Commit 9064d28d authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #223 from albenoit/master

Added python support, updated Retina class documentation
parents 5d4350c5 85912726
set(the_description "Biologically inspired algorithms")
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef)
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui opencv_ocl WRAP java)
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui opencv_ocl WRAP java python)
Biologically inspired vision models and derivated tools
=======================================================
1. A biological retina model for image spatio-temporal noise and luminance changes enhancement
2. A transient areas (spatio-temporal events) segmentation tool to use at the output of the Retina
3. High Dynamic Range (HDR >8bit images) tone mapping to (conversion to 8bit) use cas of the retina
......@@ -9,6 +9,15 @@
publisher={Elsevier}
}
@INPROCEEDINGS{Benoit2014,
author={Strat, S.T. and Benoit, A. and Lambert, P.},
booktitle={Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European},
title={Retina enhanced bag of words descriptors for video classification},
year={2014},
month={Sept},
pages={1307-1311}
}
@inproceedings{Strat2013,
title={Retina enhanced SIFT descriptors for video indexing},
author={Strat, Sabin Tiberius and Benoit, Alexandre and Lambert, Patrick},
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
Bioinspired Module Retina Introduction {#bioinspired_retina}
======================================
Retina
------
Retina class overview
---------------------
@note do not forget that the retina model is included in the following namespace : cv::bioinspired
@note do not forget that the retina model is included in the following namespace : cv::bioinspired with C++ and in cv2.bioinspired with Python
### Introduction
Class which provides the main controls to the Gipsa/Listic labs human retina model. This is a non
This class provides the main controls of the Gipsa/Listic labs human retina model. This is a non
separable spatio-temporal filter modelling the two main retina information channels :
- foveal vision for detailled color vision : the parvocellular pathway.
- peripheral vision for sensitive transient signals detection (motion and events) : the
magnocellular pathway.
- foveal vision for detailed color vision : the parvocellular pathway.
- peripheral vision for sensitive transient signals detection (motion and events) : the magnocellular pathway.
From a general point of view, this filter whitens the image spectrum and corrects luminance thanks
to local adaptation. An other important property is its hability to filter out spatio-temporal noise
while enhancing details. This model originates from Jeanny Herault work @cite Herault2010 . It has been
involved in Alexandre Benoit phd and his current research @cite Benoit2010, @cite Strat2013 (he
currently maintains this module within OpenCV). It includes the work of other Jeanny's phd student
This model originates from Jeanny Herault work @cite Herault2010 . It has been
involved in Alexandre Benoit phd and his current research @cite Benoit2010, @cite Benoit2014 . He
currently maintains this module within OpenCV. It includes the work of other Jeanny's phd student
such as @cite Chaix2007 and the log polar transformations of Barthelemy Durette described in Jeanny's
book.
More into details here is an overview of the retina properties that are implemented here :
- regarding luminance and details enhancement :
- local logarithmic luminance compression (at the entry point by photoreceptors and at the output by ganglion cells).
- spectral whitening at the Outer Plexiform Layer level (photoreceptors and horizontal cells spatio-temporal filtering).
The former behavior compresses luminance range and allows very bright areas and very dark ones to be visible on the same picture with lots of details. The latter reduces low frequency luminance energy (mean luminance) and enhances mid-frequencies (details). Applied all together, retina well prepares visual signals prior high level analysis. Those properties are really interesting with videos where light changes are dramatically reduced with an interesting temporal consistency.
- regarding noise filtering :
- high frequency spatial and temporal noise is filtered out. Both outputs Parvo and Magno pathways benefit from this. Noise reduction benefits from the non separable spatio-temporal filtering.
- at the Parvo output, static textures are enhanced and noise is filtered (on videos, temporal noise is nicely removed). However, as human behaviors, moving textures are smoothed. Then, moving object details can be only enhanced if the retina tracks it and keeps it static from its point of view.
- at Magno output, it allows a cleaner detection of events (motion, changes) with reduced noise errors even in difficult lighting conditions. As a compromise, the Magno output is a low spatial frequency signal and allows events' blobs to be reliably extracted (check the TransientAreasSegmentationModule module for that).
### Use
This model can be used as a preprocessing stage in the aim of :
- performing texture analysis with enhanced signal to noise ratio and enhanced details which are robust
against input images luminance ranges (check out the parvocellular retina channel output, by
using the provided **getParvo** methods)
- performing motion analysis that is also taking advantage of the previously cited properties (check out the
magnocellular retina channel output, by using the provided **getMagno** methods)
- general image/video sequence description using either one or both channels. An example of the
use of Retina in a Bag of Words approach is given in @cite Benoit2014 .
@note
- For ease of use in computer vision applications, the two retina channels are applied
homogeneously on all the input images. This does not follow the real retina topology but this
can still be done using the log sampling capabilities proposed within the class.
- Extend the retina description and code use in the tutorial/contrib section for complementary
explanations.
on all the input images. This does not follow the real retina topology but it is practical from an image processing point of view. If retina mapping (foveal and parafoveal vision) is required, use the log sampling capabilities proposed within the class.
- Please do not hesitate to contribute by extending the retina description, code, use cases for complementary explanations and demonstrations.
### Preliminary illustration
### Use case illustrations
#### Image preprocessing using the Parvocellular pathway (parvo retina output)
As a preliminary presentation, let's start with a visual example. We propose to apply the filter on
a low quality color jpeg image with backlight problems. Here is the considered input... *"Well, my
eyes were able to see more that this strange black shadow..."*
a low quality color jpeg image with backlight problems. Here is the considered input... *"Well,i could see more with my eyes than what i captured with my camera..."*
![a low quality color jpeg image with backlight problems.](images/retinaInput.jpg)
Below, the retina foveal model applied on the entire image with default parameters. Here contours
are enforced, halo effects are voluntary visible with this configuration. See parameters discussion
Below, the retina foveal model applied on the entire image with default parameters. Details are enforced whatever the local luminance is. Here there contours
are strongly enforced but the noise level is kept low. Halo effects are voluntary visible with this configuration. See parameters discussion
below and increase horizontalCellsGain near 1 to remove them.
![the retina foveal model applied on the entire image with default parameters. Here contours are enforced, luminance is corrected and halo effects are voluntary visible with this configuration, increase horizontalCellsGain near 1 to remove them.](images/retinaOutput_default.jpg)
......@@ -48,27 +68,96 @@ Below, a second retina foveal model output applied on the entire image with a pa
focused on naturalness perception. *"Hey, i now recognize my cat, looking at the mountains at the
end of the day !"*. Here contours are enforced, luminance is corrected but halos are avoided with
this configuration. The backlight effect is corrected and highlight details are still preserved.
Then, even on a low quality jpeg image, if some luminance information remains, the retina is able to
reconstruct a proper visual signal. Such configuration is also usefull for High Dynamic Range
Then, even on a low quality jpeg image, if some luminance's information remains, the retina is able to
reconstruct a proper visual signal. Such configuration is also useful for High Dynamic Range
(*HDR*) images compression to 8bit images as discussed in @cite Benoit2010 and in the demonstration
codes discussed below. As shown at the end of the page, parameters change from defaults are :
codes discussed below. As shown at the end of the page, parameter changes from defaults are :
- horizontalCellsGain=0.3
- photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89.
![the retina foveal model applied on the entire image with 'naturalness' parameters. Here contours are enforced but are avoided with this configuration, horizontalCellsGain is 0.3 and photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89.](images/retinaOutput_realistic.jpg)
![the retina foveal model applied on the entire image with 'naturalness' parameters. Here contours are enforced but halo effects are avoided with this configuration, horizontalCellsGain is 0.3 and photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89.](images/retinaOutput_realistic.jpg)
As observed in this preliminary demo, the retina can be settled up with various parameters, by
default, as shown on the figure above, the retina strongly reduces mean luminance energy and
enforces all details of the visual scene. Luminance energy and halo effects can be modulated
(exagerated to cancelled as shown on the two examples). In order to use your own parameters, you can
(exaggerated to cancelled as shown on the two examples). In order to use your own parameters, you can
use at least one time the *write(String fs)* method which will write a proper XML file with all
default parameters. Then, tweak it on your own and reload them at any time using method
*setup(String fs)*. These methods update a *Retina::RetinaParameters* member structure that is
described hereafter. XML parameters file samples are shown at the end of the page.
Here is an overview of the abstract Retina interface, allocate one instance with the *createRetina*
functions.:
#### Tone mapping processing capability using the Parvocellular pathway (parvo retina output)
This retina model naturally handles luminance range compression. Local adaptation stages and spectral whitening contribute
to luminance range compression. In addition, high frequency noise that often corrupts tone mapped images is removed at early stages of the
process thus leading to natural perception and noise free tone mapping.
Compared to the demos shown above, setup differences are the following ones: (see bioinspired/samples/OpenEXRimages_HDR_Retina_toneMapping.cpp for more details)
* load HDR images (OpenEXR format is supported by OpenCV) and cut histogram borders at ~5% and 95% to eliminate salt&pepper like pixel's corruption.
* apply retina with default parameters along with the following changes (generic parameters used for the presented illustrations of the section) :
* retina Hcells gain =0.4 (the main change compared to the default configuration : it strongly reduces halo effects)
* localAdaptation_photoreceptors=0.99 (a little higher than default value to enforce local adaptation)
* localAdaptation_Gcells=0.95 (also slightly higher than default for local adaptation enforcement)
* get the parvo output using the *getParvo()* method.
Have a look at the end of this page to see how to specify these parameters in a configuration file.
The following two illustrations show the effect of such configuration on 2 image samples.
![HDR image tone mapping example with generic parameters. Original image comes from http://openexr.com/ samples (openexr-images-1.7.0/ScanLines/CandleGlass.exr)](images/HDRtoneMapping_candleSample.jpg)
![HDR image tone mapping example with the same generic parameters. Original image comes from http://www.pauldebevec.com/Research/HDR/memorial.exr)](images/HDRtoneMapping_memorialSample.jpg)
#### Motion and event detection using the Magnocellular pathway (magno retina output)
Spatio-temporal events can be easily detected using *magno* output of the retina (use the *getMagno()* method). Its energy linearly increases with motion speed.
An event blob detector is proposed with the TransientAreasSegmentationModule class also provided in the bioinspired module. The basic idea is to detect local energy drops with regard of the neighborhood and then to apply a threshold. Such process has been used in a bag of words description of videos on the TRECVid challenge @cite Benoit2014 and only allows video frames description on transient areas.
We present here some illustrations of the retina outputs on some examples taken from http://changedetection.net/ with RGB and thermal videos.
@note here, we use the default retina setup that generates halos around strong edges. Note that temporal constants allow a temporal effect to be visible on moting objects (useful for still image illustrations of a video). Halos can be removed by increasing retina Hcells gain while temporal effects can be reduced by decreasing temporal constant values.
Also take into account that the two retina outputs are rescaled in range [0:255] such that magno output can show a lot of "noise" when nothing moves while drawing it. However, its energy remains low if you retrieve it using *getMagnoRAW* getter instead.
![Retina processing on RGB image sequence : example from http://changedetection.net/ (baseline/PETS2006). Parvo enforces static signals but smooths moving persons since they do not remain static from its point of view. Magno channel highligths moving persons, observe the energy mapping on the one on top, partly behind a dark glass.](images/VideoDemo_RGB_PETS2006.jpg)
![Retina processing on gray levels image sequence : example from http://changedetection.net/ (thermal/park). On such grayscale images, parvo channel enforces contrasts while magno strongly reacts on moving pedestrians](images/VideoDemo_thermal_park.jpg)
### Literature
For more information, refer to the following papers :
- Model description : @cite Benoit2010
- Model use in a Bag of Words approach : @cite Benoit2014
- Please have a look at the reference work of Jeanny Herault that you can read in his book : @cite Herault2010
This retina filter code includes the research contributions of phd/research collegues from which
code has been redrawn by the author :
- take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color
mosaicing/demosaicing and his reference paper: @cite Chaix2007
- take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which
originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is
also proposed and originates from Jeanny's discussions. More informations in the above cited
Jeanny Heraults's book.
- Meylan&al work on HDR tone mapping that is implemented as a specific method within the model : @cite Meylan2007
Retina programming interfaces
-----------------------------
The proposed class allows the [Gipsa](http://www.gipsa-lab.inpg.fr) (preliminary work) /
[Listic](http://www.listic.univ-savoie.fr) labs retina model to be used.
It can be applied on still images, images sequences and video sequences.
Here is an overview of the Retina interface, allocate one instance with the *createRetina*
functions (C++, Java, Python) :
@code{.cpp}
namespace cv{namespace bioinspired{
......@@ -76,7 +165,7 @@ functions.:
{
public:
// parameters setup instance
struct RetinaParameters; // this class is detailled later
struct RetinaParameters; // this class is detailed later
// main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping)
void run (InputArray inputImage);
......@@ -84,20 +173,20 @@ functions.:
// specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping)
void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)
// output buffers retreival methods
// output buffers retrieval methods
// -> foveal color vision details channel with luminance and noise correction
void getParvo (OutputArray retinaOutput_parvo);
void getParvoRAW (OutputArray retinaOutput_parvo);// retreive original output buffers without any normalisation
const Mat getParvoRAW () const;// retreive original output buffers without any normalisation
void getParvoRAW (OutputArray retinaOutput_parvo);// retrieve original output buffers without any normalisation
const Mat getParvoRAW () const;// retrieve original output buffers without any normalisation
// -> peripheral monochrome motion and events (transient information) channel
void getMagno (OutputArray retinaOutput_magno);
void getMagnoRAW (OutputArray retinaOutput_magno); // retreive original output buffers without any normalisation
const Mat getMagnoRAW () const;// retreive original output buffers without any normalisation
void getMagnoRAW (OutputArray retinaOutput_magno); // retrieve original output buffers without any normalisation
const Mat getMagnoRAW () const;// retrieve original output buffers without any normalisation
// reset retina buffers... equivalent to closing your eyes for some seconds
void clearBuffers ();
// retreive input and output buffers sizes
// retrieve input and output buffers sizes
Size getInputSize ();
Size getOutputSize ();
......@@ -122,57 +211,261 @@ functions.:
}} // cv and bioinspired namespaces end
@endcode
### Description
### Setting up Retina
#### Managing the configuration file
When using the *Retina::write* and *Retina::load* methods, you create or load a XML file that stores Retina configuration.
The default configuration is presented below.
@code{.xml}
<?xml version="1.0"?>
<opencv_storage>
<OPLandIPLparvo>
<colorMode>1</colorMode>
<normaliseOutput>1</normaliseOutput>
<photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
<photoreceptorsSpatialConstant>5.7e-01</photoreceptorsSpatialConstant>
<horizontalCellsGain>0.01</horizontalCellsGain>
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
<ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
<IPLmagno>
<normaliseOutput>1</normaliseOutput>
<parasolCells_beta>0.</parasolCells_beta>
<parasolCells_tau>0.</parasolCells_tau>
<parasolCells_k>7.</parasolCells_k>
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
<localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
</opencv_storage>
@endcode
Class which allows the [Gipsa](http://www.gipsa-lab.inpg.fr) (preliminary work) /
[Listic](http://www.listic.univ-savoie.fr) (code maintainer and user) labs retina model to be used.
This class allows human retina spatio-temporal image processing to be applied on still images,
images sequences and video sequences. Briefly, here are the main human retina model properties:
Here are some words about all those parameters, tweak them as you wish to amplify or moderate retina effects (contours enforcement, halos effects, motion sensitivity, motion blurring, etc.)
#### Basic parameters
The simplest parameters are as follows :
- **colorMode** : let the retina process color information (if 1) or gray scale images (if 0). In
that last case, only the first channels of the input will be processed.
- **normaliseOutput** : each channel has such parameter: if the value is set to 1, then the considered
channel's output is rescaled between 0 and 255. Be aware at this case of the Magnocellular output
level (motion/transient channel detection). Residual noise will also be rescaled !
**Note :** using color requires color channels multiplexing/demultipexing which also demands more
processing. You can expect much faster processing using gray levels : it would require around 30
product per pixel for all of the retina processes and it has recently been parallelized for multicore
architectures.
#### Photo-receptors parameters
The following parameters act on the entry point of the retina - photo-receptors - and has impact on all
of the following processes. These sensors are low pass spatio-temporal filters that smooth temporal and
spatial data and also adjust their sensitivity to local luminance,thus, leads to improving details extraction
and high frequency noise canceling.
- **photoreceptorsLocalAdaptationSensitivity** between 0 and 1. Values close to 1 allow high
luminance log compression's effect at the photo-receptors level. Values closer to 0 provide a more
linear sensitivity. Increased alone, it can burn the *Parvo (details channel)* output image. If
adjusted in collaboration with **ganglionCellsSensitivity**,images can be very contrasted
whatever the local luminance there is... at the cost of a naturalness decrease.
- **photoreceptorsTemporalConstant** this setups the temporal constant of the low pass filter
effect at the entry of the retina. High value leads to strong temporal smoothing effect : moving
objects are blurred and can disappear while static object are favored. But when starting the
retina processing, stable state is reached later.
- **photoreceptorsSpatialConstant** specifies the spatial constant related to photo-receptors' low
pass filter's effect. Those parameters specify the minimum value of the spatial signal period allowed
in what follows. Typically, this filter should cut high frequency noise. On the other hand, a 0 value
cuts none of the noise while higher values start to cut high spatial frequencies, and progressively
lower frequencies... Be aware to not go to high levels if you want to see some details of the input images !
A good compromise for color images is a 0.53 value since such choice won't affect too much the color spectrum.
Higher values would lead to gray and blurred output images.
#### Horizontal cells parameters
This parameter set tunes the neural network connected to the photo-receptors, the horizontal cells.
It modulates photo-receptors sensitivity and completes the processing for final spectral whitening
(part of the spatial band pass effect thus favoring visual details enhancement).
- **horizontalCellsGain** here is a critical parameter ! If you are not interested with the mean
luminance and want just to focus on details enhancement, then, set this parameterto zero. However, if
you want to keep some environment luminance's data, let some low spatial frequencies pass into the system and set a
higher value (\<1).
- **hcellsTemporalConstant** similar to photo-receptors, this parameter acts on the temporal constant of a
low pass temporal filter that smoothes input data. Here, a high value generates a high retina
after effect while a lower value makes the retina more reactive. This value should be lower than
**photoreceptorsTemporalConstant** to limit strong retina after effects.
- **hcellsSpatialConstant** is the spatial constant of these cells filter's low pass one.
It specifies the lowest spatial frequency allowed in what follows. Visually, a high value leads
to very low spatial frequencies processing and leads to salient halo effects. Lower values
reduce this effect but has the limit of not go lower than the value of
**photoreceptorsSpatialConstant**. Those 2 parameters actually specify the spatial band-pass of
the retina.
**NOTE** Once the processing managed by the previous parameters is done, input data is cleaned from noise
and luminance is already partly enhanced. The following parameters act on the last processing stages
of the two outing retina signals.
#### Parvo (details channel) dedicated parameter
- **ganglionCellsSensitivity** specifies the strength of the final local adaptation occurring at
the output of this details' dedicated channel. Parameter values remain between 0 and 1. Low value
tend to give a linear response while higher values enforce the remaining low contrasted areas.
**Note :** this parameter can correct eventual burned images by favoring low energetic details of
the visual scene, even in bright areas.
#### IPL Magno (motion/transient channel) parameters
Once image's information are cleaned, this channel acts as a high pass temporal filter that
selects only the signals related to transient signals (events, motion, etc.). A low pass spatial filter
smoothes extracted transient data while a final logarithmic compression enhances low transient events
thus enhancing event sensitivity.
- **parasolCells_beta** generally set to zero, can be considered as an amplifier gain at the
entry point of this processing stage. Generally set to 0.
- **parasolCells_tau** the temporal smoothing effect that can be added
- **parasolCells_k** the spatial constant of the spatial filtering effect, set it at a high value
to favor low spatial frequency signals that are lower subject for residual noise.
- **amacrinCellsTemporalCutFrequency** specifies the temporal constant of the high pass filter.
High values let slow transient events to be selected.
- **V0CompressionParameter** specifies the strength of the log compression. Similar behaviors to
previous description but here enforces sensitivity of transient events.
- **localAdaptintegration_tau** generally set to 0, has no real use actually in here.
- **localAdaptintegration_k** specifies the size of the area on which local adaptation is
performed. Low values lead to short range local adaptation (higher sensitivity to noise), high
values secure log compression.
### Demos and experiments !
#### First time experiments
Here are some code snippets to shortly show how to use Retina with default parameters (with halo effects). Next section redirects to more complete demos provided with the main retina class.
Here is presented how to process a webcam stream with the following steps :
- load a frist input image to get its size
- allocate a retina instance with appropriate input size
- loop over grabbed frames :
- grab a new frame
- run on a frame
- call the two output getters
- display retina outputs
C++ version (see bioinspired/samples/basicRetina.cpp) :
- spectral whithening (mid-frequency details enhancement)
- high frequency spatio-temporal noise reduction (temporal noise and high frequency spatial noise
are minimized)
- low frequency luminance reduction (luminance range compression) : high luminance regions do not
hide details in darker regions anymore
- local logarithmic luminance compression allows details to be enhanced even in low light
conditions
@code{.cpp}
// include bioinspired module and OpenCV core utilities
#include "opencv2/bioinspired.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
// main function
int main(int argc, char* argv[]) {
// declare the retina input buffer.
cv::Mat inputFrame;
// setup webcam reader and grab a first frame to get its size
cv::VideoCapture videoCapture(0);
videoCapture>>inputFrame;
// allocate a retina instance with input size equal to the one of the loaded image
cv::Ptr<cv::bioinspired::Retina> myRetina = cv::bioinspired::createRetina(inputFrame.size());
/* retina parameters management methods use sample
-> save current (here default) retina parameters to a xml file (you may use it only one time to get the file and modify it)
*/
myRetina->write("RetinaDefaultParameters.xml");
// -> load parameters if file exists
myRetina->setup("RetinaSpecificParameters.xml");
// reset all retina buffers (open your eyes)
myRetina->clearBuffers();
// declare retina output buffers
cv::Mat retinaOutput_parvo;
cv::Mat retinaOutput_magno;
//main processing loop
while(true){
// if using video stream, then, grabbing a new frame, else, input remains the same
if (videoCapture.isOpened())
videoCapture>>inputFrame;
else
break;
imshow('input frame', inputImage)
// run retina on the input image
myRetina->run(inputFrame);
// grab retina outputs
myRetina->getParvo(retinaOutput_parvo);
myRetina->getMagno(retinaOutput_magno);
// draw retina outputs
cv::imshow("retina input", inputFrame);
cv::imshow("Retina Parvo", retinaOutput_parvo);
cv::imshow("Retina Magno", retinaOutput_magno);
cv::waitKey(5);
}
}
@endcode
Compile this C++ code with the following command :
@code{.sh}
// compile
g++ basicRetina.cpp -o basicRetina -lopencv_core -lopencv_highgui -lopencv_bioinspired -lopencv_videoio -lopencv_imgcodecs
@endcode
Use : this model can be used basically for spatio-temporal video effects but also in the aim of :
- performing texture analysis with enhanced signal to noise ratio and enhanced details robust
against input images luminance ranges (check out the parvocellular retina channel output, by
using the provided **getParvo** methods)
- performing motion analysis also taking benefit of the previously cited properties (check out the
magnocellular retina channel output, by using the provided **getMagno** methods)
- general image/video sequence description using either one or both channels. An example of the
use of Retina in a Bag of Words approach is given in @cite Strat2013 .
Python version
Literature
----------
@code{.py}
#import OpenCV module
import cv2
For more information, refer to the following papers :
#setup webcam reader
videoHandler = cv2.VideoCapture(0)
succeed, inputImage=videoHandler.read()
- Model description : @cite Benoit2010
#allocate a retina instance with input size equal to the one of the loaded image
retina = cv2.bioinspired.createRetina((inputImage.shape[1], inputImage.shape[0]))
- Model use in a Bag of Words approach : @cite Strat2013
#retina parameters management methods use sample
#-> save current (here default) retina parameters to a xml file (you may use it only one time to get the file and modify it)
retina.write('retinaParams.xml')
#-> load retina parameters from a xml file : here we load the default parameters that we just wrote to file
retina.setup('retinaParams.xml')
- Please have a look at the reference work of Jeanny Herault that you can read in his book : @cite Herault2010
#main processing loop
stillProcess=True
while stillProcess is True:
This retina filter code includes the research contributions of phd/research collegues from which
code has been redrawn by the author :
#grab a new frame and display it
stillProcess, inputImage=videoHandler.read()
cv2.imshow('input frame', inputImage)
- take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color
mosaicing/demosaicing and his reference paper: @cite Chaix2007
#run retina on the input image
retina.run(inputImage)
- take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which
originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is
also proposed and originates from Jeanny's discussions. More informations in the above cited
Jeanny Heraults's book.
#grab retina outputs
retinaOut_parvo=retina.getParvo()
retinaOut_magno=retina.getMagno()
- Meylan&al work on HDR tone mapping that is implemented as a specific method within the model : @cite Meylan2007
#draw retina outputs
cv2.imshow('retina parvo out', retinaOut_parvo)
cv2.imshow('retina magno out', retinaOut_magno)
#wait a little to let the time for figures to be drawn
cv2.waitKey(2)
@endcode
Demos and experiments !
-----------------------
#### More complete demos
@note Complementary to the following examples, have a look at the Retina tutorial in the
tutorial/contrib section for complementary explanations.**
......@@ -195,7 +488,7 @@ Take a look at the provided C++ examples provided with OpenCV :
Then, take a HDR image using bracketing with your camera and generate an OpenEXR image and
then process it using the demo.
Typical use, supposing that you have the OpenEXR image such as *memorial.exr* (present in the
Typical use, assuming that you have the OpenEXR image such as *memorial.exr* (present in the
samples/cpp/ folder)
- **OpenCVReleaseFolder/bin/OpenEXRimages\_HDR\_Retina\_toneMapping memorial.exr [optional:
......@@ -205,6 +498,8 @@ Take a look at the provided C++ examples provided with OpenCV :
If not using the 'fast' option, then, tone mapping is performed using the full retina model
@cite Benoit2010 . It includes spectral whitening that allows luminance energy to be reduced.
When using the 'fast' option, then, a simpler method is used, it is an adaptation of the
algorithm presented in @cite Meylan2007 . This method gives also good results and is faster to
When using the 'fast' option, a simpler method is used, it is an adaptation of the
algorithm presented in @cite Meylan2007 . This method also gives good results and it is faster to
process but it sometimes requires some more parameters adjustement.
......@@ -11,7 +11,7 @@
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
** Creation - enhancement process 2007-2013
** Creation - enhancement process 2007-2015
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
......@@ -33,7 +33,7 @@
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
......@@ -86,36 +86,10 @@ enum {
RETINA_COLOR_BAYER//!< standard bayer sampling
};
/** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV.
This retina model allows spatio-temporal image processing (applied on still images, video sequences).
As a summary, these are the retina model properties:
- It applies a spectral whithening (mid-frequency details enhancement)
- high frequency spatio-temporal noise reduction
- low frequency luminance to be reduced (luminance range compression)
- local logarithmic luminance compression allows details to be enhanced in low light conditions
USE : this model can be used basically for spatio-temporal video effects but also for :
_using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
_using the getMagno method output matrix : motion analysis also with the previously cited properties
/** @brief retina model parameters structure
for more information, reer to the following papers :
Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
more informations in the above cited Jeanny Heraults's book.
*/
class CV_EXPORTS_W Retina : public Algorithm {
public:
/** @brief parameters structure
for better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
Here is the default configuration file of the retina module. It gives results such as the first
retina output shown on the top of this page.
......@@ -172,9 +146,9 @@ public:
</opencv_storage>
@endcode
*/
struct CV_EXPORTS_W RetinaParameters{
struct RetinaParameters{
//! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
struct CV_EXPORTS_W OPLandIplParvoParameters{
struct OPLandIplParvoParameters{
OPLandIplParvoParameters():colorMode(true),
normaliseOutput(true),
photoreceptorsLocalAdaptationSensitivity(0.75f),
......@@ -184,11 +158,11 @@ public:
hcellsTemporalConstant(0.5f),
hcellsSpatialConstant(7.f),
ganglionCellsSensitivity(0.75f) { } // default setup
CV_PROP_RW bool colorMode, normaliseOutput;
CV_PROP_RW float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
bool colorMode, normaliseOutput;
float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
};
//! Inner Plexiform Layer Magnocellular channel (IplMagno)
struct CV_EXPORTS_W IplMagnoParameters{
struct IplMagnoParameters{
IplMagnoParameters():
normaliseOutput(true),
parasolCells_beta(0.f),
......@@ -198,13 +172,43 @@ public:
V0CompressionParameter(0.95f),
localAdaptintegration_tau(0.f),
localAdaptintegration_k(7.f) { } // default setup
CV_PROP_RW bool normaliseOutput;
CV_PROP_RW float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
bool normaliseOutput;
float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
};
CV_PROP_RW OPLandIplParvoParameters OPLandIplParvo;
CV_PROP_RW IplMagnoParameters IplMagno;
OPLandIplParvoParameters OPLandIplParvo;
IplMagnoParameters IplMagno;
};
/** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV.
This retina model allows spatio-temporal image processing (applied on still images, video sequences).
As a summary, these are the retina model properties:
- It applies a spectral whithening (mid-frequency details enhancement)
- high frequency spatio-temporal noise reduction
- low frequency luminance to be reduced (luminance range compression)
- local logarithmic luminance compression allows details to be enhanced in low light conditions
USE : this model can be used basically for spatio-temporal video effects but also for :
_using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
_using the getMagno method output matrix : motion analysis also with the previously cited properties
for more information, reer to the following papers :
Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
more informations in the above cited Jeanny Heraults's book.
*/
class CV_EXPORTS_W Retina : public Algorithm {
public:
/** @brief Retreive retina input buffer size
@return the retina input buffer size
*/
......@@ -231,17 +235,17 @@ public:
@param fs the open Filestorage which contains retina parameters
@param applyDefaultSetupOnFailure set to true if an error must be thrown on error
*/
CV_WRAP virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
/** @overload
@param newParameters a parameters structures updated with the new target configuration.
*/
CV_WRAP virtual void setup(RetinaParameters newParameters)=0;
virtual void setup(RetinaParameters newParameters)=0;
/**
@return the current parameters setup
*/
CV_WRAP virtual RetinaParameters getParameters()=0;
virtual RetinaParameters getParameters()=0;
/** @brief Outputs a string showing the used parameters setup
@return a string which contains formated parameters information
......@@ -255,23 +259,7 @@ public:
CV_WRAP virtual void write( String fs ) const=0;
/** @overload */
CV_WRAP virtual void write( FileStorage& fs ) const=0;
/**
setup the OPL and IPL parvo channels (see biologocal model)
OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance (low frequency energy)
IPL parvo is the OPL next processing stage, it refers to Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision.
for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
@param colorMode : specifies if (true) color is processed of not (false) to then processing gray level image
@param normaliseOutput : specifies if (true) output is rescaled between 0 and 255 of not (false)
@param photoreceptorsLocalAdaptationSensitivity: the photoreceptors sensitivity renage is 0-1 (more log compression effect when value increases)
@param photoreceptorsTemporalConstant: the time constant of the first order low pass filter of the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 1 frame
@param photoreceptorsSpatialConstant: the spatial constant of the first order low pass filter of the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 1 pixel
@param horizontalCellsGain: gain of the horizontal cells network, if 0, then the mean value of the output is zero, if the parameter is near 1, then, the luminance is not filtered and is still reachable at the output, typicall value is 0
@param HcellsTemporalConstant: the time constant of the first order low pass filter of the horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is frames, typical value is 1 frame, as the photoreceptors
@param HcellsSpatialConstant: the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model)
@param ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation output, set a value between 160 and 250 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 230
*/
virtual void write( FileStorage& fs ) const=0;
/** @brief Setup the OPL and IPL parvo channels (see biologocal model)
......@@ -280,6 +268,7 @@ public:
(low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
reference papers for more informations.
for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
@param colorMode specifies if (true) color is processed of not (false) to then processing gray
level image
@param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
......@@ -306,7 +295,7 @@ public:
output, set a value between 0.6 and 1 for best results, a high value increases more the low
value sensitivity... and the output saturates faster, recommended value: 0.7
*/
CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7)=0;
CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f)=0;
/** @brief Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
......@@ -333,7 +322,7 @@ public:
@param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
in the computation of the local "motion mean" for the local adaptation computation
*/
CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7)=0;
CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f)=0;
/** @brief Method which allows retina to be applied on an input image,
......@@ -409,7 +398,7 @@ public:
@param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
buffers
*/
CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0)=0;
CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f)=0;
/** @brief Clears all retina buffers
......@@ -455,11 +444,11 @@ underscaled, then a reduction of the output is allowed without precision leak
@param samplingStrenght only usefull if param useRetinaLogSampling=true, specifies the strenght of
the log scale that is applied
*/
CV_EXPORTS_W Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
CV_EXPORTS_W Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
#ifdef HAVE_OPENCV_OCL
Ptr<Retina> createRetina_OCL(Size inputSize);
Ptr<Retina> createRetina_OCL(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
Ptr<Retina> createRetina_OCL(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
#endif
//! @}
......
......@@ -12,12 +12,12 @@
**
** Maintainers : Listic lab (code author current affiliation & applications)
**
** Creation - enhancement process 2007-2013
** Creation - enhancement process 2007-2015
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Strat S. T. , Benoit A.Lambert P. , Caplier A., "Retina Enhanced SURF Descriptors for Spatio-Temporal Concept Detection", Multimedia Tools and Applications, 2012 (DOI: 10.1007/s11042-012-1280-0)
** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
......@@ -30,7 +30,7 @@
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
......@@ -74,10 +74,37 @@ namespace cv
{
namespace bioinspired
{
//! @addtogroup bioinspired
//! @{
/** @brief parameter structure that stores the transient events detector setup parameters
*/
struct SegmentationParameters{ // CV_EXPORTS_W_MAP to export to python native dictionnaries
// default structure instance construction with default values
SegmentationParameters():
thresholdON(100),
thresholdOFF(100),
localEnergy_temporalConstant(0.5),
localEnergy_spatialConstant(5),
neighborhoodEnergy_temporalConstant(1),
neighborhoodEnergy_spatialConstant(15),
contextEnergy_temporalConstant(1),
contextEnergy_spatialConstant(75){};
// all properties list
float thresholdON;
float thresholdOFF;
//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
float localEnergy_temporalConstant;
//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
float localEnergy_spatialConstant;
//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
float neighborhoodEnergy_temporalConstant;
float neighborhoodEnergy_spatialConstant;
//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
float contextEnergy_temporalConstant;
float contextEnergy_spatialConstant;
};
/** @brief class which provides a transient/moving areas segmentation module
perform a locally adapted segmentation by using the retina magno input data Based on Alexandre
......@@ -96,30 +123,6 @@ class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm
{
public:
//! parameters structure
struct CV_EXPORTS_W SegmentationParameters{
SegmentationParameters():
thresholdON(100),
thresholdOFF(100),
localEnergy_temporalConstant(0.5),
localEnergy_spatialConstant(5),
neighborhoodEnergy_temporalConstant(1),
neighborhoodEnergy_spatialConstant(15),
contextEnergy_temporalConstant(1),
contextEnergy_spatialConstant(75){};// default setup
CV_PROP_RW float thresholdON;
CV_PROP_RW float thresholdOFF;
//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
CV_PROP_RW float localEnergy_temporalConstant;
//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
CV_PROP_RW float localEnergy_spatialConstant;
//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
CV_PROP_RW float neighborhoodEnergy_temporalConstant;
CV_PROP_RW float neighborhoodEnergy_spatialConstant;
//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
CV_PROP_RW float contextEnergy_temporalConstant;
CV_PROP_RW float contextEnergy_spatialConstant;
};
/** @brief return the sze of the manage input and output images
*/
......@@ -141,7 +144,7 @@ public:
@param fs : the open Filestorage which contains segmentation parameters
@param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
*/
CV_WRAP virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
/** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
......@@ -149,11 +152,11 @@ public:
- warning, Exceptions are thrown if read XML file is not valid
@param newParameters : a parameters structures updated with the new target configuration
*/
CV_WRAP virtual void setup(SegmentationParameters newParameters)=0;
virtual void setup(SegmentationParameters newParameters)=0;
/** @brief return the current parameters setup
*/
CV_WRAP virtual SegmentationParameters getParameters()=0;
virtual SegmentationParameters getParameters()=0;
/** @brief parameters setup display method
@return a string which contains formatted parameters information
......@@ -168,7 +171,7 @@ public:
/** @brief write xml/yml formated parameters information
@param fs : a cv::Filestorage object ready to be filled
*/
CV_WRAP virtual void write( cv::FileStorage& fs ) const=0;
virtual void write( cv::FileStorage& fs ) const=0;
/** @brief main processing method, get result using methods getSegmentationPicture()
@param inputToSegment : the image to process, it must match the instance buffer size !
......
//============================================================================
// Name : retinademo.cpp
// Author : Alexandre Benoit, benoit.alexandre.vision@gmail.com
// Version : 0.1
// Copyright : LISTIC/GIPSA French Labs, May 2015
// Description : Gipsa/LISTIC Labs quick retina demo in C++, Ansi-style
//============================================================================
// include bioinspired module and OpenCV core utilities
#include "opencv2/bioinspired.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <cstring>
// main function
int main(int argc, char* argv[]) {
// basic input arguments checking
if (argc>1)
{
std::cout<<"****************************************************"<<std::endl;
std::cout<<"* Retina demonstration : demonstrates the use of is a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
std::cout<<"* This retina model allows spatio-temporal image processing (applied on a webcam sequences)."<<std::endl;
std::cout<<"* As a summary, these are the retina model properties:"<<std::endl;
std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
std::cout<<"* for more information, reer to the following papers :"<<std::endl;
std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl;
std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
std::cout<<"****************************************************"<<std::endl;
std::cout<<" NOTE : this program generates the default retina parameters file 'RetinaDefaultParameters.xml'"<<std::endl;
std::cout<<" => you can use this to fine tune parameters and load them if you save to file 'RetinaSpecificParameters.xml'"<<std::endl;
if (strcmp(argv[1], "help")==0){
std::cout<<"No help provided for now, please test the retina Demo for a more complete program"<<std::endl;
}
}
std::string inputMediaType=argv[1];
// declare the retina input buffer.
cv::Mat inputFrame;
// setup webcam reader and grab a first frame to get its size
cv::VideoCapture videoCapture(0);
videoCapture>>inputFrame;
// allocate a retina instance with input size equal to the one of the loaded image
cv::Ptr<cv::bioinspired::Retina> myRetina = cv::bioinspired::createRetina(inputFrame.size());
/* retina parameters management methods use sample
-> save current (here default) retina parameters to a xml file (you may use it only one time to get the file and modify it)
*/
myRetina->write("RetinaDefaultParameters.xml");
// -> load parameters if file exists
myRetina->setup("RetinaSpecificParameters.xml");
// reset all retina buffers (open your eyes)
myRetina->clearBuffers();
// declare retina output buffers
cv::Mat retinaOutput_parvo;
cv::Mat retinaOutput_magno;
//main processing loop
bool stillProcess=true;
while(stillProcess){
// if using video stream, then, grabbing a new frame, else, input remains the same
if (videoCapture.isOpened())
videoCapture>>inputFrame;
else
stillProcess=false;
// run retina filter
myRetina->run(inputFrame);
// Retrieve and display retina output
myRetina->getParvo(retinaOutput_parvo);
myRetina->getMagno(retinaOutput_magno);
cv::imshow("retina input", inputFrame);
cv::imshow("Retina Parvo", retinaOutput_parvo);
cv::imshow("Retina Magno", retinaOutput_magno);
cv::waitKey(5);
}
}
......@@ -11,7 +11,7 @@
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
** Creation - enhancement process 2007-2011
** Creation - enhancement process 2007-2015
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
......@@ -30,7 +30,7 @@
** For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
** Copyright (C) 2008-2015, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
......@@ -97,7 +97,7 @@ public:
* @param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak
* @param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied
*/
RetinaImpl(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
RetinaImpl(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
virtual ~RetinaImpl();
/**
......@@ -136,12 +136,12 @@ public:
* @param newParameters : a parameters structures updated with the new target configuration
* @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
*/
void setup(Retina::RetinaParameters newParameters);
void setup(RetinaParameters newParameters);
/**
* @return the current parameters setup
*/
struct Retina::RetinaParameters getParameters();
struct RetinaParameters getParameters();
/**
* parameters setup display method
......@@ -177,7 +177,7 @@ public:
* @param HcellsSpatialConstant: the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model)
* @param ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation output, set a value between 160 and 250 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 230
*/
void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7);
void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f);
/**
* set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
......@@ -191,7 +191,7 @@ public:
* @param localAdaptintegration_tau: specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation
* @param localAdaptintegration_k: specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation
*/
void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7);
void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f);
/**
* method which allows retina to be applied on an input image, after run, encapsulated retina module is ready to deliver its outputs using dedicated acccessors, see getParvo and getMagno methods
......@@ -241,7 +241,7 @@ public:
* @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false)
* @param colorSaturationValue: the saturation factor
*/
void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0);
void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f);
/**
* clear all retina buffers (equivalent to opening the eyes after a long period of eye close ;o)
......@@ -271,7 +271,7 @@ private:
RetinaFilter* _retinaFilter; //!< the pointer to the retina module, allocated with instance construction
//! private method called by constructors, gathers their parameters and use them in a unified way
void _init(const Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
void _init(const Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
/**
* exports a valarray buffer outing from bioinspired objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format
......@@ -296,7 +296,7 @@ private:
// smart pointers allocation :
Ptr<Retina> createRetina(Size inputSize){ return makePtr<RetinaImpl>(inputSize); }
Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght){
Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const float reductionFactor, const float samplingStrenght){
return makePtr<RetinaImpl>(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}
......@@ -308,7 +308,7 @@ RetinaImpl::RetinaImpl(const cv::Size inputSz)
_init(inputSz, true, RETINA_COLOR_BAYER, false);
}
RetinaImpl::RetinaImpl(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
RetinaImpl::RetinaImpl(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const float reductionFactor, const float samplingStrenght)
{
_retinaFilter = 0;
_init(inputSz, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
......@@ -336,7 +336,7 @@ void RetinaImpl::setColorSaturation(const bool saturateColors, const float color
_retinaFilter->setColorSaturation(saturateColors, colorSaturationValue);
}
struct Retina::RetinaParameters RetinaImpl::getParameters(){return _retinaParameters;}
struct RetinaParameters RetinaImpl::getParameters(){return _retinaParameters;}
void RetinaImpl::setup(String retinaParameterFile, const bool applyDefaultSetupOnFailure)
{
......@@ -416,10 +416,10 @@ void RetinaImpl::setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailur
printf("%s\n", printSetup().c_str());
}
void RetinaImpl::setup(Retina::RetinaParameters newConfiguration)
void RetinaImpl::setup(RetinaParameters newConfiguration)
{
// simply copy structures
memcpy(&_retinaParameters, &newConfiguration, sizeof(Retina::RetinaParameters));
memcpy(&_retinaParameters, &newConfiguration, sizeof(RetinaParameters));
// apply setup
setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency,_retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);
......@@ -616,7 +616,7 @@ const Mat RetinaImpl::getParvoRAW() const {
}
// private method called by constructirs
void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const float reductionFactor, const float samplingStrenght)
{
// basic error check
if (inputSz.height*inputSz.width <= 0)
......
......@@ -12,12 +12,12 @@
**
** Maintainers : Listic lab (code author current affiliation & applications)
**
** Creation - enhancement process 2007-2013
** Creation - enhancement process 2007-2015
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Strat S. T. , Benoit A.Lambert P. , Caplier A., "Retina Enhanced SURF Descriptors for Spatio-Temporal Concept Detection", Multimedia Tools and Applications, 2012 (DOI: 10.1007/s11042-012-1280-0)
** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
......@@ -30,7 +30,7 @@
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
......@@ -132,12 +132,12 @@ public:
* @param newParameters : a parameters structures updated with the new target configuration
* @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
*/
void setup(TransientAreasSegmentationModule::SegmentationParameters newParameters);
void setup(SegmentationParameters newParameters);
/**
* @return the current parameters setup
*/
struct TransientAreasSegmentationModule::SegmentationParameters getParameters();
struct SegmentationParameters getParameters();
/**
* parameters setup display method
......@@ -203,7 +203,7 @@ protected:
*/
inline const std::valarray<float> &getMotionContextPicture() const {return _contextMotionEnergy;};
struct cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters _segmentationParameters;
struct cv::bioinspired::SegmentationParameters _segmentationParameters;
// template buffers and related acess pointers
std::valarray<float> _inputToSegment;
std::valarray<float> _contextMotionEnergy;
......@@ -232,9 +232,9 @@ public:
inline virtual void write( cv::FileStorage& fs ) const{_segmTool.write(fs);};
inline virtual void setup(String segmentationParameterFile, const bool applyDefaultSetupOnFailure){_segmTool.setup(segmentationParameterFile, applyDefaultSetupOnFailure);};
inline virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure){_segmTool.setup(fs, applyDefaultSetupOnFailure);};
inline virtual void setup(TransientAreasSegmentationModule::SegmentationParameters newParameters){_segmTool.setup(newParameters);};
inline virtual void setup(SegmentationParameters newParameters){_segmTool.setup(newParameters);};
inline virtual const String printSetup(){return _segmTool.printSetup();};
inline virtual struct TransientAreasSegmentationModule::SegmentationParameters getParameters(){return _segmTool.getParameters();};
inline virtual struct SegmentationParameters getParameters(){return _segmTool.getParameters();};
inline virtual void write( String fs ) const{_segmTool.write(fs);};
inline virtual void run(InputArray inputToSegment, const int channelIndex){_segmTool.run(inputToSegment, channelIndex);};
inline virtual void getSegmentationPicture(OutputArray transientAreas){return _segmTool.getSegmentationPicture(transientAreas);};
......@@ -286,7 +286,7 @@ void TransientAreasSegmentationModuleImpl::clearAllBuffers()
_segmentedAreas=0;
}
struct TransientAreasSegmentationModule::SegmentationParameters TransientAreasSegmentationModuleImpl::getParameters()
struct SegmentationParameters TransientAreasSegmentationModuleImpl::getParameters()
{
return _segmentationParameters;
};
......@@ -305,7 +305,7 @@ void TransientAreasSegmentationModuleImpl::setup(String segmentationParameterFil
if (applyDefaultSetupOnFailure)
{
printf("Retina::setup: resetting retina with default parameters\n");
cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters defaults;
cv::bioinspired::SegmentationParameters defaults;
setup(defaults);
}
else
......@@ -344,7 +344,7 @@ void TransientAreasSegmentationModuleImpl::setup(cv::FileStorage &fs, const bool
std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl;
if (applyDefaultSetupOnFailure)
{
struct cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters defaults;
struct cv::bioinspired::SegmentationParameters defaults;
setup(defaults);
}
std::cout<<"SegmentationModule::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl;
......@@ -356,11 +356,11 @@ void TransientAreasSegmentationModuleImpl::setup(cv::FileStorage &fs, const bool
}
// setup parameters for the 2 filters that allow the segmentation
void TransientAreasSegmentationModuleImpl::setup(cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters newParameters)
void TransientAreasSegmentationModuleImpl::setup(cv::bioinspired::SegmentationParameters newParameters)
{
// copy structure contents
memcpy(&_segmentationParameters, &newParameters, sizeof(cv::bioinspired::TransientAreasSegmentationModule::SegmentationParameters));
memcpy(&_segmentationParameters, &newParameters, sizeof(cv::bioinspired::SegmentationParameters));
// apply setup
// init local motion energy extraction low pass filter
BasicRetinaFilter::setLPfilterParameters(0, newParameters.localEnergy_temporalConstant, newParameters.localEnergy_spatialConstant);
......
......@@ -116,7 +116,7 @@ For more information, refer to the following papers : @cite Benoit2010
- Please have a look at the reference work of Jeanny Herault that you can read in his book @cite Herault2010
This retina filter code includes the research contributions of phd/research collegues from which
This retina filter code includes the research contributions of phd/research colleagues from which
code has been redrawn by the author :
- take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color
......@@ -141,7 +141,7 @@ read)* and opencv_bioinspired *(Retina description)* libraries to compile.
@code{.sh}
// compile
gcc retina_tutorial.cpp -o Retina_tuto -lopencv_core -lopencv_highgui -lopencv_bioinspired
gcc retina_tutorial.cpp -o Retina_tuto -lopencv_core -lopencv_highgui -lopencv_bioinspired -lopencv_videoio -lopencv_imgcodecs
// Run commands : add 'log' as a last parameter to apply a spatial log sampling (simulates retina sampling)
// run on webcam
......@@ -205,7 +205,7 @@ by the Boolean flag *useLogSampling*.
// welcome message
std::cout<<"****************************************************"<<std::endl;
std::cout<<"* Retina demonstration : demonstrates the use of is a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
std::cout<<"* This demo will try to load the file 'RetinaSpecificParameters.xml' (if exists).\nTo create it, copy the autogenerated template 'RetinaDefaultParameters.xml'.\nThen twaek it with your own retina parameters."<<std::endl;
std::cout<<"* This demo will try to load the file 'RetinaSpecificParameters.xml' (if exists).\nTo create it, copy the autogenerated template 'RetinaDefaultParameters.xml'.\nThen tweak it with your own retina parameters."<<std::endl;
// basic input arguments checking
if (argc<2)
{
......@@ -259,7 +259,7 @@ to manage the eventual log sampling option. The Retina constructor expects at le
object that shows the input data size that will have to be managed. One can activate other options
such as color and its related color multiplexing strategy (here Bayer multiplexing is chosen using
*enum cv::bioinspired::RETINA_COLOR_BAYER*). If using log sampling, the image reduction factor
(smaller output images) and log sampling strengh can be adjusted.
(smaller output images) and log sampling strength can be adjusted.
@code{.cpp}
// pointer to a retina object
cv::Ptr<cv::bioinspired::Retina> myRetina;
......@@ -381,96 +381,98 @@ Then, if the application target requires details enhancement prior to specific i
need to know if mean luminance information is required or not. If not, the the retina can cancel or
significantly reduce its energy thus giving more visibility to higher spatial frequency details.
### Basic parameters
The most simple parameters are the following :
#### Basic parameters
The simplest parameters are as follows :
- **colorMode** : let the retina process color information (if 1) or gray scale images (if 0). In
this last case, only the first channel of the input will be processed.
- **normaliseOutput** : each channel has this parameter, if value is 1, then the considered
channel output is rescaled between 0 and 255. Take care in this case at the Magnocellular output
that last case, only the first channels of the input will be processed.
- **normaliseOutput** : each channel has such parameter: if the value is set to 1, then the considered
channel's output is rescaled between 0 and 255. Be aware at this case of the Magnocellular output
level (motion/transient channel detection). Residual noise will also be rescaled !
**Note :** using color requires color channels multiplexing/demultipexing which requires more
**Note :** using color requires color channels multiplexing/demultipexing which also demands more
processing. You can expect much faster processing using gray levels : it would require around 30
product per pixel for all the retina processes and it has recently been parallelized for multicore
product per pixel for all of the retina processes and it has recently been parallelized for multicore
architectures.
### Photo-receptors parameters
#### Photo-receptors parameters
The following parameters act on the entry point of the retina - photo-receptors - and impact all the
following processes. These sensors are low pass spatio-temporal filters that smooth temporal and
spatial data and also adjust there sensitivity to local luminance thus improving details extraction
The following parameters act on the entry point of the retina - photo-receptors - and has impact on all
of the following processes. These sensors are low pass spatio-temporal filters that smooth temporal and
spatial data and also adjust their sensitivity to local luminance,thus, leads to improving details extraction
and high frequency noise canceling.
- **photoreceptorsLocalAdaptationSensitivity** between 0 and 1. Values close to 1 allow high
luminance log compression effect at the photo-receptors level. Values closer to 0 give a more
luminance log compression's effect at the photo-receptors level. Values closer to 0 provide a more
linear sensitivity. Increased alone, it can burn the *Parvo (details channel)* output image. If
adjusted in collaboration with **ganglionCellsSensitivity** images can be very contrasted
whatever the local luminance there is... at the price of a naturalness decrease.
adjusted in collaboration with **ganglionCellsSensitivity**,images can be very contrasted
whatever the local luminance there is... at the cost of a naturalness decrease.
- **photoreceptorsTemporalConstant** this setups the temporal constant of the low pass filter
effect at the entry of the retina. High value lead to strong temporal smoothing effect : moving
effect at the entry of the retina. High value leads to strong temporal smoothing effect : moving
objects are blurred and can disappear while static object are favored. But when starting the
retina processing, stable state is reached lately.
- **photoreceptorsSpatialConstant** specifies the spatial constant related to photo-receptors low
pass filter effect. This parameters specify the minimum allowed spatial signal period allowed in
the following. Typically, this filter should cut high frequency noise. Then a 0 value doesn't
cut anything noise while higher values start to cut high spatial frequencies and more and more
lower frequencies... Then, do not go to high if you wanna see some details of the input images !
A good compromise for color images is 0.53 since this won't affect too much the color spectrum.
retina processing, stable state is reached later.
- **photoreceptorsSpatialConstant** specifies the spatial constant related to photo-receptors' low
pass filter's effect. Those parameters specify the minimum value of the spatial signal period allowed
in what follows. Typically, this filter should cut high frequency noise. On the other hand, a 0 value
cuts none of the noise while higher values start to cut high spatial frequencies, and progressively
lower frequencies... Be aware to not go to high levels if you want to see some details of the input images !
A good compromise for color images is a 0.53 value since such choice won't affect too much the color spectrum.
Higher values would lead to gray and blurred output images.
### Horizontal cells parameters
#### Horizontal cells parameters
This parameter set tunes the neural network connected to the photo-receptors, the horizontal cells.
It modulates photo-receptors sensitivity and completes the processing for final spectral whitening
(part of the spatial band pass effect thus favoring visual details enhancement).
- **horizontalCellsGain** here is a critical parameter ! If you are not interested by the mean
luminance and focus on details enhancement, then, set to zero. But if you want to keep some
environment luminance data, let some low spatial frequencies pass into the system and set a
- **horizontalCellsGain** here is a critical parameter ! If you are not interested with the mean
luminance and want just to focus on details enhancement, then, set this parameterto zero. However, if
you want to keep some environment luminance's data, let some low spatial frequencies pass into the system and set a
higher value (\<1).
- **hcellsTemporalConstant** similar to photo-receptors, this acts on the temporal constant of a
low pass temporal filter that smooths input data. Here, a high value generates a high retina
- **hcellsTemporalConstant** similar to photo-receptors, this parameter acts on the temporal constant of a
low pass temporal filter that smoothes input data. Here, a high value generates a high retina
after effect while a lower value makes the retina more reactive. This value should be lower than
**photoreceptorsTemporalConstant** to limit strong retina after effects.
- **hcellsSpatialConstant** is the spatial constant of the low pass filter of these cells filter.
It specifies the lowest spatial frequency allowed in the following. Visually, a high value leads
- **hcellsSpatialConstant** is the spatial constant of these cells filter's low pass one.
It specifies the lowest spatial frequency allowed in what follows. Visually, a high value leads
to very low spatial frequencies processing and leads to salient halo effects. Lower values
reduce this effect but the limit is : do not go lower than the value of
reduce this effect but has the limit of not go lower than the value of
**photoreceptorsSpatialConstant**. Those 2 parameters actually specify the spatial band-pass of
the retina.
**NOTE** after the processing managed by the previous parameters, input data is cleaned from noise
and luminance in already partly enhanced. The following parameters act on the last processing stages
**NOTE** Once the processing managed by the previous parameters is done, input data is cleaned from noise
and luminance is already partly enhanced. The following parameters act on the last processing stages
of the two outing retina signals.
### Parvo (details channel) dedicated parameter
#### Parvo (details channel) dedicated parameter
- **ganglionCellsSensitivity** specifies the strength of the final local adaptation occurring at
the output of this details dedicated channel. Parameter values remain between 0 and 1. Low value
tend to give a linear response while higher values enforces the remaining low contrasted areas.
the output of this details' dedicated channel. Parameter values remain between 0 and 1. Low value
tend to give a linear response while higher values enforce the remaining low contrasted areas.
**Note :** this parameter can correct eventual burned images by favoring low energetic details of
the visual scene, even in bright areas.
### IPL Magno (motion/transient channel) parameters
#### IPL Magno (motion/transient channel) parameters
Once image information is cleaned, this channel acts as a high pass temporal filter that only
selects signals related to transient signals (events, motion, etc.). A low pass spatial filter
smooths extracted transient data and a final logarithmic compression enhances low transient events
Once image's information are cleaned, this channel acts as a high pass temporal filter that
selects only the signals related to transient signals (events, motion, etc.). A low pass spatial filter
smoothes extracted transient data while a final logarithmic compression enhances low transient events
thus enhancing event sensitivity.
- **parasolCells_beta** generally set to zero, can be considered as an amplifier gain at the
entry point of this processing stage. Generally set to 0.
- **parasolCells_tau** the temporal smoothing effect that can be added
- **parasolCells_k** the spatial constant of the spatial filtering effect, set it at a high value
to favor low spatial frequency signals that are lower subject to residual noise.
to favor low spatial frequency signals that are lower subject for residual noise.
- **amacrinCellsTemporalCutFrequency** specifies the temporal constant of the high pass filter.
High values let slow transient events to be selected.
- **V0CompressionParameter** specifies the strength of the log compression. Similar behaviors to
previous description but here it enforces sensitivity of transient events.
- **localAdaptintegration_tau** generally set to 0, no real use here actually
previous description but here enforces sensitivity of transient events.
- **localAdaptintegration_tau** generally set to 0, has no real use actually in here.
- **localAdaptintegration_k** specifies the size of the area on which local adaptation is
performed. Low values lead to short range local adaptation (higher sensitivity to noise), high
values secure log compression.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment