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
_mm_storel_epi64((__m128i*)&minLr[0][xm], _minL0);
}
else
#endif
{
int minL0 = MAX_COST, minL1 = MAX_COST, minL2 = MAX_COST, minL3 = MAX_COST;
for( d = 0; d < D; d++ )
{
int Cpd = Cp[d], L0, L1, L2, L3;
L0 = Cpd + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
L1 = Cpd + std::min((int)Lr_p1[d], std::min(Lr_p1[d-1] + P1, std::min(Lr_p1[d+1] + P1, delta1))) - delta1;
L2 = Cpd + std::min((int)Lr_p2[d], std::min(Lr_p2[d-1] + P1, std::min(Lr_p2[d+1] + P1, delta2))) - delta2;
L3 = Cpd + std::min((int)Lr_p3[d], std::min(Lr_p3[d-1] + P1, std::min(Lr_p3[d+1] + P1, delta3))) - delta3;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
Lr_p[d + D2] = (CostType)L1;
minL1 = std::min(minL1, L1);
Lr_p[d + D2*2] = (CostType)L2;
minL2 = std::min(minL2, L2);
Lr_p[d + D2*3] = (CostType)L3;
minL3 = std::min(minL3, L3);
Sp[d] = saturate_cast<CostType>(Sp[d] + L0 + L1 + L2 + L3);
}
minLr[0][xm] = (CostType)minL0;
minLr[0][xm+1] = (CostType)minL1;
minLr[0][xm+2] = (CostType)minL2;
minLr[0][xm+3] = (CostType)minL3;
}
}
if( pass == npasses )
{
for( x = 0; x < width; x++ )
{
disp1ptr[x] = disp2ptr[x] = (DispType)INVALID_DISP_SCALED;
disp2cost[x] = MAX_COST;
}
for( x = width1 - 1; x >= 0; x-- )
{
CostType* Sp = S + x*D;
int minS = MAX_COST, bestDisp = -1;
if( npasses == 1 )
{
int xm = x*NR2, xd = xm*D2;
int minL0 = MAX_COST;
int delta0 = minLr[0][xm + NR2] + P2;
CostType* Lr_p0 = Lr[0] + xd + NRD2;
Lr_p0[-1] = Lr_p0[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x*D;
#if CV_SSE2
if( useSIMD )
{
__m128i _P1 = _mm_set1_epi16((short)P1);
__m128i _delta0 = _mm_set1_epi16((short)delta0);
__m128i _minL0 = _mm_set1_epi16((short)minL0);
__m128i _minS = _mm_set1_epi16(MAX_COST), _bestDisp = _mm_set1_epi16(-1);
__m128i _d8 = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7), _8 = _mm_set1_epi16(8);
for( d = 0; d < D; d += 8 )
{
__m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d)), L0;
L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
L0 = _mm_min_epi16(L0, _delta0);
L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);
_mm_store_si128((__m128i*)(Lr_p + d), L0);
_minL0 = _mm_min_epi16(_minL0, L0);
L0 = _mm_adds_epi16(L0, *(__m128i*)(Sp + d));
_mm_store_si128((__m128i*)(Sp + d), L0);
__m128i mask = _mm_cmpgt_epi16(_minS, L0);
_minS = _mm_min_epi16(_minS, L0);
_bestDisp = _mm_xor_si128(_bestDisp, _mm_and_si128(_mm_xor_si128(_bestDisp,_d8), mask));
_d8 = _mm_adds_epi16(_d8, _8);
}
short CV_DECL_ALIGNED(16) bestDispBuf[8];
_mm_store_si128((__m128i*)bestDispBuf, _bestDisp);
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 4));
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 2));
__m128i qS = _mm_min_epi16(_minS, _mm_srli_si128(_minS, 8));
qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 4));
qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 2));
minLr[0][xm] = (CostType)_mm_cvtsi128_si32(_minL0);
minS = (CostType)_mm_cvtsi128_si32(qS);
qS = _mm_shuffle_epi32(_mm_unpacklo_epi16(qS, qS), 0);
qS = _mm_cmpeq_epi16(_minS, qS);
int idx = _mm_movemask_epi8(_mm_packs_epi16(qS, qS)) & 255;
bestDisp = bestDispBuf[LSBTab[idx]];
}
else
#endif
{
for( d = 0; d < D; d++ )
{
int L0 = Cp[d] + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
int Sval = Sp[d] = saturate_cast<CostType>(Sp[d] + L0);
if( Sval < minS )
{
minS = Sval;
bestDisp = d;
}
}
minLr[0][xm] = (CostType)minL0;
}
}
else
{
for( d = 0; d < D; d++ )
{
int Sval = Sp[d];
if( Sval < minS )
{
minS = Sval;
bestDisp = d;
}
}
}
for( d = 0; d < D; d++ )
{
if( Sp[d]*(100 - uniquenessRatio) < minS*100 && std::abs(bestDisp - d) > 1 )
break;
}
if( d < D )
continue;
d = bestDisp;
int _x2 = x + minX1 - d - minD;
if( disp2cost[_x2] > minS )
{
disp2cost[_x2] = (CostType)minS;
disp2ptr[_x2] = (DispType)(d + minD);
}
if( 0 < d && d < D-1 )
{
// do subpixel quadratic interpolation:
// fit parabola into (x1=d-1, y1=Sp[d-1]), (x2=d, y2=Sp[d]), (x3=d+1, y3=Sp[d+1])
// then find minimum of the parabola.
int denom2 = std::max(Sp[d-1] + Sp[d+1] - 2*Sp[d], 1);
d = d*DISP_SCALE + ((Sp[d-1] - Sp[d+1])*DISP_SCALE + denom2)/(denom2*2);
}
else
d *= DISP_SCALE;
disp1ptr[x + minX1] = (DispType)(d + minD*DISP_SCALE);
}
for( x = minX1; x < maxX1; x++ )
{
// we round the computed disparity both towards -inf and +inf and check
// if either of the corresponding disparities in disp2 is consistent.
// This is to give the computed disparity a chance to look valid if it is.
int d1 = disp1ptr[x];
if( d1 == INVALID_DISP_SCALED )
continue;
int _d = d1 >> DISP_SHIFT;
int d_ = (d1 + DISP_SCALE-1) >> DISP_SHIFT;
int _x = x - _d, x_ = x - d_;
if( 0 <= _x && _x < width && disp2ptr[_x] >= minD && std::abs(disp2ptr[_x] - _d) > disp12MaxDiff &&
0 <= x_ && x_ < width && disp2ptr[x_] >= minD && std::abs(disp2ptr[x_] - d_) > disp12MaxDiff )
disp1ptr[x] = (DispType)INVALID_DISP_SCALED;
}
}
// now shift the cyclic buffers
std::swap( Lr[0], Lr[1] );
std::swap( minLr[0], minLr[1] );
}
}
}
class StereoBinarySGBMImpl : public StereoBinarySGBM __m128i _delta0 = _mm_set1_epi16((short)delta0);
{ __m128i _delta1 = _mm_set1_epi16((short)delta1);
public: __m128i _delta2 = _mm_set1_epi16((short)delta2);
StereoBinarySGBMImpl() __m128i _delta3 = _mm_set1_epi16((short)delta3);
{ __m128i _minL0 = _mm_set1_epi16((short)MAX_COST);
params = StereoBinarySGBMParams();
}
StereoBinarySGBMImpl( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
int _mode )
{
params = StereoBinarySGBMParams( _minDisparity, _numDisparities, _SADWindowSize,
_P1, _P2, _disp12MaxDiff, _preFilterCap,
_uniquenessRatio, _speckleWindowSize, _speckleRange,
_mode );
}
void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
{
Mat left = leftarr.getMat(), right = rightarr.getMat();
CV_Assert( left.size() == right.size() && left.type() == right.type() &&
left.depth() == CV_8U );
disparr.create( left.size(), CV_16S );
Mat disp = disparr.getMat();
computeDisparityBinarySGBM( left, right, disp, params, buffer );
medianBlur(disp, disp, 3);
if( params.speckleWindowSize > 0 )
filterSpeckles(disp, (params.minDisparity - 1)*StereoMatcher::DISP_SCALE, params.speckleWindowSize,
StereoMatcher::DISP_SCALE*params.speckleRange, buffer);
}
int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
int getNumDisparities() const { return params.numDisparities; }
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }
int getBlockSize() const { return params.SADWindowSize; }
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }
int getSpeckleWindowSize() const { return params.speckleWindowSize; }
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }
int getSpeckleRange() const { return params.speckleRange; }
void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }
int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }
int getPreFilterCap() const { return params.preFilterCap; }
void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }
int getUniquenessRatio() const { return params.uniquenessRatio; }
void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }
int getP1() const { return params.P1; }
void setP1(int P1) { params.P1 = P1; }
int getP2() const { return params.P2; }
void setP2(int P2) { params.P2 = P2; }
int getMode() const { return params.mode; }
void setMode(int mode) { params.mode = mode; }
void write(FileStorage& fs) const
{
fs << "name" << name_
<< "minDisparity" << params.minDisparity
<< "numDisparities" << params.numDisparities
<< "blockSize" << params.SADWindowSize
<< "speckleWindowSize" << params.speckleWindowSize
<< "speckleRange" << params.speckleRange
<< "disp12MaxDiff" << params.disp12MaxDiff
<< "preFilterCap" << params.preFilterCap
<< "uniquenessRatio" << params.uniquenessRatio
<< "P1" << params.P1
<< "P2" << params.P2
<< "mode" << params.mode;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert( n.isString() && String(n) == name_ );
params.minDisparity = (int)fn["minDisparity"];
params.numDisparities = (int)fn["numDisparities"];
params.SADWindowSize = (int)fn["blockSize"];
params.speckleWindowSize = (int)fn["speckleWindowSize"];
params.speckleRange = (int)fn["speckleRange"];
params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
params.preFilterCap = (int)fn["preFilterCap"];
params.uniquenessRatio = (int)fn["uniquenessRatio"];
params.P1 = (int)fn["P1"];
params.P2 = (int)fn["P2"];
params.mode = (int)fn["mode"];
}
StereoBinarySGBMParams params;
Mat buffer;
static const char* name_;
};
const char* StereoBinarySGBMImpl::name_ = "StereoMatcher.SGBM";
Ptr<StereoBinarySGBM> StereoBinarySGBM::create(int minDisparity, int numDisparities, int SADWindowSize,
int P1, int P2, int disp12MaxDiff,
int preFilterCap, int uniquenessRatio,
int speckleWindowSize, int speckleRange,
int mode)
{
return Ptr<StereoBinarySGBM>(
new StereoBinarySGBMImpl(minDisparity, numDisparities, SADWindowSize,
P1, P2, disp12MaxDiff,
preFilterCap, uniquenessRatio,
speckleWindowSize, speckleRange,
mode));
}
Rect getValidDisparityROI( Rect roi1, Rect roi2, for( d = 0; d < D; d += 8 )
int minDisparity, {
int numberOfDisparities, __m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d));
int SADWindowSize ) __m128i L0, L1, L2, L3;
{
int SW2 = SADWindowSize/2;
int minD = minDisparity, maxD = minDisparity + numberOfDisparities - 1;
int xmin = std::max(roi1.x, roi2.x + maxD) + SW2; L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
int xmax = std::min(roi1.x + roi1.width, roi2.x + roi2.width - minD) - SW2; L1 = _mm_load_si128((const __m128i*)(Lr_p1 + d));
int ymin = std::max(roi1.y, roi2.y) + SW2; L2 = _mm_load_si128((const __m128i*)(Lr_p2 + d));
int ymax = std::min(roi1.y + roi1.height, roi2.y + roi2.height) - SW2; L3 = _mm_load_si128((const __m128i*)(Lr_p3 + d));
Rect r(xmin, ymin, xmax - xmin, ymax - ymin); L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
return r.width > 0 && r.height > 0 ? r : Rect(); L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d - 1)), _P1));
} L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d + 1)), _P1));
typedef cv::Point_<short> Point2s; L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d - 1)), _P1));
L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d + 1)), _P1));
template <typename T> L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d - 1)), _P1));
void filterSpecklesImpl(cv::Mat& img, int newVal, int maxSpeckleSize, int maxDiff, cv::Mat& _buf) L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d + 1)), _P1));
{
using namespace cv; L0 = _mm_min_epi16(L0, _delta0);
L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);
int width = img.cols, height = img.rows, npixels = width*height;
size_t bufSize = npixels*(int)(sizeof(Point2s) + sizeof(int) + sizeof(uchar)); L1 = _mm_min_epi16(L1, _delta1);
if( !_buf.isContinuous() || _buf.empty() || _buf.cols*_buf.rows*_buf.elemSize() < bufSize ) L1 = _mm_adds_epi16(_mm_subs_epi16(L1, _delta1), Cpd);
_buf.create(1, (int)bufSize, CV_8U);
L2 = _mm_min_epi16(L2, _delta2);
uchar* buf = _buf.ptr(); L2 = _mm_adds_epi16(_mm_subs_epi16(L2, _delta2), Cpd);
int i, j, dstep = (int)(img.step/sizeof(T));
int* labels = (int*)buf;
buf += npixels*sizeof(labels[0]);
Point2s* wbuf = (Point2s*)buf;
buf += npixels*sizeof(wbuf[0]);
uchar* rtype = (uchar*)buf;
int curlabel = 0;
// clear out label assignments
memset(labels, 0, npixels*sizeof(labels[0]));
for( i = 0; i < height; i++ )
{
T* ds = img.ptr<T>(i);
int* ls = labels + width*i;
for( j = 0; j < width; j++ )
{
if( ds[j] != newVal ) // not a bad disparity
{
if( ls[j] ) // has a label, check for bad label
{
if( rtype[ls[j]] ) // small region, zero out disparity
ds[j] = (T)newVal;
}
// no label, assign and propagate
else
{
Point2s* ws = wbuf; // initialize wavefront
Point2s p((short)j, (short)i); // current pixel
curlabel++; // next label
int count = 0; // current region size
ls[j] = curlabel;
// wavefront propagation
while( ws >= wbuf ) // wavefront not empty
{
count++;
// put neighbors onto wavefront
T* dpp = &img.at<T>(p.y, p.x);
T dp = *dpp;
int* lpp = labels + width*p.y + p.x;
if( p.y < height-1 && !lpp[+width] && dpp[+dstep] != newVal && std::abs(dp - dpp[+dstep]) <= maxDiff )
{
lpp[+width] = curlabel;
*ws++ = Point2s(p.x, p.y+1);
}
if( p.y > 0 && !lpp[-width] && dpp[-dstep] != newVal && std::abs(dp - dpp[-dstep]) <= maxDiff )
{
lpp[-width] = curlabel;
*ws++ = Point2s(p.x, p.y-1);
}
if( p.x < width-1 && !lpp[+1] && dpp[+1] != newVal && std::abs(dp - dpp[+1]) <= maxDiff )
{
lpp[+1] = curlabel;
*ws++ = Point2s(p.x+1, p.y);
}
if( p.x > 0 && !lpp[-1] && dpp[-1] != newVal && std::abs(dp - dpp[-1]) <= maxDiff )
{
lpp[-1] = curlabel;
*ws++ = Point2s(p.x-1, p.y);
}
// pop most recent and propagate
// NB: could try least recent, maybe better convergence
p = *--ws;
}
// assign label type
if( count <= maxSpeckleSize ) // speckle region
{
rtype[ls[j]] = 1; // small region label
ds[j] = (T)newVal;
}
else
rtype[ls[j]] = 0; // large region label
}
}
}
}
}
L3 = _mm_min_epi16(L3, _delta3);
L3 = _mm_adds_epi16(_mm_subs_epi16(L3, _delta3), Cpd);
_mm_store_si128( (__m128i*)(Lr_p + d), L0);
_mm_store_si128( (__m128i*)(Lr_p + d + D2), L1);
_mm_store_si128( (__m128i*)(Lr_p + d + D2*2), L2);
_mm_store_si128( (__m128i*)(Lr_p + d + D2*3), L3);
__m128i t0 = _mm_min_epi16(_mm_unpacklo_epi16(L0, L2), _mm_unpackhi_epi16(L0, L2));
__m128i t1 = _mm_min_epi16(_mm_unpacklo_epi16(L1, L3), _mm_unpackhi_epi16(L1, L3));
t0 = _mm_min_epi16(_mm_unpacklo_epi16(t0, t1), _mm_unpackhi_epi16(t0, t1));
_minL0 = _mm_min_epi16(_minL0, t0);
__m128i Sval = _mm_load_si128((const __m128i*)(Sp + d));
L0 = _mm_adds_epi16(L0, L1);
L2 = _mm_adds_epi16(L2, L3);
Sval = _mm_adds_epi16(Sval, L0);
Sval = _mm_adds_epi16(Sval, L2);
_mm_store_si128((__m128i*)(Sp + d), Sval);
}
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
_mm_storel_epi64((__m128i*)&minLr[0][xm], _minL0);
}
else
#endif
{
int minL0 = MAX_COST, minL1 = MAX_COST, minL2 = MAX_COST, minL3 = MAX_COST;
for( d = 0; d < D; d++ )
{
int Cpd = Cp[d], L0, L1, L2, L3;
L0 = Cpd + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
L1 = Cpd + std::min((int)Lr_p1[d], std::min(Lr_p1[d-1] + P1, std::min(Lr_p1[d+1] + P1, delta1))) - delta1;
L2 = Cpd + std::min((int)Lr_p2[d], std::min(Lr_p2[d-1] + P1, std::min(Lr_p2[d+1] + P1, delta2))) - delta2;
L3 = Cpd + std::min((int)Lr_p3[d], std::min(Lr_p3[d-1] + P1, std::min(Lr_p3[d+1] + P1, delta3))) - delta3;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
Lr_p[d + D2] = (CostType)L1;
minL1 = std::min(minL1, L1);
Lr_p[d + D2*2] = (CostType)L2;
minL2 = std::min(minL2, L2);
Lr_p[d + D2*3] = (CostType)L3;
minL3 = std::min(minL3, L3);
Sp[d] = saturate_cast<CostType>(Sp[d] + L0 + L1 + L2 + L3);
}
minLr[0][xm] = (CostType)minL0;
minLr[0][xm+1] = (CostType)minL1;
minLr[0][xm+2] = (CostType)minL2;
minLr[0][xm+3] = (CostType)minL3;
}
}
if( pass == npasses )
{
for( x = 0; x < width; x++ )
{
disp1ptr[x] = disp2ptr[x] = (DispType)INVALID_DISP_SCALED;
disp2cost[x] = MAX_COST;
}
for( x = width1 - 1; x >= 0; x-- )
{
CostType* Sp = S + x*D;
int minS = MAX_COST, bestDisp = -1;
if( npasses == 1 )
{
int xm = x*NR2, xd = xm*D2;
int minL0 = MAX_COST;
int delta0 = minLr[0][xm + NR2] + P2;
CostType* Lr_p0 = Lr[0] + xd + NRD2;
Lr_p0[-1] = Lr_p0[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x*D;
#if CV_SSE2
if( useSIMD )
{
__m128i _P1 = _mm_set1_epi16((short)P1);
__m128i _delta0 = _mm_set1_epi16((short)delta0);
__m128i _minL0 = _mm_set1_epi16((short)minL0);
__m128i _minS = _mm_set1_epi16(MAX_COST), _bestDisp = _mm_set1_epi16(-1);
__m128i _d8 = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7), _8 = _mm_set1_epi16(8);
for( d = 0; d < D; d += 8 )
{
__m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d)), L0;
L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
L0 = _mm_min_epi16(L0, _delta0);
L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);
_mm_store_si128((__m128i*)(Lr_p + d), L0);
_minL0 = _mm_min_epi16(_minL0, L0);
L0 = _mm_adds_epi16(L0, *(__m128i*)(Sp + d));
_mm_store_si128((__m128i*)(Sp + d), L0);
__m128i mask = _mm_cmpgt_epi16(_minS, L0);
_minS = _mm_min_epi16(_minS, L0);
_bestDisp = _mm_xor_si128(_bestDisp, _mm_and_si128(_mm_xor_si128(_bestDisp,_d8), mask));
_d8 = _mm_adds_epi16(_d8, _8);
}
short CV_DECL_ALIGNED(16) bestDispBuf[8];
_mm_store_si128((__m128i*)bestDispBuf, _bestDisp);
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 4));
_minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 2));
__m128i qS = _mm_min_epi16(_minS, _mm_srli_si128(_minS, 8));
qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 4));
qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 2));
minLr[0][xm] = (CostType)_mm_cvtsi128_si32(_minL0);
minS = (CostType)_mm_cvtsi128_si32(qS);
qS = _mm_shuffle_epi32(_mm_unpacklo_epi16(qS, qS), 0);
qS = _mm_cmpeq_epi16(_minS, qS);
int idx = _mm_movemask_epi8(_mm_packs_epi16(qS, qS)) & 255;
bestDisp = bestDispBuf[LSBTab[idx]];
}
else
#endif
{
for( d = 0; d < D; d++ )
{
int L0 = Cp[d] + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
int Sval = Sp[d] = saturate_cast<CostType>(Sp[d] + L0);
if( Sval < minS )
{
minS = Sval;
bestDisp = d;
}
}
minLr[0][xm] = (CostType)minL0;
}
}
else
{
for( d = 0; d < D; d++ )
{
int Sval = Sp[d];
if( Sval < minS )
{
minS = Sval;
bestDisp = d;
}
}
}
for( d = 0; d < D; d++ )
{
if( Sp[d]*(100 - uniquenessRatio) < minS*100 && std::abs(bestDisp - d) > 1 )
break;
}
if( d < D )
continue;
d = bestDisp;
int _x2 = x + minX1 - d - minD;
if( disp2cost[_x2] > minS )
{
disp2cost[_x2] = (CostType)minS;
disp2ptr[_x2] = (DispType)(d + minD);
}
if( 0 < d && d < D-1 )
{
// do subpixel quadratic interpolation:
// fit parabola into (x1=d-1, y1=Sp[d-1]), (x2=d, y2=Sp[d]), (x3=d+1, y3=Sp[d+1])
// then find minimum of the parabola.
int denom2 = std::max(Sp[d-1] + Sp[d+1] - 2*Sp[d], 1);
d = d*DISP_SCALE + ((Sp[d-1] - Sp[d+1])*DISP_SCALE + denom2)/(denom2*2);
}
else
d *= DISP_SCALE;
disp1ptr[x + minX1] = (DispType)(d + minD*DISP_SCALE);
}
for( x = minX1; x < maxX1; x++ )
{
// we round the computed disparity both towards -inf and +inf and check
// if either of the corresponding disparities in disp2 is consistent.
// This is to give the computed disparity a chance to look valid if it is.
int d1 = disp1ptr[x];
if( d1 == INVALID_DISP_SCALED )
continue;
int _d = d1 >> DISP_SHIFT;
int d_ = (d1 + DISP_SCALE-1) >> DISP_SHIFT;
int _x = x - _d, x_ = x - d_;
if( 0 <= _x && _x < width && disp2ptr[_x] >= minD && std::abs(disp2ptr[_x] - _d) > disp12MaxDiff &&
0 <= x_ && x_ < width && disp2ptr[x_] >= minD && std::abs(disp2ptr[x_] - d_) > disp12MaxDiff )
disp1ptr[x] = (DispType)INVALID_DISP_SCALED;
}
}
// now shift the cyclic buffers
std::swap( Lr[0], Lr[1] );
std::swap( minLr[0], minLr[1] );
}
}
}
class StereoBinarySGBMImpl : public StereoBinarySGBM
{
public:
StereoBinarySGBMImpl()
{
params = StereoBinarySGBMParams();
}
StereoBinarySGBMImpl( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
int _mode )
{
params = StereoBinarySGBMParams( _minDisparity, _numDisparities, _SADWindowSize,
_P1, _P2, _disp12MaxDiff, _preFilterCap,
_uniquenessRatio, _speckleWindowSize, _speckleRange,
_mode );
}
void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
{
Mat left = leftarr.getMat(), right = rightarr.getMat();
CV_Assert( left.size() == right.size() && left.type() == right.type() &&
left.depth() == CV_8U );
disparr.create( left.size(), CV_16S );
Mat disp = disparr.getMat();
computeDisparityBinarySGBM( left, right, disp, params, buffer );
medianBlur(disp, disp, 3);
if( params.speckleWindowSize > 0 )
filterSpeckles(disp, (params.minDisparity - 1)*StereoMatcher::DISP_SCALE, params.speckleWindowSize,
StereoMatcher::DISP_SCALE*params.speckleRange, buffer);
}
int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
int getNumDisparities() const { return params.numDisparities; }
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }
int getBlockSize() const { return params.SADWindowSize; }
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }
int getSpeckleWindowSize() const { return params.speckleWindowSize; }
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }
int getSpeckleRange() const { return params.speckleRange; }
void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }
int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }
int getPreFilterCap() const { return params.preFilterCap; }
void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }
int getUniquenessRatio() const { return params.uniquenessRatio; }
void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }
int getP1() const { return params.P1; }
void setP1(int P1) { params.P1 = P1; }
int getP2() const { return params.P2; }
void setP2(int P2) { params.P2 = P2; }
int getMode() const { return params.mode; }
void setMode(int mode) { params.mode = mode; }
void write(FileStorage& fs) const
{
fs << "name" << name_
<< "minDisparity" << params.minDisparity
<< "numDisparities" << params.numDisparities
<< "blockSize" << params.SADWindowSize
<< "speckleWindowSize" << params.speckleWindowSize
<< "speckleRange" << params.speckleRange
<< "disp12MaxDiff" << params.disp12MaxDiff
<< "preFilterCap" << params.preFilterCap
<< "uniquenessRatio" << params.uniquenessRatio
<< "P1" << params.P1
<< "P2" << params.P2
<< "mode" << params.mode;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert( n.isString() && String(n) == name_ );
params.minDisparity = (int)fn["minDisparity"];
params.numDisparities = (int)fn["numDisparities"];
params.SADWindowSize = (int)fn["blockSize"];
params.speckleWindowSize = (int)fn["speckleWindowSize"];
params.speckleRange = (int)fn["speckleRange"];
params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
params.preFilterCap = (int)fn["preFilterCap"];
params.uniquenessRatio = (int)fn["uniquenessRatio"];
params.P1 = (int)fn["P1"];
params.P2 = (int)fn["P2"];
params.mode = (int)fn["mode"];
}
StereoBinarySGBMParams params;
Mat buffer;
static const char* name_;
};
const char* StereoBinarySGBMImpl::name_ = "StereoMatcher.SGBM";
Ptr<StereoBinarySGBM> StereoBinarySGBM::create(int minDisparity, int numDisparities, int SADWindowSize,
int P1, int P2, int disp12MaxDiff,
int preFilterCap, int uniquenessRatio,
int speckleWindowSize, int speckleRange,
int mode)
{
return Ptr<StereoBinarySGBM>(
new StereoBinarySGBMImpl(minDisparity, numDisparities, SADWindowSize,
P1, P2, disp12MaxDiff,
preFilterCap, uniquenessRatio,
speckleWindowSize, speckleRange,
mode));
}
Rect getValidDisparityROI( Rect roi1, Rect roi2,
int minDisparity,
int numberOfDisparities,
int SADWindowSize )
{
int SW2 = SADWindowSize/2;
int minD = minDisparity, maxD = minDisparity + numberOfDisparities - 1;
int xmin = std::max(roi1.x, roi2.x + maxD) + SW2;
int xmax = std::min(roi1.x + roi1.width, roi2.x + roi2.width - minD) - SW2;
int ymin = std::max(roi1.y, roi2.y) + SW2;
int ymax = std::min(roi1.y + roi1.height, roi2.y + roi2.height) - SW2;
Rect r(xmin, ymin, xmax - xmin, ymax - ymin);
return r.width > 0 && r.height > 0 ? r : Rect();
}
typedef cv::Point_<short> Point2s;
template <typename T>
void filterSpecklesImpl(cv::Mat& img, int newVal, int maxSpeckleSize, int maxDiff, cv::Mat& _buf)
{
using namespace cv;
int width = img.cols, height = img.rows, npixels = width*height;
size_t bufSize = npixels*(int)(sizeof(Point2s) + sizeof(int) + sizeof(uchar));
if( !_buf.isContinuous() || _buf.empty() || _buf.cols*_buf.rows*_buf.elemSize() < bufSize )
_buf.create(1, (int)bufSize, CV_8U);
uchar* buf = _buf.ptr();
int i, j, dstep = (int)(img.step/sizeof(T));
int* labels = (int*)buf;
buf += npixels*sizeof(labels[0]);
Point2s* wbuf = (Point2s*)buf;
buf += npixels*sizeof(wbuf[0]);
uchar* rtype = (uchar*)buf;
int curlabel = 0;
// clear out label assignments
memset(labels, 0, npixels*sizeof(labels[0]));
for( i = 0; i < height; i++ )
{
T* ds = img.ptr<T>(i);
int* ls = labels + width*i;
for( j = 0; j < width; j++ )
{
if( ds[j] != newVal ) // not a bad disparity
{
if( ls[j] ) // has a label, check for bad label
{
if( rtype[ls[j]] ) // small region, zero out disparity
ds[j] = (T)newVal;
}
// no label, assign and propagate
else
{
Point2s* ws = wbuf; // initialize wavefront
Point2s p((short)j, (short)i); // current pixel
curlabel++; // next label
int count = 0; // current region size
ls[j] = curlabel;
// wavefront propagation
while( ws >= wbuf ) // wavefront not empty
{
count++;
// put neighbors onto wavefront
T* dpp = &img.at<T>(p.y, p.x);
T dp = *dpp;
int* lpp = labels + width*p.y + p.x;
if( p.y < height-1 && !lpp[+width] && dpp[+dstep] != newVal && std::abs(dp - dpp[+dstep]) <= maxDiff )
{
lpp[+width] = curlabel;
*ws++ = Point2s(p.x, p.y+1);
}
if( p.y > 0 && !lpp[-width] && dpp[-dstep] != newVal && std::abs(dp - dpp[-dstep]) <= maxDiff )
{
lpp[-width] = curlabel;
*ws++ = Point2s(p.x, p.y-1);
}
if( p.x < width-1 && !lpp[+1] && dpp[+1] != newVal && std::abs(dp - dpp[+1]) <= maxDiff )
{
lpp[+1] = curlabel;
*ws++ = Point2s(p.x+1, p.y);
}
if( p.x > 0 && !lpp[-1] && dpp[-1] != newVal && std::abs(dp - dpp[-1]) <= maxDiff )
{
lpp[-1] = curlabel;
*ws++ = Point2s(p.x-1, p.y);
}
// pop most recent and propagate
// NB: could try least recent, maybe better convergence
p = *--ws;
}
// assign label type
if( count <= maxSpeckleSize ) // speckle region
{
rtype[ls[j]] = 1; // small region label
ds[j] = (T)newVal;
}
else
rtype[ls[j]] = 0; // large region label
}
}
}
}
}
}
} }
void cv::filterSpeckles( InputOutputArray _img, double _newval, int maxSpeckleSize, void cv::stereo::filterSpeckles( InputOutputArray _img, double _newval, int maxSpeckleSize,
double _maxDiff, InputOutputArray __buf ) double _maxDiff, InputOutputArray __buf )
{ {
Mat img = _img.getMat(); Mat img = _img.getMat();
int type = img.type(); int type = img.type();
Mat temp, &_buf = __buf.needed() ? __buf.getMatRef() : temp; Mat temp, &_buf = __buf.needed() ? __buf.getMatRef() : temp;
CV_Assert( type == CV_8UC1 || type == CV_16SC1 ); CV_Assert( type == CV_8UC1 || type == CV_16SC1 );
int newVal = cvRound(_newval), maxDiff = cvRound(_maxDiff); int newVal = cvRound(_newval), maxDiff = cvRound(_maxDiff);
#if IPP_VERSION_X100 >= 801 #if IPP_VERSION_X100 >= 801
CV_IPP_CHECK() CV_IPP_CHECK()
{ {
Ipp32s bufsize = 0; Ipp32s bufsize = 0;
IppiSize roisize = { img.cols, img.rows }; IppiSize roisize = { img.cols, img.rows };
IppDataType datatype = type == CV_8UC1 ? ipp8u : ipp16s; IppDataType datatype = type == CV_8UC1 ? ipp8u : ipp16s;
if (!__buf.needed() && (type == CV_8UC1 || type == CV_16SC1)) if (!__buf.needed() && (type == CV_8UC1 || type == CV_16SC1))
{ {
IppStatus status = ippiMarkSpecklesGetBufferSize(roisize, datatype, CV_MAT_CN(type), &bufsize); IppStatus status = ippiMarkSpecklesGetBufferSize(roisize, datatype, CV_MAT_CN(type), &bufsize);
Ipp8u * buffer = ippsMalloc_8u(bufsize); Ipp8u * buffer = ippsMalloc_8u(bufsize);
if ((int)status >= 0) if ((int)status >= 0)
{ {
if (type == CV_8UC1) if (type == CV_8UC1)
status = ippiMarkSpeckles_8u_C1IR(img.ptr<Ipp8u>(), (int)img.step, roisize, status = ippiMarkSpeckles_8u_C1IR(img.ptr<Ipp8u>(), (int)img.step, roisize,
(Ipp8u)newVal, maxSpeckleSize, (Ipp8u)maxDiff, ippiNormL1, buffer); (Ipp8u)newVal, maxSpeckleSize, (Ipp8u)maxDiff, ippiNormL1, buffer);
else else
status = ippiMarkSpeckles_16s_C1IR(img.ptr<Ipp16s>(), (int)img.step, roisize, status = ippiMarkSpeckles_16s_C1IR(img.ptr<Ipp16s>(), (int)img.step, roisize,
(Ipp16s)newVal, maxSpeckleSize, (Ipp16s)maxDiff, ippiNormL1, buffer); (Ipp16s)newVal, maxSpeckleSize, (Ipp16s)maxDiff, ippiNormL1, buffer);
} }
if (status >= 0) if (status >= 0)
{ {
CV_IMPL_ADD(CV_IMPL_IPP); CV_IMPL_ADD(CV_IMPL_IPP);
return; return;
} }
setIppErrorStatus(); setIppErrorStatus();
} }
} }
#endif #endif
if (type == CV_8UC1) if (type == CV_8UC1)
filterSpecklesImpl<uchar>(img, newVal, maxSpeckleSize, maxDiff, _buf); filterSpecklesImpl<uchar>(img, newVal, maxSpeckleSize, maxDiff, _buf);
else else
filterSpecklesImpl<short>(img, newVal, maxSpeckleSize, maxDiff, _buf); filterSpecklesImpl<short>(img, newVal, maxSpeckleSize, maxDiff, _buf);
} }
void cv::validateDisparity( InputOutputArray _disp, InputArray _cost, int minDisparity, void cv::stereo::validateDisparity( InputOutputArray _disp, InputArray _cost, int minDisparity,
int numberOfDisparities, int disp12MaxDiff ) int numberOfDisparities, int disp12MaxDiff )
{ {
Mat disp = _disp.getMat(), cost = _cost.getMat(); Mat disp = _disp.getMat(), cost = _cost.getMat();
int cols = disp.cols, rows = disp.rows; int cols = disp.cols, rows = disp.rows;
int minD = minDisparity, maxD = minDisparity + numberOfDisparities; int minD = minDisparity, maxD = minDisparity + numberOfDisparities;
int x, minX1 = std::max(maxD, 0), maxX1 = cols + std::min(minD, 0); int x, minX1 = std::max(maxD, 0), maxX1 = cols + std::min(minD, 0);
AutoBuffer<int> _disp2buf(cols*2); AutoBuffer<int> _disp2buf(cols*2);
int* disp2buf = _disp2buf; int* disp2buf = _disp2buf;
int* disp2cost = disp2buf + cols; int* disp2cost = disp2buf + cols;
const int DISP_SHIFT = 4, DISP_SCALE = 1 << DISP_SHIFT; const int DISP_SHIFT = 4, DISP_SCALE = 1 << DISP_SHIFT;
int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE; int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE;
int costType = cost.type(); int costType = cost.type();
disp12MaxDiff *= DISP_SCALE; disp12MaxDiff *= DISP_SCALE;
CV_Assert( numberOfDisparities > 0 && disp.type() == CV_16S && CV_Assert( numberOfDisparities > 0 && disp.type() == CV_16S &&
(costType == CV_16S || costType == CV_32S) && (costType == CV_16S || costType == CV_32S) &&
disp.size() == cost.size() ); disp.size() == cost.size() );
for( int y = 0; y < rows; y++ ) for( int y = 0; y < rows; y++ )
{ {
short* dptr = disp.ptr<short>(y); short* dptr = disp.ptr<short>(y);
for( x = 0; x < cols; x++ ) for( x = 0; x < cols; x++ )
{ {
disp2buf[x] = INVALID_DISP_SCALED; disp2buf[x] = INVALID_DISP_SCALED;
disp2cost[x] = INT_MAX; disp2cost[x] = INT_MAX;
} }
if( costType == CV_16S ) if( costType == CV_16S )
{ {
const short* cptr = cost.ptr<short>(y); const short* cptr = cost.ptr<short>(y);
for( x = minX1; x < maxX1; x++ ) for( x = minX1; x < maxX1; x++ )
{ {
int d = dptr[x], c = cptr[x]; int d = dptr[x], c = cptr[x];
int x2 = x - ((d + DISP_SCALE/2) >> DISP_SHIFT); int x2 = x - ((d + DISP_SCALE/2) >> DISP_SHIFT);
if( disp2cost[x2] > c ) if( disp2cost[x2] > c )
{ {
disp2cost[x2] = c; disp2cost[x2] = c;
disp2buf[x2] = d; disp2buf[x2] = d;
} }
} }
} }
else else
{ {
const int* cptr = cost.ptr<int>(y); const int* cptr = cost.ptr<int>(y);
for( x = minX1; x < maxX1; x++ ) for( x = minX1; x < maxX1; x++ )
{ {
int d = dptr[x], c = cptr[x]; int d = dptr[x], c = cptr[x];
int x2 = x - ((d + DISP_SCALE/2) >> DISP_SHIFT); int x2 = x - ((d + DISP_SCALE/2) >> DISP_SHIFT);
if( disp2cost[x2] < c ) if( disp2cost[x2] < c )
{ {
disp2cost[x2] = c; disp2cost[x2] = c;
disp2buf[x2] = d; disp2buf[x2] = d;
} }
} }
} }
for( x = minX1; x < maxX1; x++ ) for( x = minX1; x < maxX1; x++ )
{ {
// we round the computed disparity both towards -inf and +inf and check // we round the computed disparity both towards -inf and +inf and check
// if either of the corresponding disparities in disp2 is consistent. // if either of the corresponding disparities in disp2 is consistent.
// This is to give the computed disparity a chance to look valid if it is. // This is to give the computed disparity a chance to look valid if it is.
int d = dptr[x]; int d = dptr[x];
if( d == INVALID_DISP_SCALED ) if( d == INVALID_DISP_SCALED )
continue; continue;
int d0 = d >> DISP_SHIFT; int d0 = d >> DISP_SHIFT;
int d1 = (d + DISP_SCALE-1) >> DISP_SHIFT; int d1 = (d + DISP_SCALE-1) >> DISP_SHIFT;
int x0 = x - d0, x1 = x - d1; int x0 = x - d0, x1 = x - d1;
if( (0 <= x0 && x0 < cols && disp2buf[x0] > INVALID_DISP_SCALED && std::abs(disp2buf[x0] - d) > disp12MaxDiff) && if( (0 <= x0 && x0 < cols && disp2buf[x0] > INVALID_DISP_SCALED && std::abs(disp2buf[x0] - d) > disp12MaxDiff) &&
(0 <= x1 && x1 < cols && disp2buf[x1] > INVALID_DISP_SCALED && std::abs(disp2buf[x1] - d) > disp12MaxDiff) ) (0 <= x1 && x1 < cols && disp2buf[x1] > INVALID_DISP_SCALED && std::abs(disp2buf[x1] - d) > disp12MaxDiff) )
dptr[x] = (short)INVALID_DISP_SCALED; dptr[x] = (short)INVALID_DISP_SCALED;
} }
} }
} }
...@@ -11,10 +11,21 @@ ...@@ -11,10 +11,21 @@
#include <iostream> #include <iostream>
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgcodecs.hpp" #include "opencv2/imgcodecs.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/core.hpp" #include "opencv2/core.hpp"
#include "opencv2/highgui.hpp" #include "opencv2/highgui.hpp"
#include <algorithm>
#include <cmath>
#endif #endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment