Commit 8aab2615 authored by Vladimir's avatar Vladimir

Improved VF optimization + Added EC optimization for MO-TLD

parent 016b4c82
......@@ -1384,7 +1384,7 @@ public:
class CV_EXPORTS_W MultiTrackerTLD : public MultiTracker_Alt
{
public:
bool update(const Mat& image);
bool update_opt(const Mat& image);
};
//! @}
......
......@@ -49,7 +49,7 @@ using namespace std;
using namespace cv;
#define NUM_TEST_FRAMES 100
#define TEST_VIDEO_INDEX 7 //TLD Dataset Video Index from 1-10
#define TEST_VIDEO_INDEX 15 //TLD Dataset Video Index from 1-10 for TLD and 1-60 for VOT
//#define RECORD_VIDEO_FLG
static Mat image;
......@@ -119,12 +119,12 @@ int main()
//From TLD dataset
selectObject = true;
Rect2d boundingBox1 = tld::tld_InitDataset(TEST_VIDEO_INDEX, "D:/opencv/TLD_dataset");
Rect2d boundingBox1 = tld::tld_InitDataset(TEST_VIDEO_INDEX, "D:/opencv/VOT 2015", 1);
Rect2d boundingBox2;
boundingBox2.x = 280;
boundingBox2.y = 60;
boundingBox2.width = 40;
boundingBox2.height = 60;
boundingBox2.x = 470;
boundingBox2.y = 500;
boundingBox2.width = 50;
boundingBox2.height = 100;
frame = tld::tld_getNextDatasetFrame();
frame.copyTo(image);
......@@ -140,6 +140,7 @@ int main()
std::cout << "!!! Output video could not be opened" << std::endl;
getchar();
return;
}
#endif
......@@ -193,12 +194,14 @@ int main()
else
{
//updates the tracker
if (mt.update(frame))
for (int i=0; i < mt.targetNum; i++)
rectangle(image, mt.boundingBoxes[i], mt.colors[i], 2, 1);
if (mt.update_opt(frame))
{
for (int i = 0; i < mt.targetNum; i++)
rectangle(frame, mt.boundingBoxes[i], mt.colors[i], 2, 1);
}
}
}
imshow("Tracking API", image);
imshow("Tracking API", frame);
#ifdef RECORD_VIDEO_FLG
outputVideo << image;
......@@ -210,7 +213,7 @@ int main()
double t1 = (e2 - e1) / getTickFrequency();
cout << frameCounter << "\tframe : " << t1 * 1000.0 << "ms" << endl;
waitKey(0);
//waitKey(0);
}
}
......
#include "tldTracker.hpp"
#include "multiTracker.hpp"
namespace cv
{
......@@ -29,75 +29,104 @@ namespace cv
bool MultiTracker::update(const Mat& image)
{
printf("Naive-Loop MO-TLD Update....\n");
for (int i = 0; i < trackers.size(); i++)
if (!trackers[i]->update(image, boundingBoxes[i]))
return false;
return true;
}
//Multitracker TLD
/*Optimized update method for TLD Multitracker */
bool MultiTrackerTLD::update(const Mat& image)
bool MultiTrackerTLD::update_opt(const Mat& image)
{
for (int k = 0; k < trackers.size(); k++)
{
//Set current target(tracker) parameters
Rect2d boundingBox = boundingBoxes[k];
Ptr<tld::TrackerTLDImpl> tracker = (Ptr<tld::TrackerTLDImpl>)static_cast<Ptr<tld::TrackerTLDImpl>> (trackers[k]);
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
Ptr<tld::Data> data = tracker->data;
double scale = data->getScale();
printf("Optimized MO-TLD Update....\n");
//Get parameters from first object
//Set current target(tracker) parameters
Rect2d boundingBox = boundingBoxes[0];
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[0];
tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
Ptr<tld::Data> data = tracker->data;
double scale = data->getScale();
Mat image_gray, image_blurred, imageForDetector;
cvtColor(image, image_gray, COLOR_BGR2GRAY);
Mat image_gray, image_blurred, imageForDetector;
cvtColor(image, image_gray, COLOR_BGR2GRAY);
if (scale > 1.0)
resize(image_gray, imageForDetector, Size(cvRound(image.cols*scale), cvRound(image.rows*scale)), 0, 0, tld::DOWNSCALE_MODE);
else
imageForDetector = image_gray;
GaussianBlur(imageForDetector, image_blurred, tld::GaussBlurKernelSize, 0.0);
if (scale > 1.0)
resize(image_gray, imageForDetector, Size(cvRound(image.cols*scale), cvRound(image.rows*scale)), 0, 0, tld::DOWNSCALE_MODE);
else
imageForDetector = image_gray;
GaussianBlur(imageForDetector, image_blurred, tld::GaussBlurKernelSize, 0.0);
//best overlap around 92%
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
std::vector<std::vector<tld::TLDDetector::LabeledPatch>> detectorResults(targetNum);
std::vector<std::vector<Rect2d>> candidates(targetNum);
std::vector<std::vector<double>> candidatesRes(targetNum);
std::vector<Rect2d> tmpCandidates(targetNum);
std::vector<bool> detect_flgs(targetNum);
std::vector<bool> trackerNeedsReInit(targetNum);
bool DETECT_FLG = false;
//printf("%d\n", targetNum);
//Detect all
for (int k = 0; k < targetNum; k++)
tmpCandidates[k] = boundingBoxes[k];
//if (ocl::haveOpenCL())
detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers);
//else
//DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
//printf("BOOOLZZZ %d\n", detect_flgs[0]);
//printf("BOOOLXXX %d\n", detect_flgs[1]);
for (int k = 0; k < targetNum; k++)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[k];
tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
Ptr<tld::Data> data = tracker->data;
///////
data->frameNum++;
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
std::vector<tld::TLDDetector::LabeledPatch> detectorResults;
//best overlap around 92%
std::vector<Rect2d> candidates;
std::vector<double> candidatesRes;
bool trackerNeedsReInit = false;
bool DETECT_FLG = false;
for (int i = 0; i < 2; i++)
{
Rect2d tmpCandid = boundingBox;
Rect2d tmpCandid = boundingBoxes[k];
if (i == 1)
//if (i == 1)
{
if (ocl::haveOpenCL())
DETECT_FLG = tldModel->detector->ocl_detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
else
DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
DETECT_FLG = detect_flgs[k];
tmpCandid = tmpCandidates[k];
}
if (((i == 0) && !data->failedLastTime && tracker->trackerProxy->update(image, tmpCandid)) || (DETECT_FLG))
{
candidates.push_back(tmpCandid);
candidates[k].push_back(tmpCandid);
if (i == 0)
tld::resample(image_gray, tmpCandid, standardPatch);
else
tld::resample(imageForDetector, tmpCandid, standardPatch);
candidatesRes.push_back(tldModel->detector->Sc(standardPatch));
candidatesRes[k].push_back(tldModel->detector->Sc(standardPatch));
}
else
{
if (i == 0)
trackerNeedsReInit = true;
trackerNeedsReInit[k] = true;
else
trackerNeedsReInit[k] = false;
}
}
std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end());
//printf("CanditateRes Size: %d \n", candidatesRes[k].size());
std::vector<double>::iterator it = std::max_element(candidatesRes[k].begin(), candidatesRes[k].end());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
......@@ -105,25 +134,25 @@ namespace cv
//data->printme();
//tldModel->printme(stdout);
if (it == candidatesRes.end())
if (it == candidatesRes[k].end())
{
data->confident = false;
data->failedLastTime = true;
return false;
}
else
{
boundingBox = candidates[it - candidatesRes.begin()];
boundingBoxes[k] = boundingBox;
boundingBoxes[k] = candidates[k][it - candidatesRes[k].begin()];
data->failedLastTime = false;
if (trackerNeedsReInit || it != candidatesRes.begin())
tracker->trackerProxy->init(image, boundingBox);
if (trackerNeedsReInit[k] || it != candidatesRes[k].begin())
tracker->trackerProxy->init(image, boundingBoxes[k]);
}
#if 1
if (it != candidatesRes.end())
if (it != candidatesRes[k].end())
{
tld::resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch);
tld::resample(imageForDetector, candidates[k][it - candidatesRes[k].begin()], standardPatch);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
......@@ -139,29 +168,29 @@ namespace cv
if (data->confident)
{
tld::TrackerTLDImpl::Pexpert pExpert(imageForDetector, image_blurred, boundingBox, tldModel->detector, tracker->params, data->getMinSize());
tld::TrackerTLDImpl::Nexpert nExpert(imageForDetector, boundingBox, tldModel->detector, tracker->params);
tld::TrackerTLDImpl::Pexpert pExpert(imageForDetector, image_blurred, boundingBoxes[k], tldModel->detector, tracker->params, data->getMinSize());
tld::TrackerTLDImpl::Nexpert nExpert(imageForDetector, boundingBoxes[k], tldModel->detector, tracker->params);
std::vector<Mat_<uchar> > examplesForModel, examplesForEnsemble;
examplesForModel.reserve(100); examplesForEnsemble.reserve(100);
int negRelabeled = 0;
for (int i = 0; i < (int)detectorResults.size(); i++)
for (int i = 0; i < (int)detectorResults[k].size(); i++)
{
bool expertResult;
if (detectorResults[i].isObject)
if (detectorResults[k][i].isObject)
{
expertResult = nExpert(detectorResults[i].rect);
if (expertResult != detectorResults[i].isObject)
expertResult = nExpert(detectorResults[k][i].rect);
if (expertResult != detectorResults[k][i].isObject)
negRelabeled++;
}
else
{
expertResult = pExpert(detectorResults[i].rect);
expertResult = pExpert(detectorResults[k][i].rect);
}
detectorResults[i].shouldBeIntegrated = detectorResults[i].shouldBeIntegrated || (detectorResults[i].isObject != expertResult);
detectorResults[i].isObject = expertResult;
detectorResults[k][i].shouldBeIntegrated = detectorResults[k][i].shouldBeIntegrated || (detectorResults[k][i].isObject != expertResult);
detectorResults[k][i].isObject = expertResult;
}
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults[k]);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL())
......@@ -183,9 +212,251 @@ namespace cv
#endif
}
}
}
//Debug display candidates after Variance Filter
////////////////////////////////////////////////
Mat tmpImg = image;
for (int i = 0; i < debugStack[0].size(); i++)
//rectangle(tmpImg, debugStack[0][i], Scalar(255, 255, 255), 1, 1, 0);
debugStack[0].clear();
tmpImg.copyTo(image);
////////////////////////////////////////////////
return true;
}
void detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch >> &patches, std::vector<bool> &detect_flgs,
std::vector<Ptr<Tracker>> &trackers)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[0];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
Size initSize = tldModel->getMinSize();
for (int k = 0; k < trackers.size(); k++)
patches[k].clear();
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
Mat tmp;
int dx = initSize.width / 10, dy = initSize.height / 10;
Size2d size = img.size();
double scale = 1.0;
int npos = 0, nneg = 0;
double maxSc = -5.0;
Rect2d maxScRect;
int scaleID;
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <std::vector <Point>> varBuffer(trackers.size()), ensBuffer(trackers.size());
std::vector <std::vector <int>> varScaleIDs(trackers.size()), ensScaleIDs(trackers.size());
std::vector <Point> tmpP;
std::vector <int> tmpI;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part
//Generate windows and filter by variance
scaleID = 0;
resized_imgs.push_back(img);
blurred_imgs.push_back(imgBlurred);
do
{
Mat_<double> intImgP, intImgP2;
tld::TLDDetector::computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2);
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++)
{
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++)
{
//Optimized variance calculation
int x = dx * i,
y = dy * j,
width = initSize.width,
height = initSize.height;
double p = 0, p2 = 0;
double A, B, C, D;
A = intImgP(y, x);
B = intImgP(y, x + width);
C = intImgP(y + height, x);
D = intImgP(y + height, x + width);
p = (A + D - B - C) / (width * height);
A = intImgP2(y, x);
B = intImgP2(y, x + width);
C = intImgP2(y + height, x);
D = intImgP2(y + height, x + width);
p2 = (A + D - B - C) / (width * height);
double windowVar = p2 - p * p;
//Loop for on all objects
for (int k=0; k < trackers.size(); k++)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
//Optimized variance calculation
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr);
if (!varPass)
continue;
varBuffer[k].push_back(Point(dx * i, dy * j));
varScaleIDs[k].push_back(scaleID);
//Debug display candidates after Variance Filter
double curScale = pow(tld::SCALE_STEP, scaleID);
debugStack[0].push_back(Rect2d(dx * i* curScale, dy * j*curScale, tldModel->getMinSize().width*curScale, tldModel->getMinSize().height*curScale));
}
}
}
scaleID++;
size.width /= tld::SCALE_STEP;
size.height /= tld::SCALE_STEP;
scale *= tld::SCALE_STEP;
resize(img, tmp, size, 0, 0, tld::DOWNSCALE_MODE);
resized_imgs.push_back(tmp);
GaussianBlur(resized_imgs[scaleID], tmp, tld::GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//printf("OrigVar 1: %f\n", *tldModel->detector->originalVariancePtr);
//Encsemble classification
//e1 = getTickCount();
for (int k = 0; k < trackers.size(); k++)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
double ensRes = 0;
uchar* data = &blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x);
for (int x = 0; x < (int)tldModel->detector->classifiers.size(); x++)
{
int position = 0;
for (int n = 0; n < (int)tldModel->detector->classifiers[x].measurements.size(); n++)
{
position = position << 1;
if (data[tldModel->detector->classifiers[x].offset[n].x] < data[tldModel->detector->classifiers[x].offset[n].y])
position++;
}
double posNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].x;
double negNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].y;
if (posNum == 0.0 && negNum == 0.0)
continue;
else
ensRes += posNum / (posNum + negNum);
}
ensRes /= tldModel->detector->classifiers.size();
ensRes = tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x));
if ( ensRes <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
/*
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
if (tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)) <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
*/
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//printf("varBuffer 1: %d\n", varBuffer[0].size());
//printf("ensBuffer 1: %d\n", ensBuffer[0].size());
//printf("varBuffer 2: %d\n", varBuffer[1].size());
//printf("ensBuffer 2: %d\n", ensBuffer[1].size());
//NN classification
//e1 = getTickCount();
for (int k = 0; k < trackers.size(); k++)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[k];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
npos = 0;
nneg = 0;
maxSc = -5.0;
for (int i = 0; i < (int)ensBuffer[k].size(); i++)
{
tld::TLDDetector::LabeledPatch labPatch;
double curScale = pow(tld::SCALE_STEP, ensScaleIDs[k][i]);
labPatch.rect = Rect2d(ensBuffer[k][i].x*curScale, ensBuffer[k][i].y*curScale, initSize.width * curScale, initSize.height * curScale);
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch);
double srValue, scValue;
srValue = tldModel->detector->Sr(standardPatch);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch.isObject = srValue > tld::THETA_NN;
labPatch.shouldBeIntegrated = abs(srValue - tld::THETA_NN) < 0.1;
patches[k].push_back(labPatch);
//
if (!labPatch.isObject)
{
nneg++;
continue;
}
else
{
npos++;
}
scValue = tldModel->detector->Sc(standardPatch);
if (scValue > maxSc)
{
maxSc = scValue;
maxScRect = labPatch.rect;
}
//printf("%d %f %f\n", k, srValue, scValue);
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if (maxSc < 0)
detect_flgs[k] = false;
else
{
res[k] = maxScRect;
//printf("%f %f %f %f\n", maxScRect.x, maxScRect.y, maxScRect.width, maxScRect.height);
detect_flgs[k] = true;
}
}
}
}
......@@ -54,7 +54,7 @@ namespace cv
double posteriorProbability(const uchar* data, int rowstep) const;
double posteriorProbabilityFast(const uchar* data) const;
void prepareClassifier(int rowstep);
private:
TLDEnsembleClassifier(const std::vector<Vec4b>& meas, int beg, int end);
static void stepPrefSuff(std::vector<Vec4b> & arr, int pos, int len, int gridSize);
int code(const uchar* data, int rowstep) const;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment