Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
8ef2f717
Commit
8ef2f717
authored
Jun 21, 2017
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1236 from arrybn:crop_mean
parents
fd5431c3
ea1670b5
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
75 additions
and
30 deletions
+75
-30
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+31
-3
caffe_googlenet.cpp
modules/dnn/samples/caffe_googlenet.cpp
+3
-2
squeezenet_halide.cpp
modules/dnn/samples/squeezenet_halide.cpp
+1
-1
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+1
-1
dnn.cpp
modules/dnn/src/dnn.cpp
+35
-19
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+2
-2
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+2
-2
No files found.
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
8ef2f717
...
@@ -598,9 +598,37 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
...
@@ -598,9 +598,37 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
* @warning This function has the same limitations as createTorchImporter().
* @warning This function has the same limitations as createTorchImporter().
*/
*/
CV_EXPORTS_W
Mat
readTorchBlob
(
const
String
&
filename
,
bool
isBinary
=
true
);
CV_EXPORTS_W
Mat
readTorchBlob
(
const
String
&
filename
,
bool
isBinary
=
true
);
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
CV_EXPORTS
Mat
blobFromImage
(
const
Mat
&
image
,
double
scalefactor
=
1.0
,
bool
swapRB
=
true
);
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
CV_EXPORTS
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
image
,
double
scalefactor
=
1.0
,
bool
swapRB
=
true
);
* @param image input image (with 1- or 3-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p image values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @details input image is resized so one side after resize is equal to corresponing
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W
Mat
blobFromImage
(
const
Mat
&
image
,
double
scalefactor
=
1.0
,
const
Size
&
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels.
* @param images input images (all with 1- or 3-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p images values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @details input image is resized so one side after resize is equal to corresponing
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images
,
double
scalefactor
=
1.0
,
Size
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
);
//! @}
//! @}
}
}
...
...
modules/dnn/samples/caffe_googlenet.cpp
View file @
8ef2f717
...
@@ -114,8 +114,9 @@ int main(int argc, char **argv)
...
@@ -114,8 +114,9 @@ int main(int argc, char **argv)
exit
(
-
1
);
exit
(
-
1
);
}
}
resize
(
img
,
img
,
Size
(
224
,
224
));
//GoogLeNet accepts only 224x224 RGB-images
//GoogLeNet accepts only 224x224 RGB-images
Mat
inputBlob
=
blobFromImage
(
img
);
//Convert Mat to batch of images
Mat
inputBlob
=
blobFromImage
(
img
,
1
,
Size
(
224
,
224
),
Scalar
(
104
,
117
,
123
));
//Convert Mat to batch of images
//! [Prepare blob]
//! [Prepare blob]
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/samples/squeezenet_halide.cpp
View file @
8ef2f717
...
@@ -89,7 +89,7 @@ int main(int argc, char **argv)
...
@@ -89,7 +89,7 @@ int main(int argc, char **argv)
}
}
resize
(
img
,
img
,
Size
(
227
,
227
));
// SqueezeNet v1.1 predict class by 3x227x227 input image.
resize
(
img
,
img
,
Size
(
227
,
227
));
// SqueezeNet v1.1 predict class by 3x227x227 input image.
Mat
inputBlob
=
blobFromImage
(
img
,
1.0
,
false
);
// Convert Mat to 4-dimensional batch.
Mat
inputBlob
=
blobFromImage
(
img
,
1.0
,
Size
(),
Scalar
(),
false
);
// Convert Mat to 4-dimensional batch.
//! [Prepare blob]
//! [Prepare blob]
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/samples/torch_enet.cpp
View file @
8ef2f717
...
@@ -69,7 +69,7 @@ int main(int argc, char **argv)
...
@@ -69,7 +69,7 @@ int main(int argc, char **argv)
if
(
inputImgSize
!=
origSize
)
if
(
inputImgSize
!=
origSize
)
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
Mat
inputBlob
=
blobFromImage
(
img
,
1.
/
255
,
true
);
//Convert Mat to image batch
Mat
inputBlob
=
blobFromImage
(
img
,
1.
/
255
);
//Convert Mat to image batch
//! [Prepare blob]
//! [Prepare blob]
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/src/dnn.cpp
View file @
8ef2f717
...
@@ -48,6 +48,7 @@
...
@@ -48,6 +48,7 @@
#include <sstream>
#include <sstream>
#include <iterator>
#include <iterator>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
using
namespace
cv
;
using
namespace
cv
;
using
namespace
cv
::
dnn
;
using
namespace
cv
::
dnn
;
...
@@ -86,14 +87,42 @@ static String toString(const T &v)
...
@@ -86,14 +87,42 @@ static String toString(const T &v)
return
ss
.
str
();
return
ss
.
str
();
}
}
Mat
blobFromImage
(
const
Mat
&
image_
,
double
scalefactor
,
bool
swapRB
)
Mat
blobFromImage
(
const
Mat
&
image
,
double
scalefactor
,
const
Size
&
size
,
const
Scalar
&
mean
,
bool
swapRB
)
{
{
std
::
vector
<
Mat
>
images
(
1
,
image
_
);
std
::
vector
<
Mat
>
images
(
1
,
image
);
return
blobFromImages
(
images
,
scalefactor
,
swapRB
);
return
blobFromImages
(
images
,
scalefactor
,
s
ize
,
mean
,
s
wapRB
);
}
}
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images
,
double
scalefactor
,
bool
swapRB
)
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images_
,
double
scalefactor
,
Size
size
,
const
Scalar
&
mean_
,
bool
swapRB
)
{
{
std
::
vector
<
Mat
>
images
=
images_
;
for
(
int
i
=
0
;
i
<
images
.
size
();
i
++
)
{
Size
imgSize
=
images
[
i
].
size
();
if
(
size
==
Size
())
size
=
imgSize
;
if
(
size
!=
imgSize
)
{
float
resizeFactor
=
std
::
max
(
size
.
width
/
(
float
)
imgSize
.
width
,
size
.
height
/
(
float
)
imgSize
.
height
);
resize
(
images
[
i
],
images
[
i
],
Size
(),
resizeFactor
,
resizeFactor
);
Rect
crop
(
Point
(
0.5
*
(
images
[
i
].
cols
-
size
.
width
),
0.5
*
(
images
[
i
].
rows
-
size
.
height
)),
size
);
images
[
i
]
=
images
[
i
](
crop
);
}
if
(
images
[
i
].
depth
()
==
CV_8U
)
images
[
i
].
convertTo
(
images
[
i
],
CV_32F
);
Scalar
mean
=
mean_
;
if
(
swapRB
)
std
::
swap
(
mean
[
0
],
mean
[
2
]);
images
[
i
]
-=
mean
;
images
[
i
]
*=
scalefactor
;
}
size_t
i
,
nimages
=
images
.
size
();
size_t
i
,
nimages
=
images
.
size
();
if
(
nimages
==
0
)
if
(
nimages
==
0
)
return
Mat
();
return
Mat
();
...
@@ -109,13 +138,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
...
@@ -109,13 +138,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
for
(
i
=
0
;
i
<
nimages
;
i
++
)
for
(
i
=
0
;
i
<
nimages
;
i
++
)
{
{
Mat
image_
=
images
[
i
];
image
=
images
[
i
];
if
(
image_
.
depth
()
==
CV_8U
)
{
image_
.
convertTo
(
image
,
CV_32F
,
scalefactor
);
}
else
image
=
image_
;
CV_Assert
(
image
.
depth
()
==
CV_32F
);
CV_Assert
(
image
.
depth
()
==
CV_32F
);
nch
=
image
.
channels
();
nch
=
image
.
channels
();
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
3
||
nch
==
4
));
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
3
||
nch
==
4
));
...
@@ -136,13 +159,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
...
@@ -136,13 +159,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
for
(
i
=
0
;
i
<
nimages
;
i
++
)
for
(
i
=
0
;
i
<
nimages
;
i
++
)
{
{
Mat
image_
=
images
[
i
];
Mat
image
=
images
[
i
];
if
(
image_
.
depth
()
==
CV_8U
)
{
image_
.
convertTo
(
image
,
CV_32F
,
scalefactor
);
}
else
image
=
image_
;
CV_Assert
(
image
.
depth
()
==
CV_32F
);
CV_Assert
(
image
.
depth
()
==
CV_32F
);
nch
=
image
.
channels
();
nch
=
image
.
channels
();
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
1
));
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
1
));
...
@@ -154,7 +171,6 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
...
@@ -154,7 +171,6 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
return
blob
;
return
blob
;
}
}
struct
LayerPin
struct
LayerPin
{
{
int
lid
;
int
lid
;
...
...
modules/dnn/test/test_caffe_importer.cpp
View file @
8ef2f717
...
@@ -94,7 +94,7 @@ TEST(Reproducibility_AlexNet, Accuracy)
...
@@ -94,7 +94,7 @@ TEST(Reproducibility_AlexNet, Accuracy)
if
(
sample
.
size
()
!=
inputSize
)
if
(
sample
.
size
()
!=
inputSize
)
resize
(
sample
,
sample
,
inputSize
);
resize
(
sample
,
sample
,
inputSize
);
net
.
setInput
(
blobFromImage
(
sample
,
1.
),
"data"
);
net
.
setInput
(
blobFromImage
(
sample
),
"data"
);
Mat
out
=
net
.
forward
(
"prob"
);
Mat
out
=
net
.
forward
(
"prob"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_alexnet_prob.npy"
));
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_alexnet_prob.npy"
));
normAssert
(
ref
,
out
);
normAssert
(
ref
,
out
);
...
@@ -123,7 +123,7 @@ TEST(Reproducibility_FCN, Accuracy)
...
@@ -123,7 +123,7 @@ TEST(Reproducibility_FCN, Accuracy)
std
::
vector
<
size_t
>
weights
,
blobs
;
std
::
vector
<
size_t
>
weights
,
blobs
;
net
.
getMemoryConsumption
(
shape
(
1
,
3
,
227
,
227
),
layerIds
,
weights
,
blobs
);
net
.
getMemoryConsumption
(
shape
(
1
,
3
,
227
,
227
),
layerIds
,
weights
,
blobs
);
net
.
setInput
(
blobFromImage
(
sample
,
1.
),
"data"
);
net
.
setInput
(
blobFromImage
(
sample
),
"data"
);
Mat
out
=
net
.
forward
(
"score"
);
Mat
out
=
net
.
forward
(
"score"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_fcn8s_prob.npy"
));
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_fcn8s_prob.npy"
));
normAssert
(
ref
,
out
);
normAssert
(
ref
,
out
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
8ef2f717
...
@@ -40,7 +40,7 @@ TEST(Test_TensorFlow, read_inception)
...
@@ -40,7 +40,7 @@ TEST(Test_TensorFlow, read_inception)
resize
(
sample
,
input
,
Size
(
224
,
224
));
resize
(
sample
,
input
,
Size
(
224
,
224
));
input
-=
128
;
// mean sub
input
-=
128
;
// mean sub
Mat
inputBlob
=
blobFromImage
(
input
,
1.
);
Mat
inputBlob
=
blobFromImage
(
input
);
net
.
setInput
(
inputBlob
,
"input"
);
net
.
setInput
(
inputBlob
,
"input"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
...
@@ -61,7 +61,7 @@ TEST(Test_TensorFlow, inception_accuracy)
...
@@ -61,7 +61,7 @@ TEST(Test_TensorFlow, inception_accuracy)
Mat
sample
=
imread
(
_tf
(
"grace_hopper_227.png"
));
Mat
sample
=
imread
(
_tf
(
"grace_hopper_227.png"
));
ASSERT_TRUE
(
!
sample
.
empty
());
ASSERT_TRUE
(
!
sample
.
empty
());
resize
(
sample
,
sample
,
Size
(
224
,
224
));
resize
(
sample
,
sample
,
Size
(
224
,
224
));
Mat
inputBlob
=
blobFromImage
(
sample
,
1.
);
Mat
inputBlob
=
blobFromImage
(
sample
);
net
.
setInput
(
inputBlob
,
"input"
);
net
.
setInput
(
inputBlob
,
"input"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment