* @param [in] tolerence Controls the accuracy of registration at each iteration of ICP.
* @param [in] rejectionScale Robust outlier rejection is applied for robustness. This value actually corresponds to the standard deviation coefficient. Points with rejectionScale * \sigma are ignored during registration.
* @param [in] numLevels Number of pyramid levels to proceed. Deep pyramids increase speed but decrease accuracy. Too coarse pyramids might have computational overhead on top of the inaccurate registrtaion. This parameter should be chosen to optimize a balance. Typical values range from 4 to 10.
* @param [in] sampleType Currently this parameter is ignored and only uniform sampling is applied. Leave it as 0.
* @param [in] numMaxCorr Currently this parameter is ignored and only PickyICP is applied. Leave it as 1.
* @param [in] srcPC The input point cloud for the model. Expected to have the normals (Nx6). Currently,
* CV_32F is the only supported data type.
* @param [in] dstPC The input point cloud for the scene. It is assumed that the model is registered on the scene. Scene remains static. Expected to have the normals (Nx6). Currently, CV_32F is the only supported data type.
* @param [out] residual The output registration error.
* \return On successful termination, the function returns 0.
*
* \details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).
* \brief Perform registration with multiple initial poses
*
* @param [in] srcPC The input point cloud for the model. Expected to have the normals (Nx6). Currently,
* CV_32F is the only supported data type.
* @param [in] dstPC The input point cloud for the scene. Currently, CV_32F is the only supported data type.
* @param [out] poses List output of poses. For more detailed information check out Pose3D.
* \return On successful termination, the function returns 0.
*
* \details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).
* @param [in] tolerence Controls the accuracy of registration at each iteration of ICP.
* @param [in] rejectionScale Robust outlier rejection is applied for robustness. This value actually corresponds to the standard deviation coefficient. Points with rejectionScale * \sigma are ignored during registration.
* @param [in] numLevels Number of pyramid levels to proceed. Deep pyramids increase speed but decrease accuracy. Too coarse pyramids might have computational overhead on top of the inaccurate registrtaion. This parameter should be chosen to optimize a balance. Typical values range from 4 to 10.
* @param [in] sampleType Currently this parameter is ignored and only uniform sampling is applied. Leave it as 0.
* @param [in] numMaxCorr Currently this parameter is ignored and only PickyICP is applied. Leave it as 1.
* @param [in] srcPC The input point cloud for the model. Expected to have the normals (Nx6). Currently,
* CV_32F is the only supported data type.
* @param [in] dstPC The input point cloud for the scene. It is assumed that the model is registered on the scene. Scene remains static. Expected to have the normals (Nx6). Currently, CV_32F is the only supported data type.
* @param [out] residual The output registration error.
* \return On successful termination, the function returns 0.
*
* \details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).
* \brief Perform registration with multiple initial poses
*
* @param [in] srcPC The input point cloud for the model. Expected to have the normals (Nx6). Currently,
* CV_32F is the only supported data type.
* @param [in] dstPC The input point cloud for the scene. Currently, CV_32F is the only supported data type.
* @param [out] poses List output of poses. For more detailed information check out Pose3D.
* \return On successful termination, the function returns 0.
*
* \details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).
* @param [in] relativeSamplingStep Sampling distance relative to the object's diameter. Models are first sampled uniformly in order to improve efficiency. Decreasing this value leads to a denser model, and a more accurate pose estimation but the larger the model, the slower the training. Increasing the value leads to a less accurate pose computation but a smaller model and faster model generation and matching. Beware of the memory consumption when using small values.
* @param [in] relativeDistanceStep The discretization distance of the point pair distance relative to the model's diameter. This value has a direct impact on the hashtable. Using small values would lead to too fine discretization, and thus ambiguity in the bins of hashtable. Too large values would lead to no discrimination over the feature vectors and different point pair features would be assigned to the same bin. This argument defaults to the value of RelativeSamplingStep. For noisy scenes, the value can be increased to improve the robustness of the matching against noisy points.
* @param [in] numAngles Set the discretization of the point pair orientation as the number of subdivisions of the angle. This value is the equivalent of RelativeDistanceStep for the orientations. Increasing the value increases the precision of the matching but decreases the robustness against incorrect normal directions. Decreasing the value decreases the precision of the matching but increases the robustness against incorrect normal directions. For very noisy scenes where the normal directions can not be computed accurately, the value can be set to 25 or 20.
* @param [in] numPoses The maximum number of poses to return
* @param [in] positionThreshold Position threshold controlling the similarity of translations. Depends on the units of calibration/model.
* @param [in] rotationThreshold Position threshold controlling the similarity of rotations. This parameter can be perceived as a threshold over the difference of angles
* @param [in] minMatchScore Not used at the moment
* @param [in] useWeightedClustering The algorithm by default clusters the poses without weighting. A non-zero value would indicate that the pose clustering should take into account the number of votes as the weights and perform a weighted averaging instead of a simple one.
* @param [in] Model The input point cloud with normals (Nx6)
*
* \details Uses the parameters set in the constructor to downsample and learn a new model. When the model is learnt, the instance gets ready for calling "match".
*/
voidtrainModel(constMat&Model);
/**
* \brief Matches a trained model across a provided scene.
*
* @param [in] scene Point cloud for the scene
* @param [out] results List of output poses
* @param [in] relativeSceneSampleStep The ratio of scene points to be used for the matching after sampling with relativeSceneDistance. For example, if this value is set to 1.0/5.0, every 5th point from the scene is used for pose estimation. This parameter allows an easy trade-off between speed and accuracy of the matching. Increasing the value leads to less points being used and in turn to a faster but less accurate pose computation. Decreasing the value has the inverse effect.
* @param [in] relativeSceneDistance Set the distance threshold relative to the diameter of the model. This parameter is equivalent to relativeSamplingStep in the training stage. This parameter acts like a prior sampling with the relativeSceneSampleStep parameter.
* @param [in] relativeSamplingStep Sampling distance relative to the object's diameter. Models are first sampled uniformly in order to improve efficiency. Decreasing this value leads to a denser model, and a more accurate pose estimation but the larger the model, the slower the training. Increasing the value leads to a less accurate pose computation but a smaller model and faster model generation and matching. Beware of the memory consumption when using small values.
* @param [in] relativeDistanceStep The discretization distance of the point pair distance relative to the model's diameter. This value has a direct impact on the hashtable. Using small values would lead to too fine discretization, and thus ambiguity in the bins of hashtable. Too large values would lead to no discrimination over the feature vectors and different point pair features would be assigned to the same bin. This argument defaults to the value of RelativeSamplingStep. For noisy scenes, the value can be increased to improve the robustness of the matching against noisy points.
* @param [in] numAngles Set the discretization of the point pair orientation as the number of subdivisions of the angle. This value is the equivalent of RelativeDistanceStep for the orientations. Increasing the value increases the precision of the matching but decreases the robustness against incorrect normal directions. Decreasing the value decreases the precision of the matching but increases the robustness against incorrect normal directions. For very noisy scenes where the normal directions can not be computed accurately, the value can be set to 25 or 20.
* @param [in] numPoses The maximum number of poses to return
* @param [in] positionThreshold Position threshold controlling the similarity of translations. Depends on the units of calibration/model.
* @param [in] rotationThreshold Position threshold controlling the similarity of rotations. This parameter can be perceived as a threshold over the difference of angles
* @param [in] minMatchScore Not used at the moment
* @param [in] useWeightedClustering The algorithm by default clusters the poses without weighting. A non-zero value would indicate that the pose clustering should take into account the number of votes as the weights and perform a weighted averaging instead of a simple one.
* @param [in] Model The input point cloud with normals (Nx6)
*
* \details Uses the parameters set in the constructor to downsample and learn a new model. When the model is learnt, the instance gets ready for calling "match".
*/
voidtrainModel(constMat&Model);
/**
* \brief Matches a trained model across a provided scene.
*
* @param [in] scene Point cloud for the scene
* @param [out] results List of output poses
* @param [in] relativeSceneSampleStep The ratio of scene points to be used for the matching after sampling with relativeSceneDistance. For example, if this value is set to 1.0/5.0, every 5th point from the scene is used for pose estimation. This parameter allows an easy trade-off between speed and accuracy of the matching. Increasing the value leads to less points being used and in turn to a faster but less accurate pose computation. Decreasing the value has the inverse effect.
* @param [in] relativeSceneDistance Set the distance threshold relative to the diameter of the model. This parameter is equivalent to relativeSamplingStep in the training stage. This parameter acts like a prior sampling with the relativeSceneSampleStep parameter.