Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
943a79a6
Commit
943a79a6
authored
Aug 02, 2014
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
make ERFilter compile with refactored ml
parent
a001f2d6
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
18 deletions
+19
-18
erfilter.cpp
modules/text/src/erfilter.cpp
+19
-18
No files found.
modules/text/src/erfilter.cpp
View file @
943a79a6
...
...
@@ -60,6 +60,7 @@ namespace cv
namespace
text
{
using
namespace
cv
::
ml
;
using
namespace
std
;
// Deletes a tree of ERStat regions starting at root. Used only
...
...
@@ -178,7 +179,7 @@ public:
double
eval
(
const
ERStat
&
stat
);
private
:
CvBoost
boost
;
Ptr
<
Boost
>
boost
;
};
// default 2nd stage classifier
...
...
@@ -194,7 +195,7 @@ public:
double
eval
(
const
ERStat
&
stat
);
private
:
CvBoost
boost
;
Ptr
<
Boost
>
boost
;
};
...
...
@@ -1016,9 +1017,9 @@ ERClassifierNM1::ERClassifierNM1(const string& filename)
{
if
(
ifstream
(
filename
.
c_str
()))
boost
.
load
(
filename
.
c_str
(),
"boost"
);
boost
=
StatModel
::
load
<
Boost
>
(
filename
.
c_str
()
);
else
CV_Error
(
CV_
StsBadArg
,
"Default classifier file not found!"
);
CV_Error
(
Error
::
StsBadArg
,
"Default classifier file not found!"
);
}
double
ERClassifierNM1
::
eval
(
const
ERStat
&
stat
)
...
...
@@ -1031,7 +1032,7 @@ double ERClassifierNM1::eval(const ERStat& stat)
vector
<
float
>
sample
(
arr
,
arr
+
sizeof
(
arr
)
/
sizeof
(
arr
[
0
])
);
float
votes
=
boost
.
predict
(
Mat
(
sample
),
Mat
(),
Range
::
all
(),
false
,
true
);
float
votes
=
boost
->
predict
(
Mat
(
sample
),
noArray
(),
StatModel
::
RAW_OUTPUT
);
// Logistic Correction returns a probability value (in the range(0,1))
return
(
double
)
1
-
(
double
)
1
/
(
1
+
exp
(
-
2
*
votes
));
...
...
@@ -1042,9 +1043,9 @@ double ERClassifierNM1::eval(const ERStat& stat)
ERClassifierNM2
::
ERClassifierNM2
(
const
string
&
filename
)
{
if
(
ifstream
(
filename
.
c_str
()))
boost
.
load
(
filename
.
c_str
(),
"boost"
);
boost
=
StatModel
::
load
<
Boost
>
(
filename
.
c_str
()
);
else
CV_Error
(
CV_
StsBadArg
,
"Default classifier file not found!"
);
CV_Error
(
Error
::
StsBadArg
,
"Default classifier file not found!"
);
}
double
ERClassifierNM2
::
eval
(
const
ERStat
&
stat
)
...
...
@@ -1058,7 +1059,7 @@ double ERClassifierNM2::eval(const ERStat& stat)
vector
<
float
>
sample
(
arr
,
arr
+
sizeof
(
arr
)
/
sizeof
(
arr
[
0
])
);
float
votes
=
boost
.
predict
(
Mat
(
sample
),
Mat
(),
Range
::
all
(),
false
,
true
);
float
votes
=
boost
->
predict
(
Mat
(
sample
),
noArray
(),
StatModel
::
RAW_OUTPUT
);
// Logistic Correction returns a probability value (in the range(0,1))
return
(
double
)
1
-
(
double
)
1
/
(
1
+
exp
(
-
2
*
votes
));
...
...
@@ -1397,7 +1398,7 @@ static double NFA(int n, int k, double p, double logNT)
/* check parameters */
if
(
n
<
0
||
k
<
0
||
k
>
n
||
p
<=
0.0
||
p
>=
1.0
)
{
CV_Error
(
CV_
StsBadArg
,
"erGrouping wrong n, k or p values in NFA call!"
);
CV_Error
(
Error
::
StsBadArg
,
"erGrouping wrong n, k or p values in NFA call!"
);
}
/* trivial cases */
...
...
@@ -2137,15 +2138,15 @@ static int linkage_vector(double *X, int N, int dim, double * Z, unsigned char m
}
// try
catch
(
const
bad_alloc
&
)
{
CV_Error
(
CV_
StsNoMem
,
"Not enough Memory for erGrouping hierarchical clustering structures!"
);
CV_Error
(
Error
::
StsNoMem
,
"Not enough Memory for erGrouping hierarchical clustering structures!"
);
}
catch
(
const
exception
&
)
{
CV_Error
(
CV_
StsError
,
"Uncaught exception in erGrouping!"
);
CV_Error
(
Error
::
StsError
,
"Uncaught exception in erGrouping!"
);
}
catch
(...)
{
CV_Error
(
CV_
StsError
,
"C++ exception (unknown reason) in erGrouping!"
);
CV_Error
(
Error
::
StsError
,
"C++ exception (unknown reason) in erGrouping!"
);
}
return
0
;
}
...
...
@@ -2206,7 +2207,7 @@ public:
private
:
double
minProbability
;
CvBoost
group_boost
;
Ptr
<
Boost
>
group_boost
;
vector
<
ERFeatures
>
&
regions
;
Size
imsize
;
...
...
@@ -2230,9 +2231,9 @@ MaxMeaningfulClustering::MaxMeaningfulClustering(unsigned char _method, unsigned
minProbability
=
_minProbability
;
if
(
ifstream
(
filename
.
c_str
()))
group_boost
.
load
(
filename
.
c_str
(),
"boost"
);
group_boost
=
StatModel
::
load
<
Boost
>
(
filename
.
c_str
()
);
else
CV_Error
(
CV_
StsBadArg
,
"erGrouping: Default classifier file not found!"
);
CV_Error
(
Error
::
StsBadArg
,
"erGrouping: Default classifier file not found!"
);
}
...
...
@@ -2242,7 +2243,7 @@ void MaxMeaningfulClustering::operator()(double *data, unsigned int num, int dim
double
*
Z
=
(
double
*
)
malloc
(((
num
-
1
)
*
4
)
*
sizeof
(
double
));
// we need 4 floats foreach sample merge.
if
(
Z
==
NULL
)
CV_Error
(
CV_
StsNoMem
,
"Not enough Memory for erGrouping hierarchical clustering structures!"
);
CV_Error
(
Error
::
StsNoMem
,
"Not enough Memory for erGrouping hierarchical clustering structures!"
);
linkage_vector
(
data
,
(
int
)
num
,
dim
,
Z
,
method
,
metric
);
...
...
@@ -2723,7 +2724,7 @@ double MaxMeaningfulClustering::probability(vector<int> &cluster)
sample
.
push_back
((
float
)
mean
[
0
]);
sample
.
push_back
((
float
)
std
[
0
]);
float
votes_group
=
group_boost
.
predict
(
Mat
(
sample
),
Mat
(),
Range
::
all
(),
false
,
true
);
float
votes_group
=
group_boost
->
predict
(
Mat
(
sample
),
noArray
(),
StatModel
::
RAW_OUTPUT
);
return
(
double
)
1
-
(
double
)
1
/
(
1
+
exp
(
-
2
*
votes_group
));
}
...
...
@@ -3039,7 +3040,7 @@ static void erGroupingGK(InputArray _image, InputArrayOfArrays _src, vector<vect
int
dim
=
7
;
//dimensionality of feature space
double
*
data
=
(
double
*
)
malloc
(
dim
*
N
*
sizeof
(
double
));
if
(
data
==
NULL
)
CV_Error
(
CV_
StsNoMem
,
"Not enough Memory for erGrouping hierarchical clustering structures!"
);
CV_Error
(
Error
::
StsNoMem
,
"Not enough Memory for erGrouping hierarchical clustering structures!"
);
//Learned weights
float
weight_param1
=
1.00
f
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment