Commit 8b59dffc authored by Apoorv Goel's avatar Apoorv Goel Committed by Alexander Alekhin

Merge pull request #2161 from UnderscoreAsterisk:dynafu

DynamicFusion Implementation

* Add new nodes from points

* Addition of new node in the field

* Warp nodes demo

* Add newline before {

* Remove 3rd party flann dependency

* Regularisation Heirarchy

* Correct node radius

* Change default growth rate

* New node position = centroid of the neighbourhood

* Enlarge nodes while paused

* Dynafu TSDF

* TSDF demo

* Avoid double calc and adjust initial tsdf weight

* Fix bug that caused some voxels to disappear

* getNodePos helper

* Remove USE_INTRINSIC check

* Correct RT avg calculation and remove redundant knn calc

* Slight perf improvements

* Use LinearIndex

* Debug calculations

* set all nodes' RT

* Various bug fixes

* Separate camera and warpfield

* Add dynafu documentation

* Adhere to coding style

* Add dynafu unit test

* update demo

* Merge pull request #2133 from savuor:kinfu_truncate

KinectFusion: several updates (#2133)

* truncateThreshold added

* demo updated for RealSense

* first Kinect2, then RealSense

* more distance-based parameters

* Remove trailing whitespaces

* Replace bool vector with array

* create findNeighbours in WarpField

* Maintain nodesPos matrix in WarpField

* Fix warnings on Windows build

* Remove cameraPose from WarpField

* Use AutoBuffer

* Marching Cubes

* Fix MC

* Split mesh vertices & edges

* Change Mat types in MC

* OpenGL rendering

* Check for HAVE_OPENGL

* Error handling in case HAVE_OPENGL is not defined

* Replace Mat_ with std::vector inside marchCubes

* Parallelise marching cubes

* Fix warpfield and estimate depth inside DynaFuImpl::updateT()

* Linearise depth and use points/normals from MC

* Don't test dynafu without OpenGL support

* Analytical calculation of Jacobian matrices

* Add details about rotation and differentiate graph terms in J_r

* Use derivative of T^-1 from the tutorial

* Remove L2 norm from reg term

* Use chain rule to differentiate data term

* Markdown

* Fix markdown

* Replace MD file by HTML

* Change the data term expression

* Calculate J_d using vector identities

* Rasterize vertex and normals

* Apply warpfield before rendering

* Add CV_UNUSED for normImage to fix warning

* Render float image instead of uint8

* Implement ICP data term and other changes:
1. add option to applyWarp to normals
2. add option to `fetchPointNormals` to return points in voxel coordinates
3. Fix: Use voxel coordinates to update WarpField

* Fix non-OpenGL build

* Intialise newly discovered node transforms with DQB

* Fix data term

* Change data term normal and add kinfu-like distance/angle checks

* Implement regularisation

* Fix warnings

* Credit authors of DQB and table for MC

* cast size_t to int to supress warning

* Correct regularisation and add normal equation set up

* Delete html

* Dynafu unit test
parent 6a0e9fdd
This diff is collapsed.
...@@ -16,3 +16,10 @@ volume = {}, ...@@ -16,3 +16,10 @@ volume = {},
chapter = {}, chapter = {},
isbn = {978-1-4503-0716-1}, isbn = {978-1-4503-0716-1},
} }
@inproceedings{dynamicfusion,
author = {Newcombe, Richard A. and Fox, Dieter and Seitz, Steven M.},
title = {DynamicFusion: Reconstruction and Tracking of Non-Rigid Scenes in Real-Time},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "opencv2/rgbd/linemod.hpp" #include "opencv2/rgbd/linemod.hpp"
#include "opencv2/rgbd/depth.hpp" #include "opencv2/rgbd/depth.hpp"
#include "opencv2/rgbd/kinfu.hpp" #include "opencv2/rgbd/kinfu.hpp"
#include "opencv2/rgbd/dynafu.hpp"
/** @defgroup rgbd RGB-Depth Processing /** @defgroup rgbd RGB-Depth Processing
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
#ifndef __OPENCV_RGBD_DYNAFU_HPP__
#define __OPENCV_RGBD_DYNAFU_HPP__
#include "opencv2/core.hpp"
#include "opencv2/core/affine.hpp"
namespace cv {
namespace dynafu {
struct CV_EXPORTS_W Params
{
/** @brief Default parameters
A set of parameters which provides better model quality, can be very slow.
*/
CV_WRAP static Ptr<Params> defaultParams();
/** @brief Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
*/
CV_WRAP static Ptr<Params> coarseParams();
/** @brief frame size in pixels */
CV_PROP_RW Size frameSize;
/** @brief camera intrinsics */
CV_PROP Matx33f intr;
/** @brief pre-scale per 1 meter for input values
Typical values are:
* 5000 per 1 meter for the 16-bit PNG files of TUM database
* 1000 per 1 meter for Kinect 2 device
* 1 per 1 meter for the 32-bit float images in the ROS bag files
*/
CV_PROP_RW float depthFactor;
/** @brief Depth sigma in meters for bilateral smooth */
CV_PROP_RW float bilateral_sigma_depth;
/** @brief Spatial sigma in pixels for bilateral smooth */
CV_PROP_RW float bilateral_sigma_spatial;
/** @brief Kernel size in pixels for bilateral smooth */
CV_PROP_RW int bilateral_kernel_size;
/** @brief Number of pyramid levels for ICP */
CV_PROP_RW int pyramidLevels;
/** @brief Resolution of voxel space
Number of voxels in each dimension.
*/
CV_PROP_RW Vec3i volumeDims;
/** @brief Size of voxel in meters */
CV_PROP_RW float voxelSize;
/** @brief Minimal camera movement in meters
Integrate new depth frame only if camera movement exceeds this value.
*/
CV_PROP_RW float tsdf_min_camera_movement;
/** @brief initial volume pose in meters */
Affine3f volumePose;
/** @brief distance to truncate in meters
Distances to surface that exceed this value will be truncated to 1.0.
*/
CV_PROP_RW float tsdf_trunc_dist;
/** @brief max number of frames per voxel
Each voxel keeps running average of distances no longer than this value.
*/
CV_PROP_RW int tsdf_max_weight;
/** @brief A length of one raycast step
How much voxel sizes we skip each raycast step
*/
CV_PROP_RW float raycast_step_factor;
// gradient delta in voxel sizes
// fixed at 1.0f
// float gradient_delta_factor;
/** @brief light pose for rendering in meters */
CV_PROP Vec3f lightPose;
/** @brief distance theshold for ICP in meters */
CV_PROP_RW float icpDistThresh;
/** angle threshold for ICP in radians */
CV_PROP_RW float icpAngleThresh;
/** number of ICP iterations for each pyramid level */
CV_PROP std::vector<int> icpIterations;
/** @brief Threshold for depth truncation in meters
All depth values beyond this threshold will be set to zero
*/
CV_PROP_RW float truncateThreshold;
};
/** @brief DynamicFusion implementation
This class implements a 3d reconstruction algorithm as described in @cite dynamicfusion.
It takes a sequence of depth images taken from depth sensor
(or any depth images source such as stereo camera matching algorithm or even raymarching renderer).
The output can be obtained as a vector of points and their normals
or can be Phong-rendered from given camera pose.
It extends the KinectFusion algorithm to handle non-rigidly deforming scenes by maintaining a sparse
set of nodes covering the geometry such that each node contains a warp to transform it from a canonical
space to the live frame.
An internal representation of a model is a voxel cuboid that keeps TSDF values
which are a sort of distances to the surface (for details read the @cite kinectfusion article about TSDF).
There is no interface to that representation yet.
Note that DynamicFusion is based on the KinectFusion algorithm which is patented and its use may be
restricted by the list of patents mentioned in README.md file in this module directory.
That's why you need to set the OPENCV_ENABLE_NONFREE option in CMake to use DynamicFusion.
*/
class CV_EXPORTS_W DynaFu
{
public:
CV_WRAP static Ptr<DynaFu> create(const Ptr<Params>& _params);
virtual ~DynaFu();
/** @brief Get current parameters */
virtual const Params& getParams() const = 0;
/** @brief Renders a volume into an image
Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in DynaFu params.
@param image resulting image
@param cameraPose pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.
*/
CV_WRAP virtual void render(OutputArray image, const Matx44f& cameraPose = Matx44f::eye()) const = 0;
/** @brief Gets points and normals of current 3d mesh
The order of normals corresponds to order of points.
The order of points is undefined.
@param points vector of points which are 4-float vectors
@param normals vector of normals which are 4-float vectors
*/
CV_WRAP virtual void getCloud(OutputArray points, OutputArray normals) const = 0;
/** @brief Gets points of current 3d mesh
The order of points is undefined.
@param points vector of points which are 4-float vectors
*/
CV_WRAP virtual void getPoints(OutputArray points) const = 0;
/** @brief Calculates normals for given points
@param points input vector of points which are 4-float vectors
@param normals output vector of corresponding normals which are 4-float vectors
*/
CV_WRAP virtual void getNormals(InputArray points, OutputArray normals) const = 0;
/** @brief Resets the algorithm
Clears current model and resets a pose.
*/
CV_WRAP virtual void reset() = 0;
/** @brief Get current pose in voxel space */
virtual const Affine3f getPose() const = 0;
/** @brief Process next depth frame
Integrates depth into voxel space with respect to its ICP-calculated pose.
Input image is converted to CV_32F internally if has another type.
@param depth one-channel image which size and depth scale is described in algorithm's parameters
@return true if succeded to align new frame with current scene, false if opposite
*/
CV_WRAP virtual bool update(InputArray depth) = 0;
virtual std::vector<Point3f> getNodesPos() const = 0;
virtual void marchCubes(OutputArray vertices, OutputArray edges) const = 0;
virtual void renderSurface(OutputArray depthImage, OutputArray vertImage, OutputArray normImage, bool warp=true) = 0;
};
//! @}
}
}
#endif
This diff is collapsed.
#include "dqb.hpp"
namespace cv {
namespace dynafu {
Quaternion::Quaternion() : coeff(Vec4f(0.f, 0.f, 0.f, 0.f))
{}
Quaternion::Quaternion(float w, float i, float j, float k) : coeff(Vec4f(w, i, j, k))
{}
Quaternion::Quaternion(const Affine3f& r)
{
// Compute trace of matrix
float T = (float)trace(r.matrix);
float S, X, Y, Z, W;
if ( T > 0.00000001f ) // to avoid large distortions!
{
S = sqrt(T) * 2.f;
X = (r.matrix(1, 2) - r.matrix(2, 1)) / S;
Y = (r.matrix(2, 0) - r.matrix(0, 2)) / S;
Z = (r.matrix(0, 1) - r.matrix(1, 0)) / S;
W = 0.25f * S;
}
else
{
if (r.matrix(0, 0) > r.matrix(1, 1) && r.matrix(0, 0) > r.matrix(2, 2))
{
// Column 0 :
S = sqrt(1.0f + r.matrix(0,0) - r.matrix(1,1) - r.matrix(2,2)) * 2.f;
X = 0.25f * S;
Y = (r.matrix(1, 0) + r.matrix(0, 1)) / S;
Z = (r.matrix(0, 2) + r.matrix(2, 0)) / S;
W = (r.matrix(2, 1) - r.matrix(1, 2)) / S;
}
else if (r.matrix(1, 1) > r.matrix(2, 2))
{
// Column 1 :
S = sqrt(1.0f + r.matrix(1,1) - r.matrix(0,0) - r.matrix(2,2)) * 2.f;
X = (r.matrix(1, 0) + r.matrix(0, 1)) / S;
Y = 0.25f * S;
Z = (r.matrix(2, 1) + r.matrix(1, 2)) / S;
W = (r.matrix(0, 2) - r.matrix(2, 0)) / S;
}
else
{ // Column 2 :
S = sqrt( 1.0f + r.matrix(2, 2) - r.matrix(0, 0) - r.matrix(1, 1)) * 2.f;
X = (r.matrix(0, 2) + r.matrix(2, 0)) / S;
Y = (r.matrix(2, 1) + r.matrix(1, 2)) / S;
Z = 0.25f * S;
W = (r.matrix(1,0) - r.matrix(0, 1)) / S;
}
}
coeff = Vec4f(W, -X, -Y, -Z);
}
Affine3f Quaternion::getRotation() const
{
float W = coeff[0], X = -coeff[1], Y = -coeff[2], Z = -coeff[3];
float xx = X * X, xy = X * Y, xz = X * Z, xw = X * W;
float yy = Y * Y, yz = Y * Z, yw = Y * W, zz = Z * Z;
float zw = Z * W;
Matx33f rot(1.f - 2.f * (yy + zz), 2.f * (xy + zw), 2.f * (xz - yw),
2.f * (xy - zw), 1.f - 2.f * (xx + zz), 2.f * (yz + xw),
2.f * (xz + yw), 2.f * (yz - xw), 1.f - 2.f * (xx + yy));
Affine3f Rt = Affine3f(rot, Vec3f::all(0));
return Rt;
}
Quaternion operator*(float a, const Quaternion& q)
{
Vec4f newQ = a*q.coeff;
return Quaternion(newQ[0], newQ[1], newQ[2], newQ[3]);
}
Quaternion operator*(const Quaternion& q, float a)
{
return a*q;
}
Quaternion operator/(const Quaternion& q, float a)
{
Vec4f newQ = q.coeff/a;
return Quaternion(newQ[0], newQ[1], newQ[2], newQ[3]);
}
Quaternion operator+(const Quaternion& q1, const Quaternion& q2)
{
Vec4f newQ = q1.coeff + q2.coeff;
return Quaternion(newQ[0], newQ[1], newQ[2], newQ[3]);
}
Quaternion& operator+=(Quaternion& q1, const Quaternion& q2)
{
q1.coeff += q2.coeff;
return q1;
}
Quaternion& operator/=(Quaternion& q, float a)
{
q.coeff /= a;
return q;
}
DualQuaternion::DualQuaternion() : q0(), qe()
{}
DualQuaternion::DualQuaternion(const Affine3f& rt)
{
q0 = Quaternion(rt);
Vec3f t = rt.translation();
float w = -0.5f*( t[0] * q0.i() + t[1] * q0.j() + t[2] * q0.k());
float i = 0.5f*( t[0] * q0.w() + t[1] * q0.k() - t[2] * q0.j());
float j = 0.5f*(-t[0] * q0.k() + t[1] * q0.w() + t[2] * q0.i());
float k = 0.5f*( t[0] * q0.j() - t[1] * q0.i() + t[2] * q0.w());
qe = Quaternion(w, i, j, k);
}
DualQuaternion::DualQuaternion(Quaternion& _q0, Quaternion& _qe) : q0(_q0), qe(_qe)
{}
void DualQuaternion::normalize()
{
float n = q0.normalize();
qe /= n;
}
DualQuaternion& operator+=(DualQuaternion& q1, const DualQuaternion& q2)
{
q1.q0 += q2.q0;
q1.qe += q2.qe;
return q1;
}
DualQuaternion operator*(float a, const DualQuaternion& q)
{
Quaternion newQ0 = a*q.q0;
Quaternion newQe = a*q.qe;
return DualQuaternion(newQ0, newQe);
}
Affine3f DualQuaternion::getAffine() const
{
float norm = q0.norm();
Affine3f Rt = (q0/norm).getRotation();
Vec3f t(0.f, 0.f, 0.f);
t[0] = 2.f*(-qe.w()*q0.i() + qe.i()*q0.w() - qe.j()*q0.k() + qe.k()*q0.j()) / norm;
t[1] = 2.f*(-qe.w()*q0.j() + qe.i()*q0.k() + qe.j()*q0.w() - qe.k()*q0.i()) / norm;
t[2] = 2.f*(-qe.w()*q0.k() - qe.i()*q0.j() + qe.j()*q0.i() + qe.k()*q0.w()) / norm;
return Rt.translate(t);
}
DualQuaternion DQB(std::vector<float>& weights, std::vector<DualQuaternion>& quats)
{
size_t n = weights.size();
DualQuaternion blended;
for(size_t i = 0; i < n; i++)
blended += weights[i] * quats[i];
blended.normalize();
return blended;
}
Affine3f DQB(std::vector<float>& weights, std::vector<Affine3f>& transforms)
{
size_t n = transforms.size();
std::vector<DualQuaternion> quats(n);
std::transform(transforms.begin(), transforms.end(),
quats.begin(), [](const Affine3f& rt){return DualQuaternion(rt);});
DualQuaternion blended = DQB(weights, quats);
return blended.getAffine();
}
} // namespace dynafu
} // namespace cv
\ No newline at end of file
/*
The code for Dual Quaternion Blending provided here is a modified
version of the sample codes by Arkan.
Copyright (c) 2019 Arkan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef __OPENCV_RGBD_DQB_HPP__
#define __OPENCV_RGBD_DQB_HPP__
#include "opencv2/core.hpp"
#include "opencv2/core/affine.hpp"
namespace cv {
namespace dynafu {
class Quaternion
{
public:
Quaternion();
Quaternion(float w, float i, float j, float k);
// Generate a quaternion from rotation of a Rt matrix.
Quaternion(const Affine3f& r);
float normalize()
{
float n = (float)cv::norm(coeff);
coeff /= n;
return n;
}
Affine3f getRotation() const;
float w() const {return coeff[0];}
float i() const {return coeff[1];}
float j() const {return coeff[2];}
float k() const {return coeff[3];}
float norm() const {return (float)cv::norm(coeff);}
friend Quaternion operator*(float a, const Quaternion& q);
friend Quaternion operator*(const Quaternion& q, float a);
friend Quaternion operator/(const Quaternion& q, float a);
friend Quaternion operator+(const Quaternion& q1, const Quaternion& q2);
friend Quaternion& operator+=(Quaternion& q1, const Quaternion& q2);
friend Quaternion& operator/=(Quaternion& q, float a);
private:
// w, i, j, k coefficients
Vec4f coeff;
};
class DualQuaternion
{
public:
DualQuaternion();
DualQuaternion(const Affine3f& Rt);
DualQuaternion(Quaternion& q0, Quaternion& qe);
void normalize();
friend DualQuaternion& operator+=(DualQuaternion& q1, const DualQuaternion& q2);
friend DualQuaternion operator*(float a, const DualQuaternion& q);
Affine3f getAffine() const;
private:
Quaternion q0; // rotation quaternion
Quaternion qe; // translation quaternion
};
DualQuaternion DQB(std::vector<float>& weights, std::vector<DualQuaternion>& quats);
Affine3f DQB(std::vector<float>& weights, std::vector<Affine3f>& transforms);
} // namespace dynafu
} // namespace cv
#endif
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#ifndef __OPENCV_DYNAFU_TSDF_H__
#define __OPENCV_DYNAFU_TSDF_H__
#include "kinfu_frame.hpp"
#include "warpfield.hpp"
namespace cv {
namespace dynafu {
class TSDFVolume
{
public:
// dimension in voxels, size in meters
TSDFVolume(Point3i _res, float _voxelSize, cv::Affine3f _pose, float _truncDist, int _maxWeight,
float _raycastStepFactor, bool zFirstMemOrder = true);
virtual void integrate(InputArray _depth, float depthFactor, cv::Affine3f cameraPose,
cv::kinfu::Intr intrinsics, Ptr<WarpField> wf) = 0;
virtual void raycast(cv::Affine3f cameraPose, cv::kinfu::Intr intrinsics, cv::Size frameSize,
cv::OutputArray points, cv::OutputArray normals) const = 0;
virtual void fetchPointsNormals(cv::OutputArray points, cv::OutputArray normals,
bool fetchVoxels=false) const = 0;
virtual void fetchNormals(cv::InputArray points, cv::OutputArray _normals) const = 0;
virtual void marchCubes(OutputArray _vertices, OutputArray _edges) const = 0;
virtual void reset() = 0;
virtual nodeNeighboursType const& getVoxelNeighbours(Point3i v, int& n) const = 0;
virtual ~TSDFVolume() { }
float voxelSize;
float voxelSizeInv;
Point3i volResolution;
float maxWeight;
cv::Affine3f pose;
float raycastStepFactor;
Point3f volSize;
float truncDist;
Vec4i volDims;
Vec8i neighbourCoords;
};
cv::Ptr<TSDFVolume> makeTSDFVolume(Point3i _res, float _voxelSize, cv::Affine3f _pose, float _truncDist, int _maxWeight,
float _raycastStepFactor);
} // namespace dynafu
} // namespace cv
#endif
This diff is collapsed.
This diff is collapsed.
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
#ifndef __OPENCV_DYNAFU_NONRIGID_ICP_H__
#define __OPENCV_DYNAFU_NONRIGID_ICP_H__
#include "precomp.hpp"
#include "kinfu_frame.hpp"
#include "warpfield.hpp"
#include "dynafu_tsdf.hpp"
namespace cv {
namespace dynafu {
class NonRigidICP
{
public:
NonRigidICP(const cv::kinfu::Intr _intrinsics, const cv::Ptr<TSDFVolume>& _volume, int _iterations);
virtual bool estimateWarpNodes(WarpField& currentWarp, const Affine3f& pose,
InputArray vertImage, InputArray oldPoints,
InputArray oldNormals,
InputArray newPoints, InputArray newNormals) const = 0;
virtual ~NonRigidICP() { }
protected:
int iterations;
const cv::Ptr<TSDFVolume>& volume;
cv::kinfu::Intr intrinsics;
};
cv::Ptr<NonRigidICP> makeNonRigidICP(const cv::kinfu::Intr _intrinsics, const cv::Ptr<TSDFVolume>& _volume,
int _iterations);
} // namespace dynafu
} // namespace cv
#endif
#include "precomp.hpp"
#include "warpfield.hpp"
namespace cv {
namespace dynafu {
WarpField::WarpField(int _maxNeighbours, int K, int levels, float baseResolution, float resolutionGrowth):
k(K), n_levels(levels),
nodes(), maxNeighbours(_maxNeighbours), // good amount for dense kinfu pointclouds
baseRes(baseResolution),
resGrowthRate(resolutionGrowth),
regGraphNodes(n_levels-1),
heirarchy(n_levels-1),
nodeIndex(nullptr)
{
CV_Assert(k <= DYNAFU_MAX_NEIGHBOURS);
}
NodeVectorType const& WarpField::getNodes() const
{
return nodes;
}
std::vector<NodeVectorType> const& WarpField::getGraphNodes() const
{
return regGraphNodes;
}
heirarchyType const& WarpField::getRegGraph() const
{
return heirarchy;
}
bool PtCmp(cv::Point3f a, cv::Point3f b)
{
return (a.x < b.x) ||
((a.x >= b.x) && (a.y < b.y)) ||
((a.x >= b.x) && (a.y >= b.y) && (a.z < b.z));
}
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > WarpField::getNodeIndex() const
{
return nodeIndex;
}
Mat getNodesPos(NodeVectorType nv)
{
Mat nodePos((int)nv.size(), 3, CV_32F);
for(int i = 0; i < (int)nv.size(); i++)
{
nodePos.at<float>(i, 0) = nv[i]->pos.x;
nodePos.at<float>(i, 1) = nv[i]->pos.y;
nodePos.at<float>(i, 2) = nv[i]->pos.z;
}
return nodePos;
}
void WarpField::updateNodesFromPoints(InputArray inputPoints)
{
Mat points_matrix(inputPoints.size().height, 3, CV_32F);
if(inputPoints.channels() == 1)
{
points_matrix = inputPoints.getMat().colRange(0, 3);
}
else
{
points_matrix = inputPoints.getMat().reshape(1).colRange(0, 3).clone();
}
cvflann::LinearIndexParams params;
flann::GenericIndex<flann::L2_Simple <float> > searchIndex(points_matrix, params);
AutoBuffer<bool> validIndex;
removeSupported(searchIndex, validIndex);
NodeVectorType newNodes;
if((int)nodes.size() > k)
{
newNodes = subsampleIndex(points_matrix, searchIndex, validIndex, baseRes, nodeIndex);
}
else
{
newNodes = subsampleIndex(points_matrix, searchIndex, validIndex, baseRes);
}
initTransforms(newNodes);
nodes.insert(nodes.end(), newNodes.begin(), newNodes.end());
nodesPos = getNodesPos(nodes);
//re-build index
nodeIndex = new flann::GenericIndex<flann::L2_Simple<float> >(nodesPos,
cvflann::LinearIndexParams());
constructRegGraph();
}
void WarpField::removeSupported(flann::GenericIndex<flann::L2_Simple<float> >& ind,
AutoBuffer<bool>& validInd)
{
validInd.allocate(ind.size());
std::fill_n(validInd.data(), ind.size(), true);
for(WarpNode* n: nodes)
{
std::vector<float> query = {n->pos.x, n->pos.y, n->pos.z};
std::vector<int> indices_vec(maxNeighbours);
std::vector<float> dists_vec(maxNeighbours);
ind.radiusSearch(query, indices_vec, dists_vec, n->radius, cvflann::SearchParams());
for(auto i: indices_vec)
{
validInd[i] = false;
}
}
}
NodeVectorType WarpField::subsampleIndex(Mat& pmat,
flann::GenericIndex<flann::L2_Simple<float> >& ind,
AutoBuffer<bool>& validIndex, float res,
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > knnIndex)
{
CV_TRACE_FUNCTION();
NodeVectorType temp_nodes;
for(int i = 0; i < (int)validIndex.size(); i++)
{
if(!validIndex[i])
{
continue;
}
std::vector<int> indices_vec(maxNeighbours);
std::vector<float> dist_vec(maxNeighbours);
ind.radiusSearch(pmat.row(i), indices_vec, dist_vec, res, cvflann::SearchParams());
Ptr<WarpNode> wn = new WarpNode;
Point3f centre(0, 0, 0);
float len = 0;
for(int index: indices_vec)
{
if(validIndex[index])
{
centre += Point3f(pmat.at<float>(index, 0),
pmat.at<float>(index, 1),
pmat.at<float>(index, 2));
len++;
}
}
centre /= len;
wn->pos = centre;
for(auto index: indices_vec)
{
validIndex[index] = false;
}
std::vector<int> knn_indices(k+1, 0);
std::vector<float> knn_dists(k+1, 0);
std::vector<float> query = {wn->pos.x, wn->pos.y, wn->pos.z};
if(knnIndex != nullptr)
{
knnIndex->knnSearch(query, knn_indices, knn_dists, (k+1), cvflann::SearchParams());
wn->radius = *std::max_element(knn_dists.begin(), knn_dists.end());
}
else
{
wn->radius = res;
}
wn->transform = Affine3f::Identity();
temp_nodes.push_back(wn);
}
return temp_nodes;
}
void WarpField::initTransforms(NodeVectorType nv)
{
if(nodesPos.size().height == 0)
{
return;
}
for(auto nodePtr: nv)
{
std::vector<int> knnIndices(k);
std::vector<float> knnDists(k);
std::vector<float> query = {nodePtr->pos.x, nodePtr->pos.y, nodePtr->pos.z};
nodeIndex->knnSearch(query ,knnIndices, knnDists, k, cvflann::SearchParams());
std::vector<float> weights(knnIndices.size());
std::vector<Affine3f> transforms(knnIndices.size());
size_t i = 0;
for(int idx: knnIndices)
{
weights[i] = nodes[idx]->weight(nodePtr->pos);
transforms[i++] = nodes[idx]->transform;
}
Affine3f pose = DQB(weights, transforms);
// linearly interpolate translations
Vec3f translation(0,0,0);
float totalWeight = 0;
for(i = 0; i < transforms.size(); i++)
{
translation += weights[i]*transforms[i].translation();
totalWeight += weights[i];
}
if(totalWeight < 1e-5) translation = Vec3f(0, 0, 0);
else translation /= totalWeight;
nodePtr->transform = Affine3f(pose.rotation(), translation);
}
}
void WarpField::constructRegGraph()
{
CV_TRACE_FUNCTION();
regGraphNodes.clear();
if(n_levels == 1) // First level (Nwarp) is already stored in nodes
{
return;
}
float effResolution = baseRes*resGrowthRate;
NodeVectorType curNodes = nodes;
Mat curNodeMatrix = getNodesPos(curNodes);
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > curNodeIndex(
new flann::GenericIndex<flann::L2_Simple<float> >(curNodeMatrix,
cvflann::LinearIndexParams()));
for(int l = 0; l < (n_levels-1); l++)
{
AutoBuffer<bool> nodeValidity;
nodeValidity.allocate(curNodeIndex->size());
std::fill_n(nodeValidity.data(), curNodeIndex->size(), true);
NodeVectorType coarseNodes = subsampleIndex(curNodeMatrix, *curNodeIndex, nodeValidity,
effResolution);
initTransforms(coarseNodes);
Mat coarseNodeMatrix = getNodesPos(coarseNodes);
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > coarseNodeIndex(
new flann::GenericIndex<flann::L2_Simple<float> >(coarseNodeMatrix,
cvflann::LinearIndexParams()));
heirarchy[l] = std::vector<nodeNeighboursType>(curNodes.size());
for(int i = 0; i < (int)curNodes.size(); i++)
{
std::vector<int> children_indices(k);
std::vector<float> children_dists(k);
std::vector<float> query = {curNodeMatrix.at<float>(i, 0),
curNodeMatrix.at<float>(i, 1),
curNodeMatrix.at<float>(i, 2)};
coarseNodeIndex->knnSearch(query, children_indices, children_dists, k,
cvflann::SearchParams());
heirarchy[l][i].fill(-1);
std::copy(children_indices.begin(), children_indices.end(), heirarchy[l][i].begin());
}
regGraphNodes.push_back(coarseNodes);
curNodes = coarseNodes;
curNodeMatrix = coarseNodeMatrix;
curNodeIndex = coarseNodeIndex;
effResolution *= resGrowthRate;
}
}
Point3f WarpField::applyWarp(Point3f p, const nodeNeighboursType neighbours, int n, bool normal) const
{
CV_TRACE_FUNCTION();
if(n == 0)
{
return p;
}
float totalWeight = 0;
Point3f WarpedPt(0,0,0);
for(int i = 0; i < n; i++)
{
Ptr<WarpNode> neigh = nodes[neighbours[i]];
float w = neigh->weight(p);
if(w < 0.01)
{
continue;
}
Matx33f R = neigh->transform.rotation();
Point3f newPt(0, 0, 0);
if(normal)
{
newPt = R * p;
}
else
{
newPt = R * (p - neigh->pos) + neigh->pos;
Vec3f T = neigh->transform.translation();
newPt.x += T[0];
newPt.y += T[1];
newPt.z += T[2];
}
WarpedPt += newPt * w;
totalWeight += w;
}
WarpedPt /= totalWeight;
if(totalWeight == 0)
{
return p;
}
else
{
return WarpedPt;
}
}
void WarpField::setAllRT(Affine3f warpRT)
{
for(auto n: nodes)
{
n->transform = warpRT;
}
}
} // namepsace dynafu
} // namespace cv
#ifndef __OPENCV_RGBD_WARPFIELD_HPP__
#define __OPENCV_RGBD_WARPFIELD_HPP__
#include "opencv2/core.hpp"
#include "opencv2/flann.hpp"
#include "dqb.hpp"
#define DYNAFU_MAX_NEIGHBOURS 10
typedef std::array<int, DYNAFU_MAX_NEIGHBOURS> nodeNeighboursType;
typedef std::vector<std::vector<nodeNeighboursType> > heirarchyType;
namespace cv {
namespace dynafu {
struct WarpNode
{
Point3f pos;
float radius;
Affine3f transform;
float weight(Point3f x)
{
Point3f diff = pos - x;
float L2 = diff.x*diff.x + diff.y*diff.y + diff.z*diff.z;
return expf(-L2/(2.f*radius));
}
};
typedef std::vector<Ptr<WarpNode> > NodeVectorType;
class WarpField
{
public:
WarpField(int _maxNeighbours=1000000, int K=4, int levels=4, float baseResolution=.10f,
float resolutionGrowth=4);
void updateNodesFromPoints(InputArray _points);
const NodeVectorType& getNodes() const;
const heirarchyType& getRegGraph() const;
const std::vector<NodeVectorType>& getGraphNodes() const;
size_t getNodesLen() const
{
return nodes.size();
}
Point3f applyWarp(Point3f p, const nodeNeighboursType neighbours, int n, bool normal=false) const;
void setAllRT(Affine3f warpRT);
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > getNodeIndex() const;
inline void findNeighbours(Point3f queryPt, std::vector<int>& indices, std::vector<float>& dists)
{
std::vector<float> query = {queryPt.x, queryPt.y, queryPt.z};
nodeIndex->knnSearch(query, indices, dists, k, cvflann::SearchParams());
}
int k; //k-nearest neighbours will be used
int n_levels; // number of levels in the heirarchy
private:
void removeSupported(flann::GenericIndex<flann::L2_Simple<float> >& ind, AutoBuffer<bool>& supInd);
NodeVectorType subsampleIndex(Mat& pmat, flann::GenericIndex<flann::L2_Simple<float> >& ind,
AutoBuffer<bool>& supInd, float res,
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > knnIndex = nullptr);
void constructRegGraph();
void initTransforms(NodeVectorType nv);
NodeVectorType nodes; //heirarchy level 0
int maxNeighbours;
float baseRes;
float resGrowthRate;
std::vector<NodeVectorType> regGraphNodes; // heirarchy levels 1 to L
heirarchyType heirarchy;
Ptr<flann::GenericIndex<flann::L2_Simple<float> > > nodeIndex;
Mat nodesPos;
};
bool PtCmp(cv::Point3f a, cv::Point3f b);
Mat getNodesPos(NodeVectorType nv);
} // namepsace dynafu
} // namespace cv
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
#include "test_precomp.hpp"
#ifdef HAVE_OPENGL
namespace opencv_test { namespace {
static std::vector<std::string> readDepth(std::string fileList)
{
std::vector<std::string> v;
std::fstream file(fileList);
if(!file.is_open())
throw std::runtime_error("Failed to read depth list");
std::string dir;
size_t slashIdx = fileList.rfind('/');
slashIdx = slashIdx != std::string::npos ? slashIdx : fileList.rfind('\\');
dir = fileList.substr(0, slashIdx);
while(!file.eof())
{
std::string s, imgPath;
std::getline(file, s);
if(s.empty() || s[0] == '#') continue;
std::stringstream ss;
ss << s;
double thumb;
ss >> thumb >> imgPath;
v.push_back(dir+'/'+imgPath);
}
return v;
}
static const bool display = false;
void flyTest(bool hiDense, bool inequal)
{
Ptr<dynafu::Params> params;
if(hiDense)
params = dynafu::Params::defaultParams();
else
params = dynafu::Params::coarseParams();
if(inequal)
{
params->volumeDims[0] += 32;
params->volumeDims[1] -= 32;
}
std::vector<String> depths = readDepth(cvtest::TS::ptr()->get_data_path() + "dynafu/depth.txt");
CV_Assert(!depths.empty());
Ptr<dynafu::DynaFu> df = dynafu::DynaFu::create(params);
// Check for first 10 frames
CV_Assert(depths.size() >= 10);
Mat currentDepth, prevDepth;
for(size_t i = 0; i < 10; i++)
{
currentDepth = cv::imread(depths[i], IMREAD_ANYDEPTH);
ASSERT_TRUE(df->update(currentDepth));
Mat renderedDepth;
df->renderSurface(renderedDepth, noArray(), noArray());
if(i > 0)
{
// Check if estimated depth aligns with actual depth in the previous frame
Mat depthCvt8, renderCvt8;
convertScaleAbs(prevDepth, depthCvt8, 0.25*256. / params->depthFactor);
convertScaleAbs(renderedDepth, renderCvt8, 0.33*255, -0.5*0.33*255);
Mat diff;
absdiff(depthCvt8, renderCvt8, diff);
Scalar_<float> mu, sigma;
meanStdDev(diff, mu, sigma);
std::cout << "Mean: " << mu[0] << ", Std dev: " << sigma[0] << std::endl;
}
if(display)
{
imshow("depth", currentDepth*(1.f/params->depthFactor/4.f));
Mat rendered;
df->render(rendered);
imshow("render", rendered);
waitKey(10);
}
currentDepth.copyTo(prevDepth);
}
}
/*
#ifdef OPENCV_ENABLE_NONFREE
TEST( DynamicFusion, lowDense )
#else
TEST(DynamicFusion, DISABLED_lowDense)
#endif
{
flyTest(false, false);
}
#ifdef OPENCV_ENABLE_NONFREE
TEST( DynamicFusion, inequal )
#else
TEST(DynamicFusion, DISABLED_inequal)
#endif
{
flyTest(false, true);
}
*/
// To enable DynamicFusion tests, uncomment the above lines and delete the following lines
TEST(DynamicFusion, DISABLED)
{
CV_UNUSED(flyTest);
}
}} // namespace
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment