Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
893a5659
Commit
893a5659
authored
Jun 13, 2016
by
Vitaliy Lyudvichenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Adding of reccurent layers (LSTM)
parent
67c825c0
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
421 additions
and
0 deletions
+421
-0
all_layers.hpp
modules/dnn/include/opencv2/dnn/all_layers.hpp
+129
-0
recurrent_layers.cpp
modules/dnn/src/layers/recurrent_layers.cpp
+237
-0
recurrent_layers.hpp
modules/dnn/src/layers/recurrent_layers.hpp
+55
-0
No files found.
modules/dnn/include/opencv2/dnn/all_layers.hpp
0 → 100644
View file @
893a5659
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_DNN_ALL_LAYERS_HPP__
#define __OPENCV_DNN_DNN_ALL_LAYERS_HPP__
#include <opencv2/dnn.hpp>
namespace
cv
{
namespace
dnn
{
//! LSTM recurrent layer
CV_EXPORTS
class
LSTMLayer
:
public
Layer
{
public
:
CV_EXPORTS
static
Ptr
<
LSTMLayer
>
create
();
/** Set trained weights for LSTM layer.
LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
Let x_t be current input, h_t be current output, c_t be current state.
Current output and current cell state is computed as follows:
h_t = o_t (*) tanh(c_t),
c_t = f_t (*) c_{t-1} + i_t (*) g_t,
where (*) is per-element multiply operation and i_t, f_t, o_t, g_t is internal gates that are computed using learned wights.
Gates are computed as follows:
i_t = sigmoid(W_xi*x_t + W_hi*h_{t-1} + b_i)
f_t = sigmoid(W_xf*x_t + W_hf*h_{t-1} + b_f)
o_t = sigmoid(W_xo*x_t + W_ho*h_{t-1} + b_o)
g_t = tanh (W_xg*x_t + W_hg*h_{t-1} + b_g)
where W_x?, W_h? and b_? are learned weights represented as matrices: W_x? \in R^{N_c x N_x}, W_h? \in R^{N_c x N_h}, b_? \in \R^{N_c}.
For simplicity and performance purposes we use W_x = [W_xi; W_xf; W_xo, W_xg] (i.e. W_x is vertical contacentaion of W_x?), W_x \in R^{4N_c x N_x}.
The same for W_h = [W_hi; W_hf; W_ho, W_hg], W_h \in R^{4N_c x N_h}
and for b = [b_i; b_f, b_o, b_g], b \in R^{4N_c}.
@param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to abovemtioned notation is W_h)
@param Wx is matrix defining how current input is transformed to internal gates (i.e. according to abovemtioned notation is W_x)
@param Wb is bias vector (i.e. according to abovemtioned notation is b)
*/
virtual
void
setWeights
(
const
Blob
&
Wh
,
const
Blob
&
Wx
,
const
Blob
&
bias
)
=
0
;
/** In common cas it use three inputs (x_t, h_{t-1} and c_{t-1}) to compute compute two outputs: h_t and c_t.
@param input could contain three inputs: x_t, h_{t-1} and c_{t-1}.
The first x_t input is required.
The second and third inputs are optional: if they weren't set than layer will use internal h_{t-1} and c_{t-1} from previous calls,
but at the first call they will be filled by zeros.
Size of the last dimension of x_t must be N_x, (N_h for h_{t-1} and N_c for c_{t-1}).
Sizes of remainder dimensions could be any, but thay must be consistent among x_t, h_{t-1} and c_{t-1}.
@param output computed outputs: h_t and c_t.
*/
CV_EXPORTS
void
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
);
};
//! Classical recurrent layer
CV_EXPORTS
class
RNNLayer
:
public
Layer
{
public
:
CV_EXPORTS
Ptr
<
RNNLayer
>
create
();
/** Setups learned weights.
Recurrent-layer behavior on each step is defined by current input x_t, previous state h_t and learned weights as follows:
h_t = tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h),
o_t = tanh(W_{ho} h_t + b_o),
@param Whh is W_hh matrix
@param Wxh is W_xh matrix
@param bh is b_h vector
@param Who is W_xo matrix
@param bo is b_o vector
*/
CV_EXPORTS
virtual
void
setWeights
(
const
Blob
&
Whh
,
const
Blob
&
Wxh
,
const
Blob
&
bh
,
const
Blob
&
Who
,
const
Blob
&
bo
)
=
0
;
/** Accept two inputs x_t and h_{t-1} and compute two outputs o_t and h_t.
@param input should contain x_t and h_{t-1}
@param output should contain o_t and h_t
*/
virtual
void
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
);
};
}
}
#endif
\ No newline at end of file
modules/dnn/src/layers/recurrent_layers.cpp
0 → 100644
View file @
893a5659
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "recurrent_layers.hpp"
#include "op_blas.hpp"
#include <iostream>
namespace
cv
{
namespace
dnn
{
class
LSTMLayerImpl
:
public
LSTMLayer
{
public
:
LSTMLayerImpl
()
{
type
=
"LSTM"
;
}
int
nH
,
nX
,
nC
,
numSamples
;
Mat
prevH
,
prevC
;
Mat
gates
,
dummyOnes
;
void
setWeights
(
const
Blob
&
Wh
,
const
Blob
&
Wx
,
const
Blob
&
bias
)
{
CV_Assert
(
Wh
.
dims
()
==
2
&&
Wx
.
dims
()
==
2
);
CV_Assert
(
Wh
.
size
(
0
)
==
Wx
.
size
(
0
)
&&
Wh
.
size
(
0
)
%
4
==
0
);
CV_Assert
(
Wh
.
size
(
0
)
==
bias
.
total
());
blobs
.
resize
(
3
);
blobs
[
0
]
=
Wh
;
blobs
[
1
]
=
Wx
;
blobs
[
2
]
=
bias
;
}
void
allocate
(
const
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
CV_Assert
(
blobs
.
size
()
==
3
);
Blob
&
Wh
=
blobs
[
0
],
&
Wx
=
blobs
[
1
];
nH
=
Wh
.
size
(
1
);
nX
=
Wx
.
size
(
1
);
nC
=
Wh
.
size
(
0
)
/
4
;
CV_Assert
(
input
.
size
()
>=
1
&&
input
.
size
()
<=
3
);
CV_Assert
(
input
[
0
]
->
size
(
-
1
)
==
nX
);
BlobShape
inpShape
=
input
[
0
]
->
shape
();
numSamples
=
input
[
0
]
->
total
(
0
,
input
[
0
]
->
dims
()
-
1
);
BlobShape
hShape
=
inpShape
;
hShape
[
-
1
]
=
nH
;
BlobShape
cShape
=
inpShape
;
cShape
[
-
1
]
=
nC
;
output
.
resize
(
2
);
output
[
0
].
create
(
hShape
,
input
[
0
]
->
type
());
output
[
1
].
create
(
cShape
,
input
[
0
]
->
type
());
if
(
input
.
size
()
<
2
)
{
prevH
.
create
(
numSamples
,
nH
,
input
[
0
]
->
type
());
prevH
.
setTo
(
0
);
}
else
CV_Assert
(
input
[
1
]
->
shape
()
==
hShape
);
if
(
input
.
size
()
<
3
)
{
prevC
.
create
(
numSamples
,
nC
,
input
[
0
]
->
type
());
prevC
.
setTo
(
0
);
}
else
CV_Assert
(
input
[
2
]
->
shape
()
==
cShape
);
gates
.
create
(
numSamples
,
4
*
nC
,
input
[
0
]
->
type
());
dummyOnes
.
create
(
numSamples
,
1
,
input
[
0
]
->
type
());
dummyOnes
.
setTo
(
1
);
}
Mat
ep
,
em
;
void
tanh
(
Mat
&
x
,
Mat
&
d
)
{
cv
::
exp
(
-
x
,
em
);
cv
::
exp
(
x
,
ep
);
cv
::
divide
(
ep
-
em
,
ep
+
em
,
d
);
}
void
sigmoid
(
Mat
&
x
)
{
cv
::
exp
(
-
x
,
x
);
cv
::
pow
(
1
+
x
,
-
1
,
x
);
}
void
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
CV_DbgAssert
(
blobs
.
size
()
==
3
);
const
Mat
&
Wh
=
blobs
[
0
].
matRefConst
(),
&
Wx
=
blobs
[
1
].
matRefConst
();
Mat
bias
=
blobs
[
2
].
matRefConst
().
reshape
(
1
,
1
);
CV_DbgAssert
(
Wh
.
type
()
==
CV_32F
&&
Wx
.
type
()
==
CV_32F
&&
bias
.
type
()
==
CV_32F
);
int
szx
[]
=
{
numSamples
,
nX
};
int
szc
[]
=
{
numSamples
,
nC
};
Mat
xCurr
=
input
[
0
]
->
matRefConst
().
reshape
(
1
,
2
,
szx
);
Mat
hPrev
=
(
input
.
size
()
>=
2
)
?
input
[
1
]
->
matRefConst
().
reshape
(
1
,
2
,
szc
)
:
prevH
;
Mat
cPrev
=
(
input
.
size
()
>=
3
)
?
input
[
2
]
->
matRefConst
().
reshape
(
1
,
2
,
szc
)
:
prevC
;
CV_Assert
(
xCurr
.
type
()
==
CV_32F
&&
hPrev
.
type
()
==
CV_32F
&&
cPrev
.
type
()
==
CV_32F
);
Mat
hCurr
=
output
[
0
].
matRef
().
reshape
(
1
,
2
,
szc
);
Mat
cCurr
=
output
[
1
].
matRef
().
reshape
(
1
,
2
,
szc
);
CV_Assert
(
hCurr
.
type
()
==
CV_32F
&&
cCurr
.
type
()
==
CV_32F
);
gemmCPU
(
xCurr
,
Wx
,
1
,
gates
,
0
,
GEMM_2_T
);
// Wx * x_t
gemmCPU
(
hPrev
,
Wh
,
1
,
gates
,
1
,
GEMM_2_T
);
//+Wh * h_{t-1}
gemmCPU
(
dummyOnes
,
bias
,
1
,
gates
,
1
);
//+b
Mat
gatesDiv
=
gates
.
reshape
(
1
,
4
*
numSamples
);
Mat
getesIFO
=
gatesDiv
(
Range
(
0
,
3
*
numSamples
),
Range
::
all
());
Mat
gateI
=
gatesDiv
(
Range
(
0
*
numSamples
,
1
*
numSamples
),
Range
::
all
());
Mat
gateF
=
gatesDiv
(
Range
(
1
*
numSamples
,
2
*
numSamples
),
Range
::
all
());
Mat
gateO
=
gatesDiv
(
Range
(
2
*
numSamples
,
3
*
numSamples
),
Range
::
all
());
Mat
gateG
=
gatesDiv
(
Range
(
3
*
numSamples
,
4
*
numSamples
),
Range
::
all
());
sigmoid
(
getesIFO
);
tanh
(
gateG
,
gateG
);
cv
::
add
(
gateF
.
mul
(
cPrev
),
gateI
.
mul
(
gateG
),
cCurr
);
tanh
(
cCurr
,
hCurr
);
cv
::
multiply
(
gateO
,
hCurr
,
hCurr
);
//save answers for next iteration
if
(
input
.
size
()
<=
2
)
hCurr
.
copyTo
(
hPrev
);
if
(
input
.
size
()
<=
3
)
cCurr
.
copyTo
(
cPrev
);
}
};
Ptr
<
LSTMLayer
>
LSTMLayer
::
create
()
{
return
Ptr
<
LSTMLayer
>
(
new
LSTMLayerImpl
());
}
void
LSTMLayer
::
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
CV_Error
(
Error
::
StsNotImplemented
,
"This function should be unreached"
);
}
class
RNNLayerImpl
:
public
RNNLayer
{
int
nX
,
nH
;
Mat
Whh
,
Wxh
,
bh
;
Mat
Who
,
bo
;
public
:
RNNLayerImpl
()
{
type
=
"RNN"
;
}
void
setWeights
(
const
Blob
&
Whh
,
const
Blob
&
Wxh
,
const
Blob
&
bh
,
const
Blob
&
Who
,
const
Blob
&
bo
)
{
CV_Assert
(
Whh
.
dims
()
==
2
&&
Wxh
.
dims
()
==
2
);
CV_Assert
(
Whh
.
size
(
0
)
==
Wxh
.
size
(
0
)
&&
Whh
.
size
(
0
)
==
Whh
.
size
(
1
)
&&
bh
.
total
()
==
Wxh
.
size
(
0
));
CV_Assert
(
Who
.
size
(
0
)
==
bo
.
total
());
CV_Assert
(
Who
.
size
(
1
)
==
Whh
.
size
(
1
));
blobs
.
reserve
(
5
);
blobs
[
0
]
=
Whh
;
blobs
[
1
]
=
Wxh
;
blobs
[
2
]
=
bh
;
blobs
[
3
]
=
Who
;
blobs
[
4
]
=
bo
;
}
void
allocate
(
const
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
}
void
tanh
(
Mat
&
x
)
{
}
void
forward
(
std
::
vector
<
Blob
*>
&
input
,
std
::
vector
<
Blob
>
&
output
)
{
}
};
}
}
\ No newline at end of file
modules/dnn/src/layers/recurrent_layers.hpp
0 → 100644
View file @
893a5659
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_LAYERS_RECURRENT_LAYERS_HPP__
#define __OPENCV_DNN_LAYERS_RECURRENT_LAYERS_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
}
}
#endif
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment