Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
909a0022
Commit
909a0022
authored
Jul 28, 2016
by
Vitaliy Lyudvichenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Adding of OCL and public interface for InnerProduct layer
parent
bf9e9b81
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
106 additions
and
55 deletions
+106
-55
all_layers.hpp
modules/dnn/include/opencv2/dnn/all_layers.hpp
+8
-0
init.cpp
modules/dnn/src/init.cpp
+1
-1
fully_connected_layer.cpp
modules/dnn/src/layers/fully_connected_layer.cpp
+80
-43
fully_connected_layer.hpp
modules/dnn/src/layers/fully_connected_layer.hpp
+16
-10
test_layers.cpp
modules/dnn/test/test_layers.cpp
+1
-1
No files found.
modules/dnn/include/opencv2/dnn/all_layers.hpp
View file @
909a0022
...
...
@@ -267,6 +267,14 @@ namespace dnn
static
Ptr
<
SoftmaxLayer
>
create
(
int
axis
=
1
);
};
class
CV_EXPORTS_W
InnerProductLayer
:
public
Layer
{
public
:
int
axis
;
static
Ptr
<
InnerProductLayer
>
create
(
int
axis
=
1
);
};
//! @}
//! @}
...
...
modules/dnn/src/init.cpp
View file @
909a0022
...
...
@@ -84,7 +84,7 @@ void initModule()
REG_RUNTIME_LAYER_FUNC
(
Pooling
,
createPoolingLayerFromCaffe
)
REG_RUNTIME_LAYER_CLASS
(
MVN
,
MVNLayer
)
REG_RUNTIME_LAYER_FUNC
(
LRN
,
createLRNLayerFromCaffe
)
REG_RUNTIME_LAYER_
CLASS
(
InnerProduct
,
FullyConnectedLayer
)
REG_RUNTIME_LAYER_
FUNC
(
InnerProduct
,
createInnerProductLayerFromCaffe
)
REG_RUNTIME_LAYER_CLASS
(
ReLU
,
ElementWiseLayer
<
ReLUFunctor
>
)
REG_RUNTIME_LAYER_CLASS
(
TanH
,
ElementWiseLayer
<
TanHFunctor
>
)
...
...
modules/dnn/src/layers/fully_connected_layer.cpp
View file @
909a0022
...
...
@@ -43,73 +43,110 @@
#include "layers_common.hpp"
#include "fully_connected_layer.hpp"
#include "op_blas.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/ocl.hpp>
namespace
cv
{
namespace
dnn
{
FullyConnectedLayer
::
FullyConnectedLayer
(
LayerParams
&
params
)
:
Layer
(
params
)
{
numOutputs
=
params
.
get
<
int
>
(
"num_output"
);
bias
=
params
.
get
<
bool
>
(
"bias_term"
,
true
);
axis_
=
params
.
get
<
int
>
(
"axis"
,
1
);
CV_Assert
(
blobs
.
size
()
==
(
bias
?
2U
:
1U
));
CV_Assert
(
blobs
[
0
].
dims
()
>=
2
&&
blobs
[
0
].
total
()
>=
(
size_t
)
numOutputs
);
CV_Assert
(
!
bias
||
blobs
[
1
].
total
()
==
(
size_t
)
numOutputs
)
;
}
FullyConnectedLayerImpl
::
FullyConnectedLayerImpl
(
int
axis_
)
{
axis
=
axis_
;
}
void
FullyConnectedLayer
::
allocate
(
const
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
void
FullyConnectedLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
CV_Assert
(
input
.
size
()
>
0
);
CV_Assert
(
1
<=
blobs
.
size
()
&&
blobs
.
size
()
<=
2
);
CV_Assert
(
blobs
[
0
].
dims
()
==
2
);
bias
=
(
blobs
.
size
()
>=
1
);
axisCan
=
input
[
0
]
->
canonicalAxis
(
axis
);
dtype
=
input
[
0
]
->
type
();
numOutput
=
blobs
[
0
].
size
(
0
);
innerSize
=
blobs
[
0
].
size
(
1
);
outerSize
=
input
[
0
]
->
total
(
0
,
axisCan
);
axis
=
input
[
0
]
->
canonicalAxis
(
axis_
);
innerSize
=
(
int
)
input
[
0
]
->
total
(
axis
);
CV_Assert
((
size_t
)
innerSize
==
input
[
0
]
->
total
(
axisCan
)
);
CV_Assert
(
!
bias
||
(
size_t
)
numOutput
==
blobs
[
1
].
total
()
);
CV_Assert
((
size_t
)
innerSize
*
(
size_t
)
numOutputs
==
blobs
[
0
].
total
());
CV_Assert
(
blobs
[
0
].
size
(
-
2
)
==
numOutputs
&&
blobs
[
0
].
size
(
-
1
)
==
innerSize
);
useOpenCL
=
ocl
::
useOpenCL
();
int
allocFlags
=
useOpenCL
?
Blob
::
ALLOC_UMAT
:
Blob
::
ALLOC_UMAT
;
biasOnesBlob
.
create
(
Shape
(
outerSize
,
1
),
dtype
,
allocFlags
);
if
(
useOpenCL
)
biasOnesBlob
.
getRef
<
UMat
>
().
setTo
(
1
);
else
biasOnesBlob
.
getRef
<
Mat
>
().
setTo
(
1
);
output
.
resize
(
input
.
size
());
for
(
size_t
i
=
0
;
i
<
input
.
size
();
i
++
)
{
if
(
i
!=
0
)
CV_Assert
(
input
[
i
]
->
equalShape
(
*
input
[
0
]));
this
->
reshape
(
*
input
[
i
],
output
[
i
]);
}
CV_Assert
(
i
==
0
||
(
input
[
i
]
->
equalShape
(
*
input
[
0
])
&&
input
[
i
]
->
type
()
==
dtype
));
Shape
outShape
=
input
[
i
]
->
shape
().
slice
(
0
,
axis
)
+
Shape
(
numOutput
);
output
[
i
].
create
(
outShape
,
dtype
,
allocFlags
);
}
}
void
FullyConnectedLayer
::
reshape
(
const
Blob
&
inp
,
Blob
&
out
)
{
BlobShape
inpShape
=
inp
.
shape
();
BlobShape
outShape
(
axis
+
1
,
inpShape
.
ptr
());
outShape
[
axis
]
=
numOutputs
;
void
FullyConnectedLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
if
(
!
useOpenCL
)
forward_
<
Mat
>
(
input
,
output
);
else
forward_
<
UMat
>
(
input
,
output
);
}
out
.
create
(
outShape
,
inp
.
type
());
template
<
typename
XMat
>
void
FullyConnectedLayerImpl
::
forward_
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
const
XMat
&
weight
=
blobs
[
0
].
getRefConst
<
XMat
>
();
const
XMat
*
biasMat
,
*
biasOnesMat
;
if
(
bias
)
{
biasOnesMat
=
&
biasOnesBlob
.
getRefConst
<
XMat
>
();
biasMat
=
&
blobs
[
1
].
getRefConst
<
XMat
>
();
}
void
FullyConnectedLayer
::
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
for
(
size_t
i
=
0
;
i
<
input
.
size
();
i
++
)
{
int
M
=
(
int
)
input
[
i
]
->
total
(
0
,
axis
);
int
N
=
numOutputs
;
int
K
=
innerSize
;
const
XMat
srcMat
=
reshaped
(
input
[
i
]
->
getRefConst
<
XMat
>
(),
Shape
(
outerSize
,
innerSize
)
);
XMat
dstMat
=
reshaped
(
output
[
i
].
getRef
<
XMat
>
(),
Shape
(
outerSize
,
numOutput
))
;
dnn
::
gemm
(
srcMat
,
weight
,
1
,
dstMat
,
0
,
GEMM_2_T
)
;
Mat
srcMat
(
M
,
K
,
input
[
i
]
->
type
(),
input
[
i
]
->
ptrf
());
Mat
weight
(
N
,
K
,
blobs
[
0
].
type
(),
blobs
[
0
].
ptrf
());
Mat
dstMat
(
M
,
N
,
output
[
i
].
type
(),
output
[
i
].
ptrf
());
if
(
bias
)
dnn
::
gemm
(
*
biasOnesMat
,
*
biasMat
,
1
,
dstMat
,
1
);
}
}
Ptr
<
InnerProductLayer
>
InnerProductLayer
::
create
(
int
axis
)
{
return
Ptr
<
InnerProductLayer
>
(
new
FullyConnectedLayerImpl
(
axis
));
}
Ptr
<
Layer
>
createInnerProductLayerFromCaffe
(
LayerParams
&
params
)
{
const
std
::
vector
<
Blob
>
&
blobs
=
params
.
blobs
;
CV_Assert
(
1
<=
blobs
.
size
()
&&
blobs
.
size
()
<=
2
);
//important: for perfomance purposes Caffe stores weights as transposed array
gemmCPU
(
srcMat
,
weight
,
1
,
dstMat
,
0
,
GEMM_2_T
);
int
numOutputs
=
params
.
get
<
int
>
(
"num_output"
);
int
innerSize
=
(
int
)
blobs
[
0
].
total
()
/
numOutputs
;
bool
bias
=
params
.
get
<
bool
>
(
"bias_term"
,
true
);
int
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
CV_Assert
(
blobs
[
0
].
dims
()
>=
2
&&
(
size_t
)(
innerSize
*
numOutputs
)
==
blobs
[
0
].
total
());
CV_Assert
(
!
bias
||
(
blobs
.
size
()
==
2
&&
(
size_t
)
numOutputs
==
blobs
[
1
].
total
()));
Ptr
<
InnerProductLayer
>
l
=
InnerProductLayer
::
create
(
axis
);
l
->
setParamsFrom
(
params
);
l
->
blobs
[
0
].
reshape
(
Shape
(
numOutputs
,
innerSize
));
if
(
bias
)
{
Mat
biasOnesMat
=
Mat
::
ones
(
M
,
1
,
CV_32F
);
Mat
biasMat
(
1
,
N
,
CV_32F
,
blobs
[
1
].
ptrf
());
gemmCPU
(
biasOnesMat
,
biasMat
,
1
,
dstMat
,
1
);
}
}
}
l
->
blobs
[
1
].
reshape
(
Shape
(
1
,
numOutputs
));
return
Ptr
<
Layer
>
(
l
);
}
}
}
modules/dnn/src/layers/fully_connected_layer.hpp
View file @
909a0022
...
...
@@ -42,26 +42,32 @@
#ifndef __OPENCV_DNN_LAYERS_FULLY_CONNECTED_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_FULLY_CONNECTED_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
FullyConnectedLayer
:
public
Layer
{
bool
bias
;
int
numOutputs
;
int
axis_
,
axis
;
int
innerSize
;
class
FullyConnectedLayerImpl
:
public
InnerProductLayer
{
int
axisCan
,
dtype
;
int
numOutput
,
innerSize
,
outerSize
;
bool
bias
,
useOpenCL
;
Blob
biasOnesBlob
;
template
<
typename
XMat
>
void
forward_
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
);
void
reshape
(
const
Blob
&
inp
,
Blob
&
out
);
public
:
public
:
FullyConnectedLayer
(
LayerParams
&
params
);
FullyConnectedLayerImpl
(
int
axisCan
=
1
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
};
Ptr
<
Layer
>
createInnerProductLayerFromCaffe
(
LayerParams
&
params
);
}
}
#endif
modules/dnn/test/test_layers.cpp
View file @
909a0022
...
...
@@ -181,7 +181,7 @@ TEST(Layer_Test_Reshape, squeeze)
rl
->
allocate
(
inpVec
,
outVec
);
rl
->
forward
(
inpVec
,
outVec
);
EXPECT_EQ
(
outVec
[
0
].
shape
(),
BlobShape
(
Vec3i
(
4
,
3
,
2
)
));
EXPECT_EQ
(
outVec
[
0
].
shape
(),
BlobShape
(
4
,
3
,
2
));
}
TEST
(
Layer_Test_Reshape_Split_Slice
,
Accuracy
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment