Commit 8d3470b5 authored by Vladimir's avatar Vladimir

Added optimization to Multi-target TLD update

parent 7dc95a3a
...@@ -565,7 +565,12 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm ...@@ -565,7 +565,12 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
virtual void read( const FileNode& fn )=0; virtual void read( const FileNode& fn )=0;
virtual void write( FileStorage& fs ) const=0; virtual void write( FileStorage& fs ) const=0;
public: Ptr<TrackerModel> getModel()
{
return model;
}
protected:
virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) = 0; virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) = 0;
virtual bool updateImpl( const Mat& image, Rect2d& boundingBox ) = 0; virtual bool updateImpl( const Mat& image, Rect2d& boundingBox ) = 0;
...@@ -1206,11 +1211,7 @@ class CV_EXPORTS_W TrackerKCF : public Tracker ...@@ -1206,11 +1211,7 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
- "GRAY" -- Use grayscale values as the feature - "GRAY" -- Use grayscale values as the feature
- "CN" -- Color-names feature - "CN" -- Color-names feature
*/ */
enum MODE { enum MODE {GRAY, CN, CN2};
GRAY = (1u << 0),
CN = (1u << 1),
CUSTOM = (1u<<2)
};
struct CV_EXPORTS Params struct CV_EXPORTS Params
{ {
...@@ -1240,156 +1241,96 @@ class CV_EXPORTS_W TrackerKCF : public Tracker ...@@ -1240,156 +1241,96 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
bool compress_feature; //!< activate the pca method to compress the features bool compress_feature; //!< activate the pca method to compress the features
int max_patch_size; //!< threshold for the ROI size int max_patch_size; //!< threshold for the ROI size
int compressed_size; //!< feature size after compression int compressed_size; //!< feature size after compression
unsigned int desc_pca; //!< compressed descriptors of TrackerKCF::MODE MODE descriptor; //!< descriptor type
unsigned int desc_npca; //!< non-compressed descriptors of TrackerKCF::MODE
}; };
virtual void setFeatureExtractor(void (*)(const Mat, const Rect, Mat&), bool pca_func = false);
/** @brief Constructor /** @brief Constructor
@param parameters KCF parameters TrackerKCF::Params @param parameters KCF parameters TrackerKCF::Params
*/ */
BOILERPLATE_CODE("KCF",TrackerKCF); BOILERPLATE_CODE("KCF",TrackerKCF);
}; };
/************************************ MultiTracker Class ************************************/ /************************************ Multi-Tracker Classes ************************************/
/** @brief This class is used to track multiple objects using the specified tracker algorithm.
* The MultiTracker is naive implementation of multiple object tracking.
* It process the tracked objects independently without any optimization accross the tracked objects.
*/
class CV_EXPORTS_W MultiTracker
{
public:
/**
* \brief Constructor.
* In the case of trackerType is given, it will be set as the default algorithm for all trackers.
* @param trackerType the name of the tracker algorithm to be used
*/
MultiTracker(const String& trackerType = "" );
/**
* \brief Destructor
*/
~MultiTracker();
/**
* \brief Add a new object to be tracked.
* The defaultAlgorithm will be used the newly added tracker.
* @param image input image
* @param boundingBox a rectangle represents ROI of the tracked object
*/
bool add( const Mat& image, const Rect2d& boundingBox );
/**
* \brief Add a new object to be tracked.
* @param trackerType the name of the tracker algorithm to be used
* @param image input image
* @param boundingBox a rectangle represents ROI of the tracked object
*/
bool add( const String& trackerType, const Mat& image, const Rect2d& boundingBox );
/**
* \brief Add a set of objects to be tracked.
* @param trackerType the name of the tracker algorithm to be used
* @param image input image
* @param boundingBox list of the tracked objects
*/
bool add(const String& trackerType, const Mat& image, std::vector<Rect2d> boundingBox);
/**
* \brief Add a set of objects to be tracked using the defaultAlgorithm tracker.
* @param image input image
* @param boundingBox list of the tracked objects
*/
bool add(const Mat& image, std::vector<Rect2d> boundingBox);
/**
* \brief Update the current tracking status.
* The result will be saved in the internal storage.
* @param image input image
*/
bool update( const Mat& image);
//!< storage for the tracked objects, each object corresponds to one tracker algorithm.
std::vector<Rect2d> objects;
/**
* \brief Update the current tracking status.
* @param image input image
* @param boundingBox the tracking result, represent a list of ROIs of the tracked objects.
*/
bool update( const Mat& image, std::vector<Rect2d> & boundingBox );
protected:
//!< storage for the tracker algorithms.
std::vector< Ptr<Tracker> > trackerList;
//!< default algorithm for the tracking method.
String defaultAlgorithm;
};
class ROISelector {
public:
Rect2d select(Mat img, bool fromCenter = true);
Rect2d select(const std::string& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
void select(const std::string& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
struct handlerT{
// basic parameters
bool isDrawing;
Rect2d box;
Mat image;
// parameters for drawing from the center
bool drawFromCenter;
Point2f center;
// initializer list
handlerT(): isDrawing(false), drawFromCenter(true) {};
}selectorParams;
// to store the tracked objects
std::vector<handlerT> objects;
private:
static void mouseHandler(int event, int x, int y, int flags, void *param);
void opencv_mouse_callback( int event, int x, int y, int , void *param );
// save the keypressed characted
int key;
};
Rect2d CV_EXPORTS_W selectROI(Mat img, bool fromCenter = true);
Rect2d CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
void CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
/** @brief Base abstract class for the long-term Multi Object Trackers:
/************************************ Multi-Tracker Classes ************************************/ @sa Tracker, MultiTrackerTLD
class CV_EXPORTS_W MultiTracker_Alt */
class CV_EXPORTS_W MultiTracker
{ {
public: public:
/** @brief Constructor for Multitracker
*/
MultiTracker()
{
targetNum = 0;
}
/** @brief Add a new target to a tracking-list and initialize the tracker with a know bounding box that surrounding the target
@param image The initial frame
@param boundingBox The initial boundig box of target
@param tracker_algorithm_name Multi-tracker algorithm name
@return True if new target initialization went succesfully, false otherwise
*/
bool addTarget(const Mat& image, const Rect2d& boundingBox, String tracker_algorithm_name);
/** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets
@param image The current frame
@return True means that all targets were located and false means that tracker couldn't locate one of the targets in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
bool update(const Mat& image);
bool addTarget(const Mat& image, const Rect2d& boundingBox, char* tracker_algorithm_name); /** @brief Current number of targets in tracking-list
*/
int targetNum;
bool update(const Mat& image); /** @brief Trackers list for Multi-Object-Tracker
*/
std::vector <Ptr<Tracker> > trackers;
int targetNum = 0; /** @brief Bounding Boxes list for Multi-Object-Tracker
std::vector <Ptr<Tracker>> trackers; */
std::vector <Rect2d> boundingBoxes; std::vector <Rect2d> boundingBoxes;
/** @brief List of randomly generated colors for bounding boxes display
*/
std::vector<Scalar> colors; std::vector<Scalar> colors;
}; };
/** @brief Multi Object Tracker for TLD. TLD is a novel tracking framework that explicitly decomposes
the long-term tracking task into tracking, learning and detection.
The tracker follows the object from frame to frame. The detector localizes all appearances that
have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
occlusions, object absence etc.
@sa Tracker, MultiTracker, TrackerTLD
*/
class CV_EXPORTS_W MultiTrackerTLD : public MultiTracker class CV_EXPORTS_W MultiTrackerTLD : public MultiTracker
{ {
public: public:
bool update(const Mat& image); /** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets by
optimized update method using some techniques to speedup calculations specifically for MO TLD. The only limitation
is that all target bounding boxes should have approximately same aspect ratios. Speed boost is around 20%
@param image The current frame.
@return True means that all targets were located and false means that tracker couldn't locate one of the targets in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
bool update_opt(const Mat& image);
}; };
//! @} //! @}
} /* namespace cv */ } /* namespace cv */
//! @}
#endif #endif
...@@ -44,7 +44,7 @@ ...@@ -44,7 +44,7 @@
namespace cv namespace cv
{ {
//Multitracker //Multitracker
bool MultiTracker::addTarget(const Mat& image, const Rect2d& boundingBox, char* tracker_algorithm_name) bool MultiTracker::addTarget(const Mat& image, const Rect2d& boundingBox, String tracker_algorithm_name)
{ {
Ptr<Tracker> tracker = Tracker::create(tracker_algorithm_name); Ptr<Tracker> tracker = Tracker::create(tracker_algorithm_name);
if (tracker == NULL) if (tracker == NULL)
...@@ -65,6 +65,8 @@ namespace cv ...@@ -65,6 +65,8 @@ namespace cv
else else
colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256)); colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256));
//Target counter //Target counter
targetNum++; targetNum++;
...@@ -73,8 +75,7 @@ namespace cv ...@@ -73,8 +75,7 @@ namespace cv
bool MultiTracker::update(const Mat& image) bool MultiTracker::update(const Mat& image)
{ {
printf("Naive-Loop MO-TLD Update....\n"); for (int i = 0; i < (int)trackers.size(); i++)
for (int i = 0; i < trackers.size(); i++)
if (!trackers[i]->update(image, boundingBoxes[i])) if (!trackers[i]->update(image, boundingBoxes[i]))
return false; return false;
...@@ -85,16 +86,12 @@ namespace cv ...@@ -85,16 +86,12 @@ namespace cv
/*Optimized update method for TLD Multitracker */ /*Optimized update method for TLD Multitracker */
bool MultiTrackerTLD::update_opt(const Mat& image) bool MultiTrackerTLD::update_opt(const Mat& image)
{ {
printf("Optimized MO-TLD Update....\n");
//Get parameters from first object //Get parameters from first object
//Set current target(tracker) parameters
Rect2d boundingBox = boundingBoxes[0];
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[0]; Tracker* trackerPtr = trackers[0];
tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Ptr<tld::Data> data = tracker->data; Ptr<tld::Data> data = tracker->data;
double scale = data->getScale(); double scale = data->getScale();
...@@ -130,11 +127,11 @@ namespace cv ...@@ -130,11 +127,11 @@ namespace cv
for (int k = 0; k < targetNum; k++) for (int k = 0; k < targetNum; k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Ptr<tld::Data> data = tracker->data; data = tracker->data;
data->frameNum++; data->frameNum++;
...@@ -186,16 +183,7 @@ namespace cv ...@@ -186,16 +183,7 @@ namespace cv
#if 1 #if 1
if (it != candidatesRes[k].end()) if (it != candidatesRes[k].end())
{
tld::resample(imageForDetector, candidates[k][it - candidatesRes[k].begin()], standardPatch); tld::resample(imageForDetector, candidates[k][it - candidatesRes[k].begin()], standardPatch);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
}
else
{
//dfprintf((stderr, "%d x x\n", data->frameNum));
}
#endif #endif
if (*it > tld::CORE_THRESHOLD) if (*it > tld::CORE_THRESHOLD)
...@@ -226,7 +214,6 @@ namespace cv ...@@ -226,7 +214,6 @@ namespace cv
detectorResults[k][i].isObject = expertResult; detectorResults[k][i].isObject = expertResult;
} }
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults[k]); tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults[k]);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert.additionalExamples(examplesForModel, examplesForEnsemble); pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL()) if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true); tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true);
...@@ -249,14 +236,7 @@ namespace cv ...@@ -249,14 +236,7 @@ namespace cv
} }
//Debug display candidates after Variance Filter
////////////////////////////////////////////////
Mat tmpImg = image;
for (int i = 0; i < debugStack[0].size(); i++)
//rectangle(tmpImg, debugStack[0][i], Scalar(255, 255, 255), 1, 1, 0);
debugStack[0].clear();
tmpImg.copyTo(image);
////////////////////////////////////////////////
return true; return true;
} }
...@@ -267,10 +247,10 @@ namespace cv ...@@ -267,10 +247,10 @@ namespace cv
Tracker* trackerPtr = trackers[0]; Tracker* trackerPtr = trackers[0];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Size initSize = tldModel->getMinSize(); Size initSize = tldModel->getMinSize();
for (int k = 0; k < trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
patches[k].clear(); patches[k].clear();
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE); Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
...@@ -290,10 +270,6 @@ namespace cv ...@@ -290,10 +270,6 @@ namespace cv
std::vector <Point> tmpP; std::vector <Point> tmpP;
std::vector <int> tmpI; std::vector <int> tmpI;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part //Detection part
//Generate windows and filter by variance //Generate windows and filter by variance
scaleID = 0; scaleID = 0;
...@@ -329,13 +305,13 @@ namespace cv ...@@ -329,13 +305,13 @@ namespace cv
double windowVar = p2 - p * p; double windowVar = p2 - p * p;
//Loop for on all objects //Loop for on all objects
for (int k=0; k < trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
//Optimized variance calculation //Optimized variance calculation
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr); bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr);
...@@ -344,10 +320,6 @@ namespace cv ...@@ -344,10 +320,6 @@ namespace cv
continue; continue;
varBuffer[k].push_back(Point(dx * i, dy * j)); varBuffer[k].push_back(Point(dx * i, dy * j));
varScaleIDs[k].push_back(scaleID); varScaleIDs[k].push_back(scaleID);
//Debug display candidates after Variance Filter
double curScale = pow(tld::SCALE_STEP, scaleID);
debugStack[0].push_back(Rect2d(dx * i* curScale, dy * j*curScale, tldModel->getMinSize().width*curScale, tldModel->getMinSize().height*curScale));
} }
} }
} }
...@@ -361,23 +333,14 @@ namespace cv ...@@ -361,23 +333,14 @@ namespace cv
blurred_imgs.push_back(tmp); blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height); } while (size.width >= initSize.width && size.height >= initSize.height);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//printf("OrigVar 1: %f\n", *tldModel->detector->originalVariancePtr);
//Encsemble classification //Encsemble classification
//e1 = getTickCount(); for (int k = 0; k < (int)trackers.size(); k++)
for (int k = 0; k < trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
for (int i = 0; i < (int)varBuffer[k].size(); i++) for (int i = 0; i < (int)varBuffer[k].size(); i++)
...@@ -410,36 +373,16 @@ namespace cv ...@@ -410,36 +373,16 @@ namespace cv
ensBuffer[k].push_back(varBuffer[k][i]); ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]); ensScaleIDs[k].push_back(varScaleIDs[k][i]);
} }
/*
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
if (tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)) <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
*/
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//printf("varBuffer 1: %d\n", varBuffer[0].size());
//printf("ensBuffer 1: %d\n", ensBuffer[0].size());
//printf("varBuffer 2: %d\n", varBuffer[1].size());
//printf("ensBuffer 2: %d\n", ensBuffer[1].size());
//NN classification //NN classification
//e1 = getTickCount(); for (int k = 0; k < (int)trackers.size(); k++)
for (int k = 0; k < trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
npos = 0; npos = 0;
nneg = 0; nneg = 0;
...@@ -477,7 +420,6 @@ namespace cv ...@@ -477,7 +420,6 @@ namespace cv
maxSc = scValue; maxSc = scValue;
maxScRect = labPatch.rect; maxScRect = labPatch.rect;
} }
//printf("%d %f %f\n", k, srValue, scValue);
} }
...@@ -487,13 +429,9 @@ namespace cv ...@@ -487,13 +429,9 @@ namespace cv
else else
{ {
res[k] = maxScRect; res[k] = maxScRect;
//printf("%f %f %f %f\n", maxScRect.x, maxScRect.y, maxScRect.width, maxScRect.height);
detect_flgs[k] = true; detect_flgs[k] = true;
} }
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
} }
void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches, std::vector<bool> &detect_flgs, void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches, std::vector<bool> &detect_flgs,
...@@ -503,10 +441,10 @@ namespace cv ...@@ -503,10 +441,10 @@ namespace cv
Tracker* trackerPtr = trackers[0]; Tracker* trackerPtr = trackers[0];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Size initSize = tldModel->getMinSize(); Size initSize = tldModel->getMinSize();
for (int k = 0; k < trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
patches[k].clear(); patches[k].clear();
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE); Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
...@@ -526,10 +464,6 @@ namespace cv ...@@ -526,10 +464,6 @@ namespace cv
std::vector <Point> tmpP; std::vector <Point> tmpP;
std::vector <int> tmpI; std::vector <int> tmpI;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part //Detection part
//Generate windows and filter by variance //Generate windows and filter by variance
scaleID = 0; scaleID = 0;
...@@ -565,13 +499,13 @@ namespace cv ...@@ -565,13 +499,13 @@ namespace cv
double windowVar = p2 - p * p; double windowVar = p2 - p * p;
//Loop for on all objects //Loop for on all objects
for (int k = 0; k < trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
//Optimized variance calculation //Optimized variance calculation
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr); bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr);
...@@ -580,10 +514,6 @@ namespace cv ...@@ -580,10 +514,6 @@ namespace cv
continue; continue;
varBuffer[k].push_back(Point(dx * i, dy * j)); varBuffer[k].push_back(Point(dx * i, dy * j));
varScaleIDs[k].push_back(scaleID); varScaleIDs[k].push_back(scaleID);
//Debug display candidates after Variance Filter
double curScale = pow(tld::SCALE_STEP, scaleID);
debugStack[0].push_back(Rect2d(dx * i* curScale, dy * j*curScale, tldModel->getMinSize().width*curScale, tldModel->getMinSize().height*curScale));
} }
} }
} }
...@@ -597,23 +527,14 @@ namespace cv ...@@ -597,23 +527,14 @@ namespace cv
blurred_imgs.push_back(tmp); blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height); } while (size.width >= initSize.width && size.height >= initSize.height);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//printf("OrigVar 1: %f\n", *tldModel->detector->originalVariancePtr);
//Encsemble classification //Encsemble classification
//e1 = getTickCount(); for (int k = 0; k < (int)trackers.size(); k++)
for (int k = 0; k < trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
for (int i = 0; i < (int)varBuffer[k].size(); i++) for (int i = 0; i < (int)varBuffer[k].size(); i++)
...@@ -646,36 +567,16 @@ namespace cv ...@@ -646,36 +567,16 @@ namespace cv
ensBuffer[k].push_back(varBuffer[k][i]); ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]); ensScaleIDs[k].push_back(varScaleIDs[k][i]);
} }
/*
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
if (tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)) <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
*/
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("varBuffer 1: %d\n", varBuffer[0].size());
//printf("ensBuffer 1: %d\n", ensBuffer[0].size());
//printf("varBuffer 2: %d\n", varBuffer[1].size());
//printf("ensBuffer 2: %d\n", ensBuffer[1].size());
//NN classification //NN classification
//e1 = getTickCount(); for (int k = 0; k < (int)trackers.size(); k++)
for (int k = 0; k < trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
Tracker* trackerPtr = trackers[k]; trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
//Size InitSize = tldModel->getMinSize();
npos = 0; npos = 0;
nneg = 0; nneg = 0;
maxSc = -5.0; maxSc = -5.0;
...@@ -730,7 +631,6 @@ namespace cv ...@@ -730,7 +631,6 @@ namespace cv
maxSc = scValue; maxSc = scValue;
maxScRect = labPatch.rect; maxScRect = labPatch.rect;
} }
//printf("%d %f %f\n", k, srValue, scValue);
} }
...@@ -740,12 +640,9 @@ namespace cv ...@@ -740,12 +640,9 @@ namespace cv
else else
{ {
res[k] = maxScRect; res[k] = maxScRect;
//printf("%f %f %f %f\n", maxScRect.x, maxScRect.y, maxScRect.width, maxScRect.height);
detect_flgs[k] = true; detect_flgs[k] = true;
} }
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
} }
} }
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment