Commit 8ae597d0 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents 934ce3b0 b32180b2
...@@ -8,15 +8,15 @@ using namespace cv; ...@@ -8,15 +8,15 @@ using namespace cv;
using namespace cv::bgsegm; using namespace cv::bgsegm;
const String about = const String about =
"\nA program demonstrating the use and capabilities of different background subtraction algrorithms\n" "\nA program demonstrating the use and capabilities of different background subtraction algorithms\n"
"Using OpenCV version " + String(CV_VERSION) + "Using OpenCV version " + String(CV_VERSION) +
"\nPress q or ESC to exit\n"; "\n\nPress 'c' to change the algorithm"
"\nPress 'm' to toggle showing only foreground mask or ghost effect"
"\nPress 'n' to change number of threads"
"\nPress SPACE to toggle wait delay of imshow"
"\nPress 'q' or ESC to exit\n";
const String keys = const String algos[7] = { "GMG", "CNT", "KNN", "MOG", "MOG2", "GSOC", "LSBP" };
"{help h usage ? | | print this message }"
"{vid | | path to a video file }"
"{algo | GMG | name of the algorithm (GMG, CNT, KNN, MOG, MOG2) }"
;
static Ptr<BackgroundSubtractor> createBGSubtractorByName(const String& algoName) static Ptr<BackgroundSubtractor> createBGSubtractorByName(const String& algoName)
{ {
...@@ -31,42 +31,26 @@ static Ptr<BackgroundSubtractor> createBGSubtractorByName(const String& algoName ...@@ -31,42 +31,26 @@ static Ptr<BackgroundSubtractor> createBGSubtractorByName(const String& algoName
algo = createBackgroundSubtractorMOG(); algo = createBackgroundSubtractorMOG();
else if(algoName == String("MOG2")) else if(algoName == String("MOG2"))
algo = createBackgroundSubtractorMOG2(); algo = createBackgroundSubtractorMOG2();
else if(algoName == String("GSOC"))
algo = createBackgroundSubtractorGSOC();
else if(algoName == String("LSBP"))
algo = createBackgroundSubtractorLSBP();
return algo; return algo;
} }
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
CommandLineParser parser(argc, argv, keys); CommandLineParser parser(argc, argv, "{@video | vtest.avi | path to a video file}");
parser.about(about); parser.about(about);
parser.printMessage(); parser.printMessage();
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
String videoPath = parser.get<String>("vid"); String videoPath = samples::findFile(parser.get<String>(0),false);
String algoName = parser.get<String>("algo");
if (!parser.check()) Ptr<BackgroundSubtractor> bgfs = createBGSubtractorByName(algos[0]);
{
parser.printErrors();
return 0;
}
Ptr<BackgroundSubtractor> bgfs = createBGSubtractorByName(algoName);
if (!bgfs)
{
std::cerr << "Failed to create " << algoName << " background subtractor" << std::endl;
return -1;
}
VideoCapture cap; VideoCapture cap;
if (argc > 1) cap.open(videoPath);
cap.open(videoPath);
else
cap.open(0);
if (!cap.isOpened()) if (!cap.isOpened())
{ {
...@@ -76,24 +60,63 @@ int main(int argc, char** argv) ...@@ -76,24 +60,63 @@ int main(int argc, char** argv)
Mat frame, fgmask, segm; Mat frame, fgmask, segm;
namedWindow("FG Segmentation", WINDOW_NORMAL); int delay = 30;
int algo_index = 0;
int nthreads = getNumberOfCPUs();
bool show_fgmask = false;
for (;;) for (;;)
{ {
cap >> frame; cap >> frame;
if (frame.empty()) if (frame.empty())
break; {
cap.set(CAP_PROP_POS_FRAMES, 0);
cap >> frame;
}
bgfs->apply(frame, fgmask); bgfs->apply(frame, fgmask);
frame.convertTo(segm, CV_8U, 0.5); if (show_fgmask)
add(frame, Scalar(100, 100, 0), segm, fgmask); segm = fgmask;
else
{
frame.convertTo(segm, CV_8U, 0.5);
add(frame, Scalar(100, 100, 0), segm, fgmask);
}
putText(segm, algos[algo_index], Point(10, 30), FONT_HERSHEY_PLAIN, 2.0, Scalar(255, 0, 255), 2, LINE_AA);
putText(segm, format("%d threads", nthreads), Point(10, 60), FONT_HERSHEY_PLAIN, 2.0, Scalar(255, 0, 255), 2, LINE_AA);
imshow("FG Segmentation", segm); imshow("FG Segmentation", segm);
int c = waitKey(30); int c = waitKey(delay);
if (c == 'q' || c == 'Q' || (c & 255) == 27)
if (c == ' ')
delay = delay == 30 ? 1 : 30;
if (c == 'c' || c == 'C')
{
algo_index++;
if ( algo_index > 6 )
algo_index = 0;
bgfs = createBGSubtractorByName(algos[algo_index]);
}
if (c == 'n' || c == 'N')
{
nthreads++;
if ( nthreads > 8 )
nthreads = 1;
setNumThreads(nthreads);
}
if (c == 'm' || c == 'M')
show_fgmask = !show_fgmask;
if (c == 'q' || c == 'Q' || c == 27)
break; break;
} }
......
...@@ -284,6 +284,8 @@ enum erGrouping_Modes { ...@@ -284,6 +284,8 @@ enum erGrouping_Modes {
finds the branches corresponding to text groups by traversing this dendrogram with a stopping rule finds the branches corresponding to text groups by traversing this dendrogram with a stopping rule
that combines the output of a rotation invariant text group classifier and a probabilistic measure that combines the output of a rotation invariant text group classifier and a probabilistic measure
for hierarchical clustering validity assessment. for hierarchical clustering validity assessment.
@note This mode is not supported due NFA code removal ( https://github.com/opencv/opencv_contrib/issues/2235 )
*/ */
ERGROUPING_ORIENTATION_ANY ERGROUPING_ORIENTATION_ANY
}; };
......
...@@ -58,6 +58,10 @@ ...@@ -58,6 +58,10 @@
#endif #endif
#endif #endif
#if defined(_MSC_VER)
# pragma warning(disable:4702) // unreachable code
#endif
namespace cv namespace cv
{ {
namespace text namespace text
...@@ -1319,150 +1323,6 @@ void computeNMChannels(InputArray _src, CV_OUT OutputArrayOfArrays _channels, in ...@@ -1319,150 +1323,6 @@ void computeNMChannels(InputArray _src, CV_OUT OutputArrayOfArrays _channels, in
/* -------------------------------- ER Grouping Algorithm -----------------------------*/ /* -------------------------------- ER Grouping Algorithm -----------------------------*/
/* ------------------------------------------------------------------------------------*/ /* ------------------------------------------------------------------------------------*/
/* NFA approximation functions */
// ln(10)
#ifndef M_LN10
#define M_LN10 2.30258509299404568401799145468436421
#endif
// Doubles relative error factor
#define RELATIVE_ERROR_FACTOR 100.0
// Compare doubles by relative error.
static int double_equal(double a, double b)
{
double abs_diff,aa,bb,abs_max;
/* trivial case */
if( a == b ) return true;
abs_diff = fabs(a-b);
aa = fabs(a);
bb = fabs(b);
abs_max = aa > bb ? aa : bb;
/* DBL_MIN is the smallest normalized number, thus, the smallest
number whose relative error is bounded by DBL_EPSILON. For
smaller numbers, the same quantization steps as for DBL_MIN
are used. Then, for smaller numbers, a meaningful "relative"
error should be computed by dividing the difference by DBL_MIN. */
if( abs_max < DBL_MIN ) abs_max = DBL_MIN;
/* equal if relative error <= factor x eps */
return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
}
/*
Computes the natural logarithm of the absolute value of
the gamma function of x using the Lanczos approximation.
See http://www.rskey.org/gamma.htm
*/
static double log_gamma_lanczos(double x)
{
static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
8687.24529705, 1168.92649479, 83.8676043424,
2.50662827511 };
double a = (x+0.5) * log(x+5.5) - (x+5.5);
double b = 0.0;
int n;
for(n=0;n<7;n++)
{
a -= log( x + (double) n );
b += q[n] * pow( x, (double) n );
}
return a + log(b);
}
/*
Computes the natural logarithm of the absolute value of
the gamma function of x using Windschitl method.
See http://www.rskey.org/gamma.htm
*/
static double log_gamma_windschitl(double x)
{
return 0.918938533204673 + (x-0.5)*log(x) - x
+ 0.5*x*log( x*sinh(1/x) + 1/(810.0*pow(x,6.0)) );
}
/*
Computes the natural logarithm of the absolute value of
the gamma function of x. When x>15 use log_gamma_windschitl(),
otherwise use log_gamma_lanczos().
*/
#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
// Size of the table to store already computed inverse values.
#define TABSIZE 100000
/*
Computes -log10(NFA).
NFA stands for Number of False Alarms:
*/
static double NFA(int n, int k, double p, double logNT)
{
static double inv[TABSIZE]; /* table to keep computed inverse values */
double tolerance = 0.1; /* an error of 10% in the result is accepted */
double log1term,term,bin_term,mult_term,bin_tail,err,p_term;
int i;
if (p<=0)
p = std::numeric_limits<double>::min();
if (p>=1)
p = 1 - std::numeric_limits<double>::epsilon();
/* check parameters */
if( n<0 || k<0 || k>n || p<=0.0 || p>=1.0 )
{
CV_Error(Error::StsBadArg, "erGrouping wrong n, k or p values in NFA call!");
}
/* trivial cases */
if( n==0 || k==0 ) return -logNT;
if( n==k ) return -logNT - (double) n * log10(p);
/* probability term */
p_term = p / (1.0-p);
/* compute the first term of the series */
log1term = log_gamma( (double) n + 1.0 ) - log_gamma( (double) k + 1.0 )
- log_gamma( (double) (n-k) + 1.0 )
+ (double) k * log(p) + (double) (n-k) * log(1.0-p);
term = exp(log1term);
/* in some cases no more computations are needed */
if( double_equal(term,0.0) ) /* the first term is almost zero */
{
if( (double) k > (double) n * p ) /* at begin or end of the tail? */
return -log1term / M_LN10 - logNT; /* end: use just the first term */
else
return -logNT; /* begin: the tail is roughly 1 */
}
/* compute more terms if needed */
bin_tail = term;
for(i=k+1;i<=n;i++)
{
bin_term = (double) (n-i+1) * ( i<TABSIZE ?
( inv[i]!=0.0 ? inv[i] : ( inv[i] = 1.0 / (double) i ) ) :
1.0 / (double) i );
mult_term = bin_term * p_term;
term *= mult_term;
bin_tail += term;
if(bin_term<1.0)
{
err = term * ( ( 1.0 - pow( mult_term, (double) (n-i+1) ) ) /
(1.0-mult_term) - 1.0 );
if( err < tolerance * fabs(-log10(bin_tail)-logNT) * bin_tail ) break;
}
}
return -log10(bin_tail) - logNT;
}
// Minibox : smallest enclosing box of a set of n points in d dimensions // Minibox : smallest enclosing box of a set of n points in d dimensions
class Minibox { class Minibox {
...@@ -2480,8 +2340,8 @@ void MaxMeaningfulClustering::build_merge_info(double *Z, double *X, int N, int ...@@ -2480,8 +2340,8 @@ void MaxMeaningfulClustering::build_merge_info(double *Z, double *X, int N, int
int MaxMeaningfulClustering::nfa(float sigma, int k, int N) int MaxMeaningfulClustering::nfa(float sigma, int k, int N)
{ {
// use an approximation for the nfa calculations (faster) CV_UNUSED(sigma); CV_UNUSED(k); CV_UNUSED(N);
return -1*(int)NFA( N, k, (double) sigma, 0); CV_Error(Error::StsNotImplemented, "text: NFA computation code has been removed due license conflict. Details: https://github.com/opencv/opencv_contrib/issues/2235");
} }
......
...@@ -37,6 +37,8 @@ TEST_P(Detection, sample) ...@@ -37,6 +37,8 @@ TEST_P(Detection, sample)
std::string imageName = GET_PARAM(0); std::string imageName = GET_PARAM(0);
bool anyDirection = GET_PARAM(1); bool anyDirection = GET_PARAM(1);
if (anyDirection)
throw SkipTestException("ERGROUPING_ORIENTATION_ANY mode is not supported");
std::cout << "Image: " << imageName << std::endl; std::cout << "Image: " << imageName << std::endl;
std::cout << "Orientation: " << (anyDirection ? "any" : "horiz") << std::endl; std::cout << "Orientation: " << (anyDirection ? "any" : "horiz") << std::endl;
Mat src = cv::imread(findDataFile(imageName)); Mat src = cv::imread(findDataFile(imageName));
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment