Commit 90d2c696 authored by Vlad Shakhuro's avatar Vlad Shakhuro

Add detector train implementation

parent 8066cee8
#include "icfdetector.hpp"
#include "waldboost.hpp"
#include <iostream>
#include <sstream>
using std::ostringstream;
using std::vector;
using std::string;
#include <algorithm>
using std::min;
using std::max;
#include <opencv2/core.hpp>
using cv::Rect;
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
namespace cv
{
namespace adas
{
static bool overlap(const Rect& r, const vector<Rect>& gt)
{
for( size_t i = 0; i < gt.size(); ++i )
if( (r & gt[i]).area() )
return true;
return false;
}
void ICFDetector::train(const vector<string>& image_filenames,
const vector< vector<Rect> >& labelling,
ICFDetectorParams params)
{
std::cout << "train" << std::endl;
Size model_size(params.model_n_cols, params.model_n_rows);
vector<Mat> samples; /* positive samples + negative samples */
Mat sample, resized_sample;
int pos_count = 0;
for( size_t i = 0; i < image_filenames.size(); ++i, ++pos_count )
{
Mat img = imread(image_filenames[i]);
for( size_t j = 0; j < labelling[i].size(); ++j )
{
Rect r = labelling[i][j];
if( r.x > img.cols || r.y > img.rows )
continue;
sample = img.colRange(max(r.x, 0), min(r.width, img.cols))
.rowRange(max(r.y, 0), min(r.height, img.rows));
resize(sample, resized_sample, model_size);
samples.push_back(resized_sample);
}
}
int neg_count = 0;
RNG rng;
for( size_t i = 0; i < image_filenames.size(); ++i, ++neg_count )
{
Mat img = imread(image_filenames[i]);
for( size_t j = 0; j < pos_count / image_filenames.size() + 1; ++j )
{
Rect r;
r.x = rng.uniform(0, img.cols);
r.width = rng.uniform(r.x + 1, img.cols);
r.y = rng.uniform(0, img.rows);
r.height = rng.uniform(r.y + 1, img.rows);
if( !overlap(r, labelling[i]) )
{
sample = img.colRange(r.x, r.width).rowRange(r.y, r.height);
resize(sample, resized_sample);
samples.push_back(resized_sample);
++neg_count;
}
}
}
Mat_<int> labels(1, pos_count + neg_count);
for( size_t i = 0; i < pos_count; ++i)
labels(0, i) = 1;
for( size_t i = pos_count; i < pos_count + neg_count; ++i )
labels(0, i) = -1;
vector<Point3i> features = generateFeatures(model_size);
ACFFeatureEvaluator feature_evaluator(features);
Mat_<int> data(features.size(), samples.size());
Mat_<int> feature_col;
vector<Mat> channels;
for( size_t i = 0; i < samples.size(); ++i )
{
computeChannels(samples[i], channels);
feature_evaluator.setChannels(channels);
feature_evaluator.evaluateAll(feature_col);
for( int j = 0; j < feature_col.rows; ++j )
data(i, j) = feature_col(0, j);
}
WaldBoostParams wparams;
wparams.weak_count = params.weak_count;
wparams.alpha = 0.001;
WaldBoost waldboost(wparams);
waldboost.train(data, labels);
}
bool ICFDetector::save(const string& filename)
{
return true;
}
} /* namespace adas */
} /* namespace cv */
......@@ -47,6 +47,11 @@ the use of this software, even if advised of the possibility of such damage.
#include <opencv2/core.hpp>
namespace cv
{
namespace adas
{
struct ICFDetectorParams
{
int feature_count;
......@@ -75,4 +80,6 @@ public:
bool save(const std::string& filename);
};
} /* namespace adas */
} /* namespace cv */
#endif /* __OPENCV_ADAS_ICFDETECTOR_HPP__ */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment