Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
92761997
Commit
92761997
authored
Aug 17, 2014
by
biagio montesano
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added perf and accuracy tests
parent
30ed7277
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
1142 additions
and
11 deletions
+1142
-11
perf_descriptors.cpp
modules/line_descriptor/perf/perf_descriptors.cpp
+76
-0
perf_detection.cpp
modules/line_descriptor/perf/perf_detection.cpp
+137
-0
perf_main.cpp
modules/line_descriptor/perf/perf_main.cpp
+45
-0
perf_matching.cpp
modules/line_descriptor/perf/perf_matching.cpp
+186
-0
perf_precomp.hpp
modules/line_descriptor/perf/perf_precomp.hpp
+63
-0
radius_matching.cpp
modules/line_descriptor/samples/radius_matching.cpp
+11
-0
binary_descriptor_matcher.cpp
modules/line_descriptor/src/binary_descriptor_matcher.cpp
+46
-11
test_matcher_regression.cpp
modules/line_descriptor/test/test_matcher_regression.cpp
+578
-0
No files found.
modules/line_descriptor/perf/perf_descriptors.cpp
0 → 100644
View file @
92761997
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using
namespace
cv
;
using
namespace
std
;
using
namespace
perf
;
using
std
::
tr1
::
make_tuple
;
using
std
::
tr1
::
get
;
typedef
perf
::
TestBaseWithParam
<
std
::
string
>
file_str
;
#define IMAGES \
"line_descriptor_data/cameraman.jpg", "line_descriptor_data/lena.bmp"
PERF_TEST_P
(
file_str
,
descriptors
,
testing
::
Values
(
IMAGES
))
{
std
::
string
filename
=
getDataPath
(
GetParam
()
);
Mat
frame
=
imread
(
filename
,
1
);
if
(
frame
.
empty
()
)
FAIL
()
<<
"Unable to load source image "
<<
filename
;
Mat
descriptors
;
std
::
vector
<
KeyLine
>
keylines
;
Ptr
<
BinaryDescriptor
>
bd
=
BinaryDescriptor
::
createBinaryDescriptor
();
TEST_CYCLE
()
{
bd
->
detect
(
frame
,
keylines
);
bd
->
compute
(
frame
,
keylines
,
descriptors
);
}
SANITY_CHECK
(
descriptors
);
}
modules/line_descriptor/perf/perf_detection.cpp
0 → 100644
View file @
92761997
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using
namespace
cv
;
using
namespace
std
;
using
namespace
perf
;
using
std
::
tr1
::
make_tuple
;
using
std
::
tr1
::
get
;
typedef
perf
::
TestBaseWithParam
<
std
::
string
>
file_str
;
#define IMAGES \
"line_descriptor_data/cameraman.jpg", "line_descriptor_data/lena.bmp"
void
createMatFromVec
(
const
std
::
vector
<
KeyLine
>&
linesVec
,
Mat
&
output
);
void
createMatFromVec
(
const
std
::
vector
<
KeyLine
>&
linesVec
,
Mat
&
output
)
{
output
=
Mat
(
(
int
)
linesVec
.
size
(),
17
,
CV_32FC1
);
for
(
int
i
=
0
;
i
<
(
int
)
linesVec
.
size
();
i
++
)
{
std
::
vector
<
float
>
klData
;
KeyLine
kl
=
linesVec
[
i
];
klData
.
push_back
(
kl
.
angle
);
klData
.
push_back
(
(
float
)
kl
.
class_id
);
klData
.
push_back
(
kl
.
ePointInOctaveX
);
klData
.
push_back
(
kl
.
ePointInOctaveY
);
klData
.
push_back
(
kl
.
endPointX
);
klData
.
push_back
(
kl
.
endPointY
);
klData
.
push_back
(
kl
.
lineLength
);
klData
.
push_back
(
(
float
)
kl
.
numOfPixels
);
klData
.
push_back
(
(
float
)
kl
.
octave
);
klData
.
push_back
(
kl
.
pt
.
x
);
klData
.
push_back
(
kl
.
pt
.
y
);
klData
.
push_back
(
kl
.
response
);
klData
.
push_back
(
kl
.
sPointInOctaveX
);
klData
.
push_back
(
kl
.
sPointInOctaveY
);
klData
.
push_back
(
kl
.
size
);
klData
.
push_back
(
kl
.
startPointX
);
klData
.
push_back
(
kl
.
startPointY
);
float
*
pointerToRow
=
output
.
ptr
<
float
>
(
i
);
for
(
int
j
=
0
;
j
<
17
;
j
++
)
{
*
pointerToRow
=
klData
[
j
];
pointerToRow
++
;
}
}
}
PERF_TEST_P
(
file_str
,
detect
,
testing
::
Values
(
IMAGES
))
{
std
::
string
filename
=
getDataPath
(
GetParam
()
);
Mat
frame
=
imread
(
filename
,
1
);
if
(
frame
.
empty
()
)
FAIL
()
<<
"Unable to load source image "
<<
filename
;
Mat
lines
;
std
::
vector
<
KeyLine
>
keylines
;
Ptr
<
BinaryDescriptor
>
bd
=
BinaryDescriptor
::
createBinaryDescriptor
();
TEST_CYCLE
()
{
bd
->
detect
(
frame
,
keylines
);
createMatFromVec
(
keylines
,
lines
);
}
SANITY_CHECK
(
lines
);
}
PERF_TEST_P
(
file_str
,
detect_lsd
,
testing
::
Values
(
IMAGES
))
{
std
::
string
filename
=
getDataPath
(
GetParam
()
);
std
::
cout
<<
filename
.
c_str
()
<<
std
::
endl
;
Mat
frame
=
imread
(
filename
,
1
);
if
(
frame
.
empty
()
)
FAIL
()
<<
"Unable to load source image "
<<
filename
;
Mat
lines
;
std
::
vector
<
KeyLine
>
keylines
;
Ptr
<
LSDDetector
>
lsd
=
LSDDetector
::
createLSDDetector
();
TEST_CYCLE
()
{
lsd
->
detect
(
frame
,
keylines
,
2
,
1
);
createMatFromVec
(
keylines
,
lines
);
}
SANITY_CHECK
(
lines
);
}
modules/line_descriptor/perf/perf_main.cpp
0 → 100644
View file @
92761997
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
CV_PERF_TEST_MAIN
(
line_descriptor
)
modules/line_descriptor/perf/perf_matching.cpp
0 → 100644
View file @
92761997
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using
namespace
cv
;
using
namespace
std
;
using
namespace
perf
;
using
std
::
tr1
::
make_tuple
;
using
std
::
tr1
::
get
;
#define QUERY_DES_COUNT 300
#define DIM 32
#define COUNT_FACTOR 4
#define RADIUS 3
void
generateData
(
Mat
&
query
,
Mat
&
train
);
uchar
invertSingleBits
(
uchar
dividend_char
,
int
numBits
);
/* invert numBits bits in input char */
uchar
invertSingleBits
(
uchar
dividend_char
,
int
numBits
)
{
std
::
vector
<
int
>
bin_vector
;
long
dividend
;
long
bin_num
;
/* convert input char to a long */
dividend
=
(
long
)
dividend_char
;
/*if a 0 has been obtained, just generate a 8-bit long vector of zeros */
if
(
dividend
==
0
)
bin_vector
=
std
::
vector
<
int
>
(
8
,
0
);
/* else, apply classic decimal to binary conversion */
else
{
while
(
dividend
>=
1
)
{
bin_num
=
dividend
%
2
;
dividend
/=
2
;
bin_vector
.
push_back
(
bin_num
);
}
}
/* ensure that binary vector always has length 8 */
if
(
bin_vector
.
size
()
<
8
)
{
std
::
vector
<
int
>
zeros
(
8
-
bin_vector
.
size
(),
0
);
bin_vector
.
insert
(
bin_vector
.
end
(),
zeros
.
begin
(),
zeros
.
end
()
);
}
/* invert numBits bits */
for
(
int
index
=
0
;
index
<
numBits
;
index
++
)
{
if
(
bin_vector
[
index
]
==
0
)
bin_vector
[
index
]
=
1
;
else
bin_vector
[
index
]
=
0
;
}
/* reconvert to decimal */
uchar
result
=
0
;
for
(
int
i
=
(
int
)
bin_vector
.
size
()
-
1
;
i
>=
0
;
i
--
)
result
+=
(
uchar
)
(
bin_vector
[
i
]
*
pow
(
2
,
i
)
);
return
result
;
}
void
generateData
(
Mat
&
query
,
Mat
&
train
)
{
RNG
&
rng
=
theRNG
();
Mat
buf
(
QUERY_DES_COUNT
,
DIM
,
CV_8UC1
);
rng
.
fill
(
buf
,
RNG
::
UNIFORM
,
Scalar
(
0
),
Scalar
(
255
)
);
buf
.
convertTo
(
query
,
CV_8UC1
);
for
(
int
i
=
0
;
i
<
query
.
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
COUNT_FACTOR
;
j
++
)
{
train
.
push_back
(
query
.
row
(
i
)
);
int
randCol
=
rand
()
%
32
;
uchar
u
=
query
.
at
<
uchar
>
(
i
,
randCol
);
uchar
modified_u
=
invertSingleBits
(
u
,
j
+
1
);
train
.
at
<
uchar
>
(
i
*
COUNT_FACTOR
+
j
,
randCol
)
=
modified_u
;
}
}
}
PERF_TEST
(
matching
,
single_match
)
{
Mat
query
,
train
;
std
::
vector
<
DMatch
>
dm
;
Ptr
<
BinaryDescriptorMatcher
>
bd
=
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
();
generateData
(
query
,
train
);
TEST_CYCLE
()
bd
->
match
(
query
,
train
,
dm
);
SANITY_CHECK_MATCHES
(
dm
);
}
PERF_TEST
(
knn_matching
,
knn_match_distances_test
)
{
Mat
query
,
train
,
distances
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
dm
;
Ptr
<
BinaryDescriptorMatcher
>
bd
=
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
();
generateData
(
query
,
train
);
TEST_CYCLE
()
{
bd
->
knnMatch
(
query
,
train
,
dm
,
QUERY_DES_COUNT
);
for
(
int
i
=
0
;
i
<
(
int
)
dm
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
(
int
)
dm
[
i
].
size
();
j
++
)
distances
.
push_back
(
dm
[
i
][
j
].
distance
);
}
}
SANITY_CHECK
(
distances
);
}
PERF_TEST
(
radius_match
,
radius_match_distances_test
)
{
Mat
query
,
train
,
distances
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
dm
;
Ptr
<
BinaryDescriptorMatcher
>
bd
=
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
();
generateData
(
query
,
train
);
TEST_CYCLE
()
{
bd
->
radiusMatch
(
query
,
train
,
dm
,
RADIUS
);
for
(
int
i
=
0
;
i
<
(
int
)
dm
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
(
int
)
dm
[
i
].
size
();
j
++
)
distances
.
push_back
(
dm
[
i
][
j
].
distance
);
}
}
SANITY_CHECK
(
distances
);
}
modules/line_descriptor/perf/perf_precomp.hpp
0 → 100644
View file @
92761997
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/line_descriptor.hpp"
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
#endif
#endif
modules/line_descriptor/samples/radius_matching.cpp
View file @
92761997
...
@@ -84,6 +84,7 @@ int main( int argc, char** argv )
...
@@ -84,6 +84,7 @@ int main( int argc, char** argv )
/* get path to image */
/* get path to image */
std
::
stringstream
image_path
;
std
::
stringstream
image_path
;
image_path
<<
pathToImages
<<
images
[
i
];
image_path
<<
pathToImages
<<
images
[
i
];
std
::
cout
<<
image_path
.
str
().
c_str
()
<<
std
::
endl
;
/* load image */
/* load image */
Mat
loadedImage
=
imread
(
image_path
.
str
().
c_str
(),
1
);
Mat
loadedImage
=
imread
(
image_path
.
str
().
c_str
(),
1
);
...
@@ -127,5 +128,15 @@ int main( int argc, char** argv )
...
@@ -127,5 +128,15 @@ int main( int argc, char** argv )
/* compute matches */
/* compute matches */
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
bdm
->
radiusMatch
(
queries
,
matches
,
30
);
bdm
->
radiusMatch
(
queries
,
matches
,
30
);
std
::
cout
<<
"size matches sample "
<<
matches
.
size
()
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
matches
[
i
].
size
();
j
++
)
{
std
::
cout
<<
"match: "
<<
matches
[
i
][
j
].
queryIdx
<<
" "
<<
matches
[
i
][
j
].
trainIdx
<<
" "
<<
matches
[
i
][
j
].
distance
<<
std
::
endl
;
}
}
}
}
modules/line_descriptor/src/binary_descriptor_matcher.cpp
View file @
92761997
...
@@ -119,6 +119,12 @@ void BinaryDescriptorMatcher::checkKDistances( UINT32 * numres, int k, std::vect
...
@@ -119,6 +119,12 @@ void BinaryDescriptorMatcher::checkKDistances( UINT32 * numres, int k, std::vect
void
BinaryDescriptorMatcher
::
match
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
const
std
::
vector
<
Mat
>&
masks
)
void
BinaryDescriptorMatcher
::
match
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
const
std
::
vector
<
Mat
>&
masks
)
{
{
/* check data validity */
/* check data validity */
if
(
queryDescriptors
.
rows
==
0
)
{
std
::
cout
<<
"Error: query descriptors'matrix is empty"
<<
std
::
endl
;
return
;
}
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
{
{
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but match function received "
<<
masks
.
size
()
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but match function received "
<<
masks
.
size
()
...
@@ -139,7 +145,6 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors, std::vector<DM
...
@@ -139,7 +145,6 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors, std::vector<DM
/* execute query */
/* execute query */
dataset
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
dataset
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
/* compose matches */
for
(
int
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
for
(
int
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
{
{
...
@@ -149,16 +154,14 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors, std::vector<DM
...
@@ -149,16 +154,14 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors, std::vector<DM
/* get info about original image of each returned descriptor */
/* get info about original image of each returned descriptor */
itup
=
indexesMap
.
upper_bound
(
results
[
counter
]
-
1
);
itup
=
indexesMap
.
upper_bound
(
results
[
counter
]
-
1
);
itup
--
;
itup
--
;
/* data validity check */
/* data validity check */
if
(
!
masks
.
empty
()
&&
(
masks
[
itup
->
second
].
rows
!=
queryDescriptors
.
rows
||
masks
[
itup
->
second
].
cols
!=
1
)
)
if
(
!
masks
.
empty
()
&&
(
masks
[
itup
->
second
].
rows
!=
queryDescriptors
.
rows
||
masks
[
itup
->
second
].
cols
!=
1
)
)
{
{
std
::
stringstream
ss
;
std
::
stringstream
ss
;
ss
<<
"Error: mask "
<<
itup
->
second
<<
" in knnMatch function "
<<
"should have "
<<
queryDescriptors
.
rows
<<
" and "
ss
<<
"Error: mask "
<<
itup
->
second
<<
" in knnMatch function "
<<
"should have "
<<
queryDescriptors
.
rows
<<
" and "
<<
"1 column. Program will be terminated"
;
<<
"1 column. Program will be terminated"
;
throw
std
::
runtime_error
(
ss
.
str
()
);
//
throw std::runtime_error( ss.str() );
}
}
/* create a DMatch object if required by mask or if there is
/* create a DMatch object if required by mask or if there is
no mask at all */
no mask at all */
else
if
(
masks
.
empty
()
||
masks
[
itup
->
second
].
at
<
uchar
>
(
counter
)
!=
0
)
else
if
(
masks
.
empty
()
||
masks
[
itup
->
second
].
at
<
uchar
>
(
counter
)
!=
0
)
...
@@ -187,6 +190,12 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors, const Mat& tra
...
@@ -187,6 +190,12 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors, const Mat& tra
{
{
/* check data validity */
/* check data validity */
if
(
queryDescriptors
.
rows
==
0
||
trainDescriptors
.
rows
==
0
)
{
std
::
cout
<<
"Error: descriptors matrices cannot be void"
<<
std
::
endl
;
return
;
}
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
&&
mask
.
cols
!=
1
)
)
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
&&
mask
.
cols
!=
1
)
)
{
{
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
...
@@ -243,6 +252,12 @@ void BinaryDescriptorMatcher::knnMatch( const Mat& queryDescriptors, const Mat&
...
@@ -243,6 +252,12 @@ void BinaryDescriptorMatcher::knnMatch( const Mat& queryDescriptors, const Mat&
{
{
/* check data validity */
/* check data validity */
if
(
queryDescriptors
.
rows
==
0
||
trainDescriptors
.
rows
==
0
)
{
std
::
cout
<<
"Error: descriptors matrices cannot be void"
<<
std
::
endl
;
return
;
}
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
||
mask
.
cols
!=
1
)
)
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
||
mask
.
cols
!=
1
)
)
{
{
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
...
@@ -318,6 +333,12 @@ void BinaryDescriptorMatcher::knnMatch( const Mat& queryDescriptors, std::vector
...
@@ -318,6 +333,12 @@ void BinaryDescriptorMatcher::knnMatch( const Mat& queryDescriptors, std::vector
{
{
/* check data validity */
/* check data validity */
if
(
queryDescriptors
.
rows
==
0
)
{
std
::
cout
<<
"Error: descriptors matrix cannot be void"
<<
std
::
endl
;
return
;
}
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
{
{
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but knnMatch function received "
<<
masks
.
size
()
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but knnMatch function received "
<<
masks
.
size
()
...
@@ -402,6 +423,12 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
...
@@ -402,6 +423,12 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
{
{
/* check data validity */
/* check data validity */
if
(
queryDescriptors
.
rows
==
0
||
trainDescriptors
.
rows
==
0
)
{
std
::
cout
<<
"Error: descriptors matrices cannot be void"
<<
std
::
endl
;
return
;
}
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
&&
mask
.
cols
!=
1
)
)
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
&&
mask
.
cols
!=
1
)
)
{
{
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
...
@@ -413,7 +440,8 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
...
@@ -413,7 +440,8 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
Mihasher
*
mh
=
new
Mihasher
(
256
,
32
);
Mihasher
*
mh
=
new
Mihasher
(
256
,
32
);
/* populate Mihasher */
/* populate Mihasher */
Mat
copy
=
queryDescriptors
.
clone
();
//Mat copy = queryDescriptors.clone();
Mat
copy
=
trainDescriptors
.
clone
();
mh
->
populate
(
copy
,
copy
.
rows
,
copy
.
cols
);
mh
->
populate
(
copy
,
copy
.
rows
,
copy
.
cols
);
/* set K */
/* set K */
...
@@ -434,15 +462,16 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
...
@@ -434,15 +462,16 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
checkKDistances
(
numres
,
trainDescriptors
.
rows
,
k_distances
,
i
,
256
);
checkKDistances
(
numres
,
trainDescriptors
.
rows
,
k_distances
,
i
,
256
);
std
::
vector
<
DMatch
>
tempVector
;
std
::
vector
<
DMatch
>
tempVector
;
for
(
int
j
=
0
;
j
<
index
+
trainDescriptors
.
rows
;
j
++
)
for
(
int
j
=
index
;
j
<
index
+
trainDescriptors
.
rows
;
j
++
)
{
{
if
(
numres
[
j
]
<=
maxDistance
)
// if( numres[j] <= maxDistance )
if
(
k_distances
[
j
-
index
]
<=
maxDistance
)
{
{
if
(
mask
.
empty
()
||
mask
.
at
<
uchar
>
(
i
)
!=
0
)
if
(
mask
.
empty
()
||
mask
.
at
<
uchar
>
(
i
)
!=
0
)
{
{
DMatch
dm
;
DMatch
dm
;
dm
.
queryIdx
=
i
;
dm
.
queryIdx
=
i
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
trainIdx
=
(
int
)
(
results
[
j
]
-
1
)
;
dm
.
imgIdx
=
0
;
dm
.
imgIdx
=
0
;
dm
.
distance
=
(
float
)
k_distances
[
j
-
index
];
dm
.
distance
=
(
float
)
k_distances
[
j
-
index
];
...
@@ -466,13 +495,19 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
...
@@ -466,13 +495,19 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Ma
delete
numres
;
delete
numres
;
}
}
/* for every input desciptor, find all the ones falling in a
/* for every input desc
r
iptor, find all the ones falling in a
certain
g
atching radius (from one image to a set) */
certain
m
atching radius (from one image to a set) */
void
BinaryDescriptorMatcher
::
radiusMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
void
BinaryDescriptorMatcher
::
radiusMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
{
{
/* check data validity */
/* check data validity */
if
(
queryDescriptors
.
rows
==
0
)
{
std
::
cout
<<
"Error: descriptors matrices cannot be void"
<<
std
::
endl
;
return
;
}
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
{
{
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but radiusMatch function received "
<<
masks
.
size
()
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but radiusMatch function received "
<<
masks
.
size
()
...
@@ -528,7 +563,7 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, std::vec
...
@@ -528,7 +563,7 @@ void BinaryDescriptorMatcher::radiusMatch( const Mat& queryDescriptors, std::vec
dm
.
queryIdx
=
counter
;
dm
.
queryIdx
=
counter
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
imgIdx
=
itup
->
second
;
dm
.
imgIdx
=
itup
->
second
;
dm
.
distance
=
(
float
)
k_distances
[
j
-
index
];
dm
.
distance
=
(
float
)
k_distances
[
j
-
index
];
tempVector
.
push_back
(
dm
);
tempVector
.
push_back
(
dm
);
}
}
...
...
modules/line_descriptor/test/test_matcher_regression.cpp
0 → 100644
View file @
92761997
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using
namespace
cv
;
class
CV_BinaryDescriptorMatcherTest
:
public
cvtest
::
BaseTest
{
public
:
CV_BinaryDescriptorMatcherTest
(
float
_badPart
)
:
badPart
(
_badPart
)
{
dmatcher
=
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
();
}
protected
:
static
const
int
dim
=
32
;
static
const
int
queryDescCount
=
300
;
// must be even number because we split train data in some cases in two
static
const
int
countFactor
=
4
;
// do not change it
const
float
badPart
;
virtual
void
run
(
int
);
void
generateData
(
Mat
&
query
,
Mat
&
train
);
uchar
invertSingleBits
(
uchar
dividend_char
,
int
numBits
);
void
emptyDataTest
();
void
matchTest
(
const
Mat
&
query
,
const
Mat
&
train
);
void
knnMatchTest
(
const
Mat
&
query
,
const
Mat
&
train
);
void
radiusMatchTest
(
const
Mat
&
query
,
const
Mat
&
train
);
std
::
string
name
;
Ptr
<
BinaryDescriptorMatcher
>
dmatcher
;
private
:
CV_BinaryDescriptorMatcherTest
&
operator
=
(
const
CV_BinaryDescriptorMatcherTest
&
)
{
return
*
this
;
}
};
/* invert numBits bits in input char */
uchar
CV_BinaryDescriptorMatcherTest
::
invertSingleBits
(
uchar
dividend_char
,
int
numBits
)
{
std
::
vector
<
int
>
bin_vector
;
long
dividend
;
long
bin_num
;
/* convert input char to a long */
dividend
=
(
long
)
dividend_char
;
/*if a 0 has been obtained, just generate a 8-bit long vector of zeros */
if
(
dividend
==
0
)
bin_vector
=
std
::
vector
<
int
>
(
8
,
0
);
/* else, apply classic decimal to binary conversion */
else
{
while
(
dividend
>=
1
)
{
bin_num
=
dividend
%
2
;
dividend
/=
2
;
bin_vector
.
push_back
(
bin_num
);
}
}
/* ensure that binary vector always has length 8 */
if
(
bin_vector
.
size
()
<
8
)
{
std
::
vector
<
int
>
zeros
(
8
-
bin_vector
.
size
(),
0
);
bin_vector
.
insert
(
bin_vector
.
end
(),
zeros
.
begin
(),
zeros
.
end
()
);
}
/* invert numBits bits */
for
(
int
index
=
0
;
index
<
numBits
;
index
++
)
{
if
(
bin_vector
[
index
]
==
0
)
bin_vector
[
index
]
=
1
;
else
bin_vector
[
index
]
=
0
;
}
/* reconvert to decimal */
uchar
result
=
0
;
for
(
int
i
=
(
int
)
bin_vector
.
size
()
-
1
;
i
>=
0
;
i
--
)
result
+=
(
uchar
)
(
bin_vector
[
i
]
*
pow
(
2
,
i
)
);
return
result
;
}
void
CV_BinaryDescriptorMatcherTest
::
emptyDataTest
()
{
Mat
queryDescriptors
,
trainDescriptors
,
mask
;
std
::
vector
<
Mat
>
trainDescriptorCollection
,
masks
;
std
::
vector
<
DMatch
>
matches
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
vmatches
;
try
{
dmatcher
->
match
(
queryDescriptors
,
trainDescriptors
,
matches
,
mask
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"match() on empty descriptors must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
try
{
dmatcher
->
knnMatch
(
queryDescriptors
,
trainDescriptors
,
vmatches
,
2
,
mask
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"knnMatch() on empty descriptors must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
try
{
dmatcher
->
radiusMatch
(
queryDescriptors
,
trainDescriptors
,
vmatches
,
10.
f
,
mask
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"radiusMatch() on empty descriptors must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
try
{
dmatcher
->
add
(
trainDescriptorCollection
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"add() on empty descriptors must not generate exception.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
try
{
dmatcher
->
match
(
queryDescriptors
,
matches
,
masks
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"match() on empty descriptors must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
try
{
dmatcher
->
knnMatch
(
queryDescriptors
,
vmatches
,
2
,
masks
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"knnMatch() on empty descriptors must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
try
{
dmatcher
->
radiusMatch
(
queryDescriptors
,
vmatches
,
10.
f
,
masks
);
}
catch
(
...
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"radiusMatch() on empty descriptors must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
void
CV_BinaryDescriptorMatcherTest
::
generateData
(
Mat
&
query
,
Mat
&
train
)
{
RNG
&
rng
=
theRNG
();
/* Generate query descriptors randomly.
Descriptor vector elements are binary values. */
Mat
buf
(
queryDescCount
,
dim
,
CV_8UC1
);
rng
.
fill
(
buf
,
RNG
::
UNIFORM
,
Scalar
(
0
),
Scalar
(
255
)
);
buf
.
convertTo
(
query
,
CV_8UC1
);
for
(
int
i
=
0
;
i
<
query
.
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
countFactor
;
j
++
)
{
train
.
push_back
(
query
.
row
(
i
)
);
int
randCol
=
rand
()
%
32
;
uchar
u
=
query
.
at
<
uchar
>
(
i
,
randCol
);
uchar
modified_u
=
invertSingleBits
(
u
,
j
+
1
);
train
.
at
<
uchar
>
(
i
*
countFactor
+
j
,
randCol
)
=
modified_u
;
}
}
}
void
CV_BinaryDescriptorMatcherTest
::
matchTest
(
const
Mat
&
query
,
const
Mat
&
train
)
{
dmatcher
->
clear
();
// test const version of match()
{
std
::
vector
<
DMatch
>
matches
;
dmatcher
->
match
(
query
,
train
,
matches
);
if
(
(
int
)
matches
.
size
()
!=
queryDescCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test match() function (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
else
{
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
DMatch
&
match
=
matches
[
i
];
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
)
||
(
match
.
imgIdx
!=
0
)
)
badCount
++
;
}
if
(
(
float
)
badCount
>
(
float
)
queryDescCount
*
badPart
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"%f - too large bad matches part while test match() function (1).
\n
"
,
(
float
)
badCount
/
(
float
)
queryDescCount
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
}
// test const version of match() for the same query and test descriptors
{
std
::
vector
<
DMatch
>
matches
;
dmatcher
->
match
(
query
,
query
,
matches
);
if
(
(
int
)
matches
.
size
()
!=
query
.
rows
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test match() function for the same query and test descriptors (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
else
{
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
DMatch
&
match
=
matches
[
i
];
if
(
match
.
queryIdx
!=
(
int
)
i
||
match
.
trainIdx
!=
(
int
)
i
||
std
::
abs
(
match
.
distance
)
>
FLT_EPSILON
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).
\n
"
,
i
,
match
.
queryIdx
,
match
.
trainIdx
,
match
.
distance
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
}
}
// test version of match() with add()
{
dmatcher
->
clear
();
std
::
vector
<
DMatch
>
matches
;
// make add() twice to test such case
dmatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
train
.
rowRange
(
0
,
train
.
rows
/
2
)
)
);
dmatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
train
.
rowRange
(
train
.
rows
/
2
,
train
.
rows
)
)
);
// prepare masks (make first nearest match illegal)
std
::
vector
<
Mat
>
masks
(
2
);
for
(
int
mi
=
0
;
mi
<
2
;
mi
++
)
masks
[
mi
]
=
Mat
::
ones
(
query
.
rows
,
1
/*train.rows / 2*/
,
CV_8UC1
);
dmatcher
->
match
(
query
,
matches
,
masks
);
if
(
(
int
)
matches
.
size
()
!=
queryDescCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test match() function (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
else
{
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
DMatch
&
match
=
matches
[
i
];
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
/*+ shift*/
)
||
(
match
.
imgIdx
>
1
)
)
badCount
++
;
}
if
(
(
float
)
badCount
>
(
float
)
queryDescCount
*
badPart
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"%f - too large bad matches part while test match() function (2).
\n
"
,
(
float
)
badCount
/
(
float
)
queryDescCount
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
}
}
}
void
CV_BinaryDescriptorMatcherTest
::
knnMatchTest
(
const
Mat
&
query
,
const
Mat
&
train
)
{
dmatcher
->
clear
();
// test const version of knnMatch()
{
const
int
knn
=
3
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
dmatcher
->
knnMatch
(
query
,
train
,
matches
,
knn
);
if
(
(
int
)
matches
.
size
()
!=
queryDescCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test knnMatch() function (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
else
{
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
if
(
(
int
)
matches
[
i
].
size
()
!=
knn
)
badCount
++
;
else
{
int
localBadCount
=
0
;
for
(
int
k
=
0
;
k
<
knn
;
k
++
)
{
DMatch
&
match
=
matches
[
i
][
k
];
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
+
k
)
||
(
match
.
imgIdx
!=
0
)
)
localBadCount
++
;
}
badCount
+=
localBadCount
>
0
?
1
:
0
;
}
}
if
(
(
float
)
badCount
>
(
float
)
queryDescCount
*
badPart
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"%f - too large bad matches part while test knnMatch() function (1).
\n
"
,
(
float
)
badCount
/
(
float
)
queryDescCount
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
}
// // test version of knnMatch() with add()
{
const
int
knn
=
2
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
// make add() twice to test such case
dmatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
train
.
rowRange
(
0
,
train
.
rows
/
2
)
)
);
dmatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
train
.
rowRange
(
train
.
rows
/
2
,
train
.
rows
)
)
);
// prepare masks (make first nearest match illegal)
std
::
vector
<
Mat
>
masks
(
2
);
for
(
int
mi
=
0
;
mi
<
2
;
mi
++
)
{
masks
[
mi
]
=
Mat
::
ones
(
query
.
rows
,
1
,
CV_8UC1
);
}
dmatcher
->
knnMatch
(
query
,
matches
,
knn
,
masks
);
if
(
(
int
)
matches
.
size
()
!=
queryDescCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test knnMatch() function (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
else
{
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
if
(
(
int
)
matches
[
i
].
size
()
!=
knn
)
badCount
++
;
else
{
int
localBadCount
=
0
;
for
(
int
k
=
0
;
k
<
knn
;
k
++
)
{
DMatch
&
match
=
matches
[
i
][
k
];
{
if
(
i
<
queryDescCount
/
2
)
{
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
+
k
)
||
(
match
.
imgIdx
!=
0
)
)
localBadCount
++
;
}
else
{
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
+
k
)
||
(
match
.
imgIdx
!=
1
)
)
localBadCount
++
;
}
}
}
badCount
+=
localBadCount
>
0
?
1
:
0
;
}
}
if
(
(
float
)
badCount
>
(
float
)
queryDescCount
*
badPart
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"%f - too large bad matches part while test knnMatch() function (2).
\n
"
,
(
float
)
badCount
/
(
float
)
queryDescCount
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
}
}
}
void
CV_BinaryDescriptorMatcherTest
::
radiusMatchTest
(
const
Mat
&
query
,
const
Mat
&
train
)
{
dmatcher
->
clear
();
// test const version of match()
{
const
float
radius
=
1
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
dmatcher
->
radiusMatch
(
query
,
train
,
matches
,
radius
);
if
(
(
int
)
matches
.
size
()
!=
queryDescCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test radiusMatch() function (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
else
{
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
if
(
(
int
)
matches
[
i
].
size
()
!=
1
)
{
badCount
++
;
}
else
{
DMatch
&
match
=
matches
[
i
][
0
];
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
)
||
(
match
.
imgIdx
!=
0
)
)
badCount
++
;
}
}
if
(
(
float
)
badCount
>
(
float
)
queryDescCount
*
badPart
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"%f - too large bad matches part while test radiusMatch() function (1).
\n
"
,
(
float
)
badCount
/
(
float
)
queryDescCount
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
}
{
const
float
radius
=
3
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
// make add() twice to test such case
dmatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
train
.
rowRange
(
0
,
train
.
rows
/
2
)
)
);
dmatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
train
.
rowRange
(
train
.
rows
/
2
,
train
.
rows
)
)
);
// prepare masks
std
::
vector
<
Mat
>
masks
(
2
);
for
(
int
mi
=
0
;
mi
<
2
;
mi
++
)
masks
[
mi
]
=
Mat
::
ones
(
query
.
rows
,
1
,
CV_8UC1
);
dmatcher
->
radiusMatch
(
query
,
matches
,
radius
,
masks
);
//int curRes = cvtest::TS::OK;
if
(
(
int
)
matches
.
size
()
!=
queryDescCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect matches count while test radiusMatch() function (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
if
(
(
int
)
matches
[
i
].
size
()
!=
radius
)
badCount
++
;
else
{
int
localBadCount
=
0
;
for
(
int
k
=
0
;
k
<
radius
;
k
++
)
{
DMatch
&
match
=
matches
[
i
][
k
];
{
if
(
i
<
queryDescCount
/
2
)
{
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
+
k
)
||
(
match
.
imgIdx
!=
0
)
)
localBadCount
++
;
}
else
{
if
(
(
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
+
k
)
||
(
match
.
imgIdx
!=
1
)
)
localBadCount
++
;
}
}
}
badCount
+=
localBadCount
>
0
?
1
:
0
;
}
}
if
(
(
float
)
badCount
>
(
float
)
queryDescCount
*
badPart
)
{
//curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"%f - too large bad matches part while test radiusMatch() function (2).
\n
"
,
(
float
)
badCount
/
(
float
)
queryDescCount
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
}
}
void
CV_BinaryDescriptorMatcherTest
::
run
(
int
)
{
Mat
query
,
train
;
emptyDataTest
();
generateData
(
query
,
train
);
matchTest
(
query
,
train
);
knnMatchTest
(
query
,
train
);
radiusMatchTest
(
query
,
train
);
}
/****************************************************************************************\
* Tests registrations *
\****************************************************************************************/
TEST
(
BinaryDescriptor_Matcher
,
regression
)
{
CV_BinaryDescriptorMatcherTest
test
(
0.01
f
);
test
.
safe_run
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment