Commit 8fbb0ec8 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #1387 from terfendail:fast_extension

parents 47771c18 7e46ea16
......@@ -925,6 +925,26 @@ public:
bool useProvidedKeypoints=false ) = 0;
};
/** @brief Estimates cornerness for prespecified KeyPoints using the FAST algorithm
@param image grayscale image where keypoints (corners) are detected.
@param keypoints keypoints which should be tested to fit the FAST criteria. Keypoints not beeing
detected as corners are removed.
@param threshold threshold on difference between intensity of the central pixel and pixels of a
circle around this pixel.
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
(keypoints).
@param type one of the three neighborhoods as defined in the paper:
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
FastFeatureDetector::TYPE_5_8
Detects corners using the FAST algorithm by @cite Rosten06 .
*/
CV_EXPORTS void FASTForPointSet( InputArray image, CV_IN_OUT std::vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSuppression=true, int type=FastFeatureDetector::TYPE_9_16);
//! @}
}
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include <opencv2/xfeatures2d.hpp>
#ifndef VERIFY_CORNERS
#define VERIFY_CORNERS 0
#endif
namespace {
using namespace cv;
#if VERIFY_CORNERS
void testCorner(const uchar* ptr, const int pixel[], int K, int N, int threshold) {
// check that with the computed "threshold" the pixel is still a corner
// and that with the increased-by-1 "threshold" the pixel is not a corner anymore
for( int delta = 0; delta <= 1; delta++ )
{
int v0 = std::min(ptr[0] + threshold + delta, 255);
int v1 = std::max(ptr[0] - threshold - delta, 0);
int c0 = 0, c1 = 0;
for( int k = 0; k < N; k++ )
{
int x = ptr[pixel[k]];
if(x > v0)
{
if( ++c0 > K )
break;
c1 = 0;
}
else if( x < v1 )
{
if( ++c1 > K )
break;
c0 = 0;
}
else
{
c0 = c1 = 0;
}
}
CV_Assert( (delta == 0 && std::max(c0, c1) > K) ||
(delta == 1 && std::max(c0, c1) <= K) );
}
}
#endif
template<int patternSize>
int cornerScore(const uchar* ptr, const int pixel[], int threshold);
template<>
int cornerScore<16>(const uchar* ptr, const int pixel[], int threshold)
{
const int K = 8, N = K*3 + 1;
int k, v = ptr[0];
short d[N];
for( k = 0; k < N; k++ )
d[k] = (short)(v - ptr[pixel[k]]);
#if CV_SSE2
__m128i q0 = _mm_set1_epi16(-1000), q1 = _mm_set1_epi16(1000);
for( k = 0; k < 16; k += 8 )
{
__m128i v0 = _mm_loadu_si128((__m128i*)(d+k+1));
__m128i v1 = _mm_loadu_si128((__m128i*)(d+k+2));
__m128i a = _mm_min_epi16(v0, v1);
__m128i b = _mm_max_epi16(v0, v1);
v0 = _mm_loadu_si128((__m128i*)(d+k+3));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+4));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+5));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+6));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+7));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+8));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k));
q0 = _mm_max_epi16(q0, _mm_min_epi16(a, v0));
q1 = _mm_min_epi16(q1, _mm_max_epi16(b, v0));
v0 = _mm_loadu_si128((__m128i*)(d+k+9));
q0 = _mm_max_epi16(q0, _mm_min_epi16(a, v0));
q1 = _mm_min_epi16(q1, _mm_max_epi16(b, v0));
}
q0 = _mm_max_epi16(q0, _mm_sub_epi16(_mm_setzero_si128(), q1));
q0 = _mm_max_epi16(q0, _mm_unpackhi_epi64(q0, q0));
q0 = _mm_max_epi16(q0, _mm_srli_si128(q0, 4));
q0 = _mm_max_epi16(q0, _mm_srli_si128(q0, 2));
threshold = (short)_mm_cvtsi128_si32(q0) - 1;
#else
int a0 = threshold;
for( k = 0; k < 16; k += 2 )
{
int a = std::min((int)d[k+1], (int)d[k+2]);
a = std::min(a, (int)d[k+3]);
if( a <= a0 )
continue;
a = std::min(a, (int)d[k+4]);
a = std::min(a, (int)d[k+5]);
a = std::min(a, (int)d[k+6]);
a = std::min(a, (int)d[k+7]);
a = std::min(a, (int)d[k+8]);
a0 = std::max(a0, std::min(a, (int)d[k]));
a0 = std::max(a0, std::min(a, (int)d[k+9]));
}
int b0 = -a0;
for( k = 0; k < 16; k += 2 )
{
int b = std::max((int)d[k+1], (int)d[k+2]);
b = std::max(b, (int)d[k+3]);
b = std::max(b, (int)d[k+4]);
b = std::max(b, (int)d[k+5]);
if( b >= b0 )
continue;
b = std::max(b, (int)d[k+6]);
b = std::max(b, (int)d[k+7]);
b = std::max(b, (int)d[k+8]);
b0 = std::min(b0, std::max(b, (int)d[k]));
b0 = std::min(b0, std::max(b, (int)d[k+9]));
}
threshold = -b0-1;
#endif
#if VERIFY_CORNERS
testCorner(ptr, pixel, K, N, threshold);
#endif
return threshold;
}
template<>
int cornerScore<12>(const uchar* ptr, const int pixel[], int threshold)
{
const int K = 6, N = K*3 + 1;
int k, v = ptr[0];
short d[N + 4];
for( k = 0; k < N; k++ )
d[k] = (short)(v - ptr[pixel[k]]);
#if CV_SSE2
for( k = 0; k < 4; k++ )
d[N+k] = d[k];
#endif
#if CV_SSE2
__m128i q0 = _mm_set1_epi16(-1000), q1 = _mm_set1_epi16(1000);
for( k = 0; k < 16; k += 8 )
{
__m128i v0 = _mm_loadu_si128((__m128i*)(d+k+1));
__m128i v1 = _mm_loadu_si128((__m128i*)(d+k+2));
__m128i a = _mm_min_epi16(v0, v1);
__m128i b = _mm_max_epi16(v0, v1);
v0 = _mm_loadu_si128((__m128i*)(d+k+3));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+4));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+5));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k+6));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+k));
q0 = _mm_max_epi16(q0, _mm_min_epi16(a, v0));
q1 = _mm_min_epi16(q1, _mm_max_epi16(b, v0));
v0 = _mm_loadu_si128((__m128i*)(d+k+7));
q0 = _mm_max_epi16(q0, _mm_min_epi16(a, v0));
q1 = _mm_min_epi16(q1, _mm_max_epi16(b, v0));
}
q0 = _mm_max_epi16(q0, _mm_sub_epi16(_mm_setzero_si128(), q1));
q0 = _mm_max_epi16(q0, _mm_unpackhi_epi64(q0, q0));
q0 = _mm_max_epi16(q0, _mm_srli_si128(q0, 4));
q0 = _mm_max_epi16(q0, _mm_srli_si128(q0, 2));
threshold = (short)_mm_cvtsi128_si32(q0) - 1;
#else
int a0 = threshold;
for( k = 0; k < 12; k += 2 )
{
int a = std::min((int)d[k+1], (int)d[k+2]);
if( a <= a0 )
continue;
a = std::min(a, (int)d[k+3]);
a = std::min(a, (int)d[k+4]);
a = std::min(a, (int)d[k+5]);
a = std::min(a, (int)d[k+6]);
a0 = std::max(a0, std::min(a, (int)d[k]));
a0 = std::max(a0, std::min(a, (int)d[k+7]));
}
int b0 = -a0;
for( k = 0; k < 12; k += 2 )
{
int b = std::max((int)d[k+1], (int)d[k+2]);
b = std::max(b, (int)d[k+3]);
b = std::max(b, (int)d[k+4]);
if( b >= b0 )
continue;
b = std::max(b, (int)d[k+5]);
b = std::max(b, (int)d[k+6]);
b0 = std::min(b0, std::max(b, (int)d[k]));
b0 = std::min(b0, std::max(b, (int)d[k+7]));
}
threshold = -b0-1;
#endif
#if VERIFY_CORNERS
testCorner(ptr, pixel, K, N, threshold);
#endif
return threshold;
}
template<>
int cornerScore<8>(const uchar* ptr, const int pixel[], int threshold)
{
const int K = 4, N = K*3 + 1;
int k, v = ptr[0];
short d[N];
for( k = 0; k < N; k++ )
d[k] = (short)(v - ptr[pixel[k]]);
#if CV_SSE2
__m128i v0 = _mm_loadu_si128((__m128i*)(d+1));
__m128i v1 = _mm_loadu_si128((__m128i*)(d+2));
__m128i a = _mm_min_epi16(v0, v1);
__m128i b = _mm_max_epi16(v0, v1);
v0 = _mm_loadu_si128((__m128i*)(d+3));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+4));
a = _mm_min_epi16(a, v0);
b = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d));
__m128i q0 = _mm_min_epi16(a, v0);
__m128i q1 = _mm_max_epi16(b, v0);
v0 = _mm_loadu_si128((__m128i*)(d+5));
q0 = _mm_max_epi16(q0, _mm_min_epi16(a, v0));
q1 = _mm_min_epi16(q1, _mm_max_epi16(b, v0));
q0 = _mm_max_epi16(q0, _mm_sub_epi16(_mm_setzero_si128(), q1));
q0 = _mm_max_epi16(q0, _mm_unpackhi_epi64(q0, q0));
q0 = _mm_max_epi16(q0, _mm_srli_si128(q0, 4));
q0 = _mm_max_epi16(q0, _mm_srli_si128(q0, 2));
threshold = (short)_mm_cvtsi128_si32(q0) - 1;
#else
int a0 = threshold;
for( k = 0; k < 8; k += 2 )
{
int a = std::min((int)d[k+1], (int)d[k+2]);
if( a <= a0 )
continue;
a = std::min(a, (int)d[k+3]);
a = std::min(a, (int)d[k+4]);
a0 = std::max(a0, std::min(a, (int)d[k]));
a0 = std::max(a0, std::min(a, (int)d[k+5]));
}
int b0 = -a0;
for( k = 0; k < 8; k += 2 )
{
int b = std::max((int)d[k+1], (int)d[k+2]);
b = std::max(b, (int)d[k+3]);
if( b >= b0 )
continue;
b = std::max(b, (int)d[k+4]);
b0 = std::min(b0, std::max(b, (int)d[k]));
b0 = std::min(b0, std::max(b, (int)d[k+5]));
}
threshold = -b0-1;
#endif
#if VERIFY_CORNERS
testCorner(ptr, pixel, K, N, threshold);
#endif
return threshold;
}
void makeOffsets(int pixel[25], int rowStride, int patternSize)
{
static const int offsets16[][2] =
{
{0, 3}, { 1, 3}, { 2, 2}, { 3, 1}, { 3, 0}, { 3, -1}, { 2, -2}, { 1, -3},
{0, -3}, {-1, -3}, {-2, -2}, {-3, -1}, {-3, 0}, {-3, 1}, {-2, 2}, {-1, 3}
};
static const int offsets12[][2] =
{
{0, 2}, { 1, 2}, { 2, 1}, { 2, 0}, { 2, -1}, { 1, -2},
{0, -2}, {-1, -2}, {-2, -1}, {-2, 0}, {-2, 1}, {-1, 2}
};
static const int offsets8[][2] =
{
{0, 1}, { 1, 1}, { 1, 0}, { 1, -1},
{0, -1}, {-1, -1}, {-1, 0}, {-1, 1}
};
const int (*offsets)[2] = patternSize == 16 ? offsets16 :
patternSize == 12 ? offsets12 :
patternSize == 8 ? offsets8 : 0;
CV_Assert(pixel && offsets);
int k = 0;
for( ; k < patternSize; k++ )
pixel[k] = offsets[k][0] + offsets[k][1] * rowStride;
for( ; k < 25; k++ )
pixel[k] = pixel[k - patternSize];
}
template<int patternSize>
void FASTForPointSet_t( InputArray image, std::vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression ) {
Mat img = image.getMat();
const int K = patternSize/2, N = patternSize + K + 1;
int i, k, pixel[25];
makeOffsets(pixel, (int)img.step, patternSize);
keypoints.clear();
threshold = std::min(std::max(threshold, 0), 255);
uchar threshold_tab[512];
for( i = -255; i <= 255; i++ )
threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0);
AutoBuffer<uchar> _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128);
uchar* buf[3];
buf[0] = _buf; buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols;
int* cpbuf[3];
cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1;
cpbuf[1] = cpbuf[0] + img.cols + 1;
cpbuf[2] = cpbuf[1] + img.cols + 1;
memset(buf[0], 0, img.cols*3);
// Calculate threshold for the keypoints
for (size_t keyPointIdx=0; keyPointIdx < keypoints.size(); keyPointIdx++) {
// Set response to -1:
// All keypoints with response <= 0 will be removed afterwards
keypoints[keyPointIdx].response = -1;
// Poiter to keyPoint in image
Point keyPoint = keypoints[keyPointIdx].pt;
const uchar* ptr = img.ptr<uchar>(keyPoint.y, keyPoint.x);
// value of the pixel at certain position
int v = ptr[0];
// Initialize Lookup table
// If k=v --> tab[k] is at the center of the thrshold table
// The threshold table is made as follows:
// -255 -threshold 0 +threshold 255
// 111111111111111111|0000000000000|0000000000000|222222222222222
const uchar* tab = &threshold_tab[0] - v + 255;
// Calculate the fast value
int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]];
if( d == 0 )
continue;
d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]];
d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]];
d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]];
if( d == 0 )
continue;
d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]];
d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]];
d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]];
d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]];
// For at least half pixels darker than v count the number
if( d & 1 )
{
int vt = v - threshold, count = 0;
for(k = 0; k < N; k++ )
{
int x = ptr[pixel[k]];
if(x < vt)
{
if( ++count > K )
{
// Calculate score
keypoints[keyPointIdx].response = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
// Non Maxima Supression I
if (nonmaxSuppression && keyPointIdx>0 && keypoints[keyPointIdx-1].response < keypoints[keyPointIdx].response) {
keypoints[keyPointIdx-1].response = -1;
}
break;
}
}
else
count = 0;
}
}
// For at least half pixels brighter than v count the number
if(d & 2 )
{
int vt = v + threshold, count = 0;
for(k = 0; k < N; k++ )
{
int x = ptr[pixel[k]];
if(x > vt)
{
if( ++count > K )
{
// Calculate score
keypoints[keyPointIdx].response = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
// Non Maxima Suppression I
if (nonmaxSuppression && keyPointIdx>0 &&keypoints[keyPointIdx-1].response < keypoints[keyPointIdx].response) {
keypoints[keyPointIdx-1].response = -1;
}
break;
}
}
else
count = 0;
}
}
}
// Remove unused Keypoints
size_t maxKeypointSize = keypoints.size();
for (size_t keyPointIdx=maxKeypointSize; keyPointIdx > 0;) {
keyPointIdx--;
if (keypoints[keyPointIdx].response <= 0) {
keypoints.erase(keypoints.begin() + keyPointIdx);
} else if (nonmaxSuppression && keyPointIdx>0 && keypoints[keyPointIdx-1].response > keypoints[keyPointIdx].response) {
// Non Maxima Suppression II
keypoints.erase(keypoints.begin() + keyPointIdx);
}
}
}
}
namespace cv {
namespace xfeatures2d {
void FASTForPointSet(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
{
if (keypoints.empty()) {
FAST(_img, keypoints, threshold, nonmax_suppression, type);
return;
}
switch(type) {
case FastFeatureDetector::TYPE_5_8:
FASTForPointSet_t<8>(_img, keypoints, threshold, nonmax_suppression);
break;
case FastFeatureDetector::TYPE_7_12:
FASTForPointSet_t<12>(_img, keypoints, threshold, nonmax_suppression);
break;
case FastFeatureDetector::TYPE_9_16:
FASTForPointSet_t<16>(_img, keypoints, threshold, nonmax_suppression);
break;
}
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment