Commit 9064d28d authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #223 from albenoit/master

Added python support, updated Retina class documentation
parents 5d4350c5 85912726
set(the_description "Biologically inspired algorithms") set(the_description "Biologically inspired algorithms")
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef) ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef)
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui opencv_ocl WRAP java) ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui opencv_ocl WRAP java python)
Biologically inspired vision models and derivated tools Biologically inspired vision models and derivated tools
======================================================= =======================================================
1. A biological retina model for image spatio-temporal noise and luminance changes enhancement
2. A transient areas (spatio-temporal events) segmentation tool to use at the output of the Retina
3. High Dynamic Range (HDR >8bit images) tone mapping to (conversion to 8bit) use cas of the retina
...@@ -9,6 +9,15 @@ ...@@ -9,6 +9,15 @@
publisher={Elsevier} publisher={Elsevier}
} }
@INPROCEEDINGS{Benoit2014,
author={Strat, S.T. and Benoit, A. and Lambert, P.},
booktitle={Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European},
title={Retina enhanced bag of words descriptors for video classification},
year={2014},
month={Sept},
pages={1307-1311}
}
@inproceedings{Strat2013, @inproceedings{Strat2013,
title={Retina enhanced SIFT descriptors for video indexing}, title={Retina enhanced SIFT descriptors for video indexing},
author={Strat, Sabin Tiberius and Benoit, Alexandre and Lambert, Patrick}, author={Strat, Sabin Tiberius and Benoit, Alexandre and Lambert, Patrick},
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
...@@ -12,12 +12,12 @@ ...@@ -12,12 +12,12 @@
** **
** Maintainers : Listic lab (code author current affiliation & applications) ** Maintainers : Listic lab (code author current affiliation & applications)
** **
** Creation - enhancement process 2007-2013 ** Creation - enhancement process 2007-2015
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
** **
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information: ** Refer to the following research paper for more information:
** Strat S. T. , Benoit A.Lambert P. , Caplier A., "Retina Enhanced SURF Descriptors for Spatio-Temporal Concept Detection", Multimedia Tools and Applications, 2012 (DOI: 10.1007/s11042-012-1280-0) ** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
** **
** For Human Visual System tools (bioinspired) ** For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
** **
** Third party copyrights are property of their respective owners. ** Third party copyrights are property of their respective owners.
** **
...@@ -74,10 +74,37 @@ namespace cv ...@@ -74,10 +74,37 @@ namespace cv
{ {
namespace bioinspired namespace bioinspired
{ {
//! @addtogroup bioinspired //! @addtogroup bioinspired
//! @{ //! @{
/** @brief parameter structure that stores the transient events detector setup parameters
*/
struct SegmentationParameters{ // CV_EXPORTS_W_MAP to export to python native dictionnaries
// default structure instance construction with default values
SegmentationParameters():
thresholdON(100),
thresholdOFF(100),
localEnergy_temporalConstant(0.5),
localEnergy_spatialConstant(5),
neighborhoodEnergy_temporalConstant(1),
neighborhoodEnergy_spatialConstant(15),
contextEnergy_temporalConstant(1),
contextEnergy_spatialConstant(75){};
// all properties list
float thresholdON;
float thresholdOFF;
//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
float localEnergy_temporalConstant;
//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
float localEnergy_spatialConstant;
//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
float neighborhoodEnergy_temporalConstant;
float neighborhoodEnergy_spatialConstant;
//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
float contextEnergy_temporalConstant;
float contextEnergy_spatialConstant;
};
/** @brief class which provides a transient/moving areas segmentation module /** @brief class which provides a transient/moving areas segmentation module
perform a locally adapted segmentation by using the retina magno input data Based on Alexandre perform a locally adapted segmentation by using the retina magno input data Based on Alexandre
...@@ -96,30 +123,6 @@ class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm ...@@ -96,30 +123,6 @@ class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm
{ {
public: public:
//! parameters structure
struct CV_EXPORTS_W SegmentationParameters{
SegmentationParameters():
thresholdON(100),
thresholdOFF(100),
localEnergy_temporalConstant(0.5),
localEnergy_spatialConstant(5),
neighborhoodEnergy_temporalConstant(1),
neighborhoodEnergy_spatialConstant(15),
contextEnergy_temporalConstant(1),
contextEnergy_spatialConstant(75){};// default setup
CV_PROP_RW float thresholdON;
CV_PROP_RW float thresholdOFF;
//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
CV_PROP_RW float localEnergy_temporalConstant;
//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
CV_PROP_RW float localEnergy_spatialConstant;
//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
CV_PROP_RW float neighborhoodEnergy_temporalConstant;
CV_PROP_RW float neighborhoodEnergy_spatialConstant;
//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
CV_PROP_RW float contextEnergy_temporalConstant;
CV_PROP_RW float contextEnergy_spatialConstant;
};
/** @brief return the sze of the manage input and output images /** @brief return the sze of the manage input and output images
*/ */
...@@ -141,7 +144,7 @@ public: ...@@ -141,7 +144,7 @@ public:
@param fs : the open Filestorage which contains segmentation parameters @param fs : the open Filestorage which contains segmentation parameters
@param applyDefaultSetupOnFailure : set to true if an error must be thrown on error @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
*/ */
CV_WRAP virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0; virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
/** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
...@@ -149,11 +152,11 @@ public: ...@@ -149,11 +152,11 @@ public:
- warning, Exceptions are thrown if read XML file is not valid - warning, Exceptions are thrown if read XML file is not valid
@param newParameters : a parameters structures updated with the new target configuration @param newParameters : a parameters structures updated with the new target configuration
*/ */
CV_WRAP virtual void setup(SegmentationParameters newParameters)=0; virtual void setup(SegmentationParameters newParameters)=0;
/** @brief return the current parameters setup /** @brief return the current parameters setup
*/ */
CV_WRAP virtual SegmentationParameters getParameters()=0; virtual SegmentationParameters getParameters()=0;
/** @brief parameters setup display method /** @brief parameters setup display method
@return a string which contains formatted parameters information @return a string which contains formatted parameters information
...@@ -168,7 +171,7 @@ public: ...@@ -168,7 +171,7 @@ public:
/** @brief write xml/yml formated parameters information /** @brief write xml/yml formated parameters information
@param fs : a cv::Filestorage object ready to be filled @param fs : a cv::Filestorage object ready to be filled
*/ */
CV_WRAP virtual void write( cv::FileStorage& fs ) const=0; virtual void write( cv::FileStorage& fs ) const=0;
/** @brief main processing method, get result using methods getSegmentationPicture() /** @brief main processing method, get result using methods getSegmentationPicture()
@param inputToSegment : the image to process, it must match the instance buffer size ! @param inputToSegment : the image to process, it must match the instance buffer size !
......
//============================================================================
// Name : retinademo.cpp
// Author : Alexandre Benoit, benoit.alexandre.vision@gmail.com
// Version : 0.1
// Copyright : LISTIC/GIPSA French Labs, May 2015
// Description : Gipsa/LISTIC Labs quick retina demo in C++, Ansi-style
//============================================================================
// include bioinspired module and OpenCV core utilities
#include "opencv2/bioinspired.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <cstring>
// main function
int main(int argc, char* argv[]) {
// basic input arguments checking
if (argc>1)
{
std::cout<<"****************************************************"<<std::endl;
std::cout<<"* Retina demonstration : demonstrates the use of is a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
std::cout<<"* This retina model allows spatio-temporal image processing (applied on a webcam sequences)."<<std::endl;
std::cout<<"* As a summary, these are the retina model properties:"<<std::endl;
std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
std::cout<<"* for more information, reer to the following papers :"<<std::endl;
std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl;
std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
std::cout<<"****************************************************"<<std::endl;
std::cout<<" NOTE : this program generates the default retina parameters file 'RetinaDefaultParameters.xml'"<<std::endl;
std::cout<<" => you can use this to fine tune parameters and load them if you save to file 'RetinaSpecificParameters.xml'"<<std::endl;
if (strcmp(argv[1], "help")==0){
std::cout<<"No help provided for now, please test the retina Demo for a more complete program"<<std::endl;
}
}
std::string inputMediaType=argv[1];
// declare the retina input buffer.
cv::Mat inputFrame;
// setup webcam reader and grab a first frame to get its size
cv::VideoCapture videoCapture(0);
videoCapture>>inputFrame;
// allocate a retina instance with input size equal to the one of the loaded image
cv::Ptr<cv::bioinspired::Retina> myRetina = cv::bioinspired::createRetina(inputFrame.size());
/* retina parameters management methods use sample
-> save current (here default) retina parameters to a xml file (you may use it only one time to get the file and modify it)
*/
myRetina->write("RetinaDefaultParameters.xml");
// -> load parameters if file exists
myRetina->setup("RetinaSpecificParameters.xml");
// reset all retina buffers (open your eyes)
myRetina->clearBuffers();
// declare retina output buffers
cv::Mat retinaOutput_parvo;
cv::Mat retinaOutput_magno;
//main processing loop
bool stillProcess=true;
while(stillProcess){
// if using video stream, then, grabbing a new frame, else, input remains the same
if (videoCapture.isOpened())
videoCapture>>inputFrame;
else
stillProcess=false;
// run retina filter
myRetina->run(inputFrame);
// Retrieve and display retina output
myRetina->getParvo(retinaOutput_parvo);
myRetina->getMagno(retinaOutput_magno);
cv::imshow("retina input", inputFrame);
cv::imshow("Retina Parvo", retinaOutput_parvo);
cv::imshow("Retina Magno", retinaOutput_magno);
cv::waitKey(5);
}
}
This diff is collapsed.
...@@ -12,12 +12,12 @@ ...@@ -12,12 +12,12 @@
** **
** Maintainers : Listic lab (code author current affiliation & applications) ** Maintainers : Listic lab (code author current affiliation & applications)
** **
** Creation - enhancement process 2007-2013 ** Creation - enhancement process 2007-2015
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
** **
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information: ** Refer to the following research paper for more information:
** Strat S. T. , Benoit A.Lambert P. , Caplier A., "Retina Enhanced SURF Descriptors for Spatio-Temporal Concept Detection", Multimedia Tools and Applications, 2012 (DOI: 10.1007/s11042-012-1280-0) ** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
** **
** For Human Visual System tools (bioinspired) ** For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
** **
** Third party copyrights are property of their respective owners. ** Third party copyrights are property of their respective owners.
** **
...@@ -132,12 +132,12 @@ public: ...@@ -132,12 +132,12 @@ public:
* @param newParameters : a parameters structures updated with the new target configuration * @param newParameters : a parameters structures updated with the new target configuration
* @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error * @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
*/ */
void setup(TransientAreasSegmentationModule::SegmentationParameters newParameters); void setup(SegmentationParameters newParameters);
/** /**
* @return the current parameters setup * @return the current parameters setup
*/ */
struct TransientAreasSegmentationModule::SegmentationParameters getParameters(); struct SegmentationParameters getParameters();
/** /**
* parameters setup display method * parameters setup display method
...@@ -203,7 +203,7 @@ protected: ...@@ -203,7 +203,7 @@ protected:
*/ */
inline const std::valarray<float> &getMotionContextPicture() const {return _contextMotionEnergy;}; inline const std::valarray<float> &getMotionContextPicture() const {return _contextMotionEnergy;};
struct cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters _segmentationParameters; struct cv::bioinspired::SegmentationParameters _segmentationParameters;
// template buffers and related acess pointers // template buffers and related acess pointers
std::valarray<float> _inputToSegment; std::valarray<float> _inputToSegment;
std::valarray<float> _contextMotionEnergy; std::valarray<float> _contextMotionEnergy;
...@@ -232,9 +232,9 @@ public: ...@@ -232,9 +232,9 @@ public:
inline virtual void write( cv::FileStorage& fs ) const{_segmTool.write(fs);}; inline virtual void write( cv::FileStorage& fs ) const{_segmTool.write(fs);};
inline virtual void setup(String segmentationParameterFile, const bool applyDefaultSetupOnFailure){_segmTool.setup(segmentationParameterFile, applyDefaultSetupOnFailure);}; inline virtual void setup(String segmentationParameterFile, const bool applyDefaultSetupOnFailure){_segmTool.setup(segmentationParameterFile, applyDefaultSetupOnFailure);};
inline virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure){_segmTool.setup(fs, applyDefaultSetupOnFailure);}; inline virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure){_segmTool.setup(fs, applyDefaultSetupOnFailure);};
inline virtual void setup(TransientAreasSegmentationModule::SegmentationParameters newParameters){_segmTool.setup(newParameters);}; inline virtual void setup(SegmentationParameters newParameters){_segmTool.setup(newParameters);};
inline virtual const String printSetup(){return _segmTool.printSetup();}; inline virtual const String printSetup(){return _segmTool.printSetup();};
inline virtual struct TransientAreasSegmentationModule::SegmentationParameters getParameters(){return _segmTool.getParameters();}; inline virtual struct SegmentationParameters getParameters(){return _segmTool.getParameters();};
inline virtual void write( String fs ) const{_segmTool.write(fs);}; inline virtual void write( String fs ) const{_segmTool.write(fs);};
inline virtual void run(InputArray inputToSegment, const int channelIndex){_segmTool.run(inputToSegment, channelIndex);}; inline virtual void run(InputArray inputToSegment, const int channelIndex){_segmTool.run(inputToSegment, channelIndex);};
inline virtual void getSegmentationPicture(OutputArray transientAreas){return _segmTool.getSegmentationPicture(transientAreas);}; inline virtual void getSegmentationPicture(OutputArray transientAreas){return _segmTool.getSegmentationPicture(transientAreas);};
...@@ -286,7 +286,7 @@ void TransientAreasSegmentationModuleImpl::clearAllBuffers() ...@@ -286,7 +286,7 @@ void TransientAreasSegmentationModuleImpl::clearAllBuffers()
_segmentedAreas=0; _segmentedAreas=0;
} }
struct TransientAreasSegmentationModule::SegmentationParameters TransientAreasSegmentationModuleImpl::getParameters() struct SegmentationParameters TransientAreasSegmentationModuleImpl::getParameters()
{ {
return _segmentationParameters; return _segmentationParameters;
}; };
...@@ -305,7 +305,7 @@ void TransientAreasSegmentationModuleImpl::setup(String segmentationParameterFil ...@@ -305,7 +305,7 @@ void TransientAreasSegmentationModuleImpl::setup(String segmentationParameterFil
if (applyDefaultSetupOnFailure) if (applyDefaultSetupOnFailure)
{ {
printf("Retina::setup: resetting retina with default parameters\n"); printf("Retina::setup: resetting retina with default parameters\n");
cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters defaults; cv::bioinspired::SegmentationParameters defaults;
setup(defaults); setup(defaults);
} }
else else
...@@ -344,7 +344,7 @@ void TransientAreasSegmentationModuleImpl::setup(cv::FileStorage &fs, const bool ...@@ -344,7 +344,7 @@ void TransientAreasSegmentationModuleImpl::setup(cv::FileStorage &fs, const bool
std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl; std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl;
if (applyDefaultSetupOnFailure) if (applyDefaultSetupOnFailure)
{ {
struct cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters defaults; struct cv::bioinspired::SegmentationParameters defaults;
setup(defaults); setup(defaults);
} }
std::cout<<"SegmentationModule::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl; std::cout<<"SegmentationModule::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl;
...@@ -356,11 +356,11 @@ void TransientAreasSegmentationModuleImpl::setup(cv::FileStorage &fs, const bool ...@@ -356,11 +356,11 @@ void TransientAreasSegmentationModuleImpl::setup(cv::FileStorage &fs, const bool
} }
// setup parameters for the 2 filters that allow the segmentation // setup parameters for the 2 filters that allow the segmentation
void TransientAreasSegmentationModuleImpl::setup(cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters newParameters) void TransientAreasSegmentationModuleImpl::setup(cv::bioinspired::SegmentationParameters newParameters)
{ {
// copy structure contents // copy structure contents
memcpy(&_segmentationParameters, &newParameters, sizeof(cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters)); memcpy(&_segmentationParameters, &newParameters, sizeof(cv::bioinspired::SegmentationParameters));
// apply setup // apply setup
// init local motion energy extraction low pass filter // init local motion energy extraction low pass filter
BasicRetinaFilter::setLPfilterParameters(0, newParameters.localEnergy_temporalConstant, newParameters.localEnergy_spatialConstant); BasicRetinaFilter::setLPfilterParameters(0, newParameters.localEnergy_temporalConstant, newParameters.localEnergy_spatialConstant);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment