Unverified Commit 88c4ed01 authored by sunitanyk's avatar sunitanyk Committed by GitHub

Computer Vision based Alpha Matting (#2306)

* Computer Vision based Alpha Matting Code

alpha matting code

This is a combination of 3 commits.

removed whitespaces

addressed issues raised in the PR

removed whitespaces

* removed global variable

* incorporated changes suggested by second round of review

* updated build instructions

* changed to OutputArray

* removed whitespaces

* alphamat: fix bugs triggered by assertions of Debug builds

* alphamat: fix documentation

* alphamat: coding style fixes

- get rid of std::cout
- remove clock_t
- drop unnecessary cast: float pix = tmap.at<uchar>(i, j);
- global 'dim' => 'ALPHAMAT_DIM'
- fix sample command line handling

* alphamat: apply clang-format

* clang-format fixups
parent bf0075a5
......@@ -10,6 +10,8 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -D BUILD_opencv_<r
- **aruco**: ArUco and ChArUco Markers -- Augmented reality ArUco marker and "ChARUco" markers where ArUco markers embedded inside the white areas of the checker board.
- **alphamat**: Computer Vision based Alpha Matting -- Given an input image and a trimap, generate an alpha matte.
- **bgsegm**: Background segmentation algorithm combining statistical background image estimation and per-pixel Bayesian segmentation.
- **bioinspired**: Biological Vision -- Biologically inspired vision model: minimize noise and luminance variance, transient event segmentation, high dynamic range tone mapping methods.
......
if(NOT HAVE_EIGEN)
message(STATUS "Module opencv_alphamat disabled because the following dependencies are not found: Eigen")
ocv_module_disable(alphamat)
endif()
ocv_define_module(alphamat
opencv_core
opencv_imgproc
)
# Computer Vision based Alpha Matting
This project was part of the Google Summer of Code 2019.
####Student: Muskaan Kularia
####Mentor: Sunita Nayak
***
Alphamatting is the problem of extracting the foreground from an image. Given the input of an image and its corresponding trimap, we try to extract the foreground from the background.
This project is implementation of "[[Designing Effective Inter-Pixel Information Flow for Natural Image Matting](http://people.inf.ethz.ch/aksoyy/ifm/)]" by Yağız Aksoy, Tunç Ozan Aydın and Marc Pollefeys[1]. It required implementation of parts of other papers [2,3,4].
## References
[1] Yagiz Aksoy, Tunc Ozan Aydin, Marc Pollefeys, "[Designing Effective Inter-Pixel Information Flow for Natural Image Matting](http://people.inf.ethz.ch/aksoyy/ifm/)", CVPR, 2017.
[2] Roweis, Sam T., and Lawrence K. Saul. "[Nonlinear dimensionality reduction by locally linear embedding](https://science.sciencemag.org/content/290/5500/2323)" Science 290.5500 (2000): 2323-2326.
[3] Anat Levin, Dani Lischinski, Yair Weiss, "[A Closed Form Solution to Natural Image Matting](https://www.researchgate.net/publication/5764820_A_Closed-Form_Solution_to_Natural_Image_Matting)", IEEE TPAMI, 2008.
[4] Qifeng Chen, Dingzeyu Li, Chi-Keung Tang, "[KNN Matting](http://dingzeyu.li/files/knn-matting-tpami.pdf)", IEEE TPAMI, 2013.
[5] Yagiz Aksoy, "[Affinity Based Matting Toolbox](https://github.com/yaksoy/AffinityBasedMattingToolbox)".
@inproceedings{aksoy2017designing,
title={Designing effective inter-pixel information flow for natural image matting},
author={Aksoy, Yagiz and Ozan Aydin, Tunc and Pollefeys, Marc},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={29--37},
year={2017}
}
@article{roweis2000nonlinear,
title={Nonlinear dimensionality reduction by locally linear embedding},
author={Roweis, Sam T and Saul, Lawrence K},
journal={science},
volume={290},
number={5500},
pages={2323--2326},
year={2000},
publisher={American Association for the Advancement of Science}
}
@inproceedings{shahrian2013improving,
title={Improving image matting using comprehensive sampling sets},
author={Shahrian, Ehsan and Rajan, Deepu and Price, Brian and Cohen, Scott},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={636--643},
year={2013}
}
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
/** Information Flow algorithm implementaton for alphamatting */
#ifndef _OPENCV_ALPHAMAT_HPP_
#define _OPENCV_ALPHAMAT_HPP_
/**
* @defgroup alphamat Alpha Matting
* This module is dedicated to compute alpha matting of images, given the input image and an input trimap.
* The samples directory includes easy examples of how to use the module.
*/
namespace cv { namespace alphamat {
//! @addtogroup alphamat
//! @{
/**
* The implementation is based on Designing Effective Inter-Pixel Information Flow for Natural Image Matting by Yağız Aksoy, Tunç Ozan Aydın and Marc Pollefeys, CVPR 2019.
*
* This module has been originally developed by Muskaan Kularia and Sunita Nayak as a project
* for Google Summer of Code 2019 (GSoC 19).
*
*/
CV_EXPORTS_W void infoFlow(InputArray image, InputArray tmap, OutputArray result);
//! @}
}} // namespace
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include <iostream>
#include "opencv2/highgui.hpp"
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/alphamat.hpp>
using namespace std;
using namespace cv;
using namespace cv::alphamat;
const char* keys =
"{img || input image name}"
"{tri || input trimap image name}"
"{out || output image name}"
"{help h || print help message}"
;
int main(int argc, char* argv[])
{
CommandLineParser parser(argc, argv, keys);
parser.about("This sample demonstrates Information Flow Alpha Matting");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string img_path = parser.get<std::string>("img");
string trimap_path = parser.get<std::string>("tri");
string result_path = parser.get<std::string>("out");
if (!parser.check()
|| img_path.empty() || trimap_path.empty())
{
parser.printMessage();
parser.printErrors();
return 1;
}
Mat image, tmap;
image = imread(img_path, IMREAD_COLOR); // Read the input image file
if (image.empty())
{
printf("Cannot read image file: '%s'\n", img_path.c_str());
return 1;
}
tmap = imread(trimap_path, IMREAD_GRAYSCALE);
if (tmap.empty())
{
printf("Cannot read trimap file: '%s'\n", trimap_path.c_str());
return 1;
}
Mat result;
infoFlow(image, tmap, result);
if (result_path.empty())
{
namedWindow("result alpha matte", WINDOW_NORMAL);
imshow("result alpha matte", result);
waitKey(0);
}
else
{
imwrite(result_path, result);
printf("Result saved: '%s'\n", result_path.c_str());
}
return 0;
}
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#pragma once
#include "nanoflann.hpp"
#include <vector>
// ===== This example shows how to use nanoflann with these types of containers: =======
//typedef std::vector<std::vector<double> > my_vector_of_vectors_t;
//typedef std::vector<Eigen::VectorXd> my_vector_of_vectors_t; // This requires #include <Eigen/Dense>
// =====================================================================================
/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the storage.
* The i'th vector represents a point in the state space.
*
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations.
* \tparam num_t The type of the point coordinates (typically, double or float).
* \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
* \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int)
*/
template <class VectorOfVectorsType, typename num_t = double, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = size_t>
struct KDTreeVectorOfVectorsAdaptor
{
typedef KDTreeVectorOfVectorsAdaptor<VectorOfVectorsType, num_t, DIM,Distance> self_t;
typedef typename Distance::template traits<num_t, self_t>::distance_t metric_t;
typedef nanoflann::KDTreeSingleIndexAdaptor< metric_t, self_t, DIM, IndexType> index_t;
index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index.
/// Constructor: takes a const ref to the vector of vectors object with the data points
KDTreeVectorOfVectorsAdaptor(const size_t /* dimensionality */, const VectorOfVectorsType &mat, const int leaf_max_size = 10) : m_data(mat)
{
assert(mat.size() != 0 && mat[0].size() != 0);
const size_t dims = mat[0].size();
if (DIM>0 && static_cast<int>(dims) != DIM)
throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument");
index = new index_t( static_cast<int>(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) );
index->buildIndex();
}
~KDTreeVectorOfVectorsAdaptor() {
delete index;
}
const VectorOfVectorsType &m_data;
/** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]).
* Note that this is a short-cut method for index->findNeighbors().
* The user can also call index->... methods as desired.
* \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface.
*/
//inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const
inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq) const
{
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
/** @name Interface expected by KDTreeSingleIndexAdaptor
* @{ */
const self_t & derived() const {
return *this;
}
self_t & derived() {
return *this;
}
// Must return the number of data points
inline size_t kdtree_get_point_count() const {
return m_data.size();
}
// Returns the dim'th component of the idx'th point in the class:
inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const {
return m_data[idx][dim];
}
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX & /*bb*/) const {
return false;
}
/** @} */
}; // end of KDTreeVectorOfVectorsAdaptor
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
* Copyright 2011-2016 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/** \mainpage nanoflann C++ API documentation
* nanoflann is a C++ header-only library for building KD-Trees, mostly
* optimized for 2D or 3D point clouds.
*
* nanoflann does not require compiling or installing, just an
* #include <nanoflann.hpp> in your code.
*
* See:
* - <a href="modules.html" >C++ API organized by modules</a>
* - <a href="https://github.com/jlblancoc/nanoflann" >Online README</a>
* - <a href="http://jlblancoc.github.io/nanoflann/" >Doxygen
* documentation</a>
*/
#ifndef NANOFLANN_HPP_
#define NANOFLANN_HPP_
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath> // for abs()
#include <cstdio> // for fwrite()
#include <cstdlib> // for abs()
#include <functional>
#include <limits> // std::reference_wrapper
#include <stdexcept>
#include <vector>
/** Library version: 0xMmP (M=Major,m=minor,P=patch) */
#define NANOFLANN_VERSION 0x132
// Avoid conflicting declaration of min/max macros in windows headers
#if !defined(NOMINMAX) && \
(defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64))
#define NOMINMAX
#ifdef max
#undef max
#undef min
#endif
#endif
namespace nanoflann {
/** @addtogroup nanoflann_grp nanoflann C++ library for ANN
* @{ */
/** the PI constant (required to avoid MSVC missing symbols) */
template <typename T> T pi_const() {
return static_cast<T>(3.14159265358979323846);
}
/**
* Traits if object is resizable and assignable (typically has a resize | assign
* method)
*/
template <typename T, typename = int> struct has_resize : std::false_type {};
template <typename T>
struct has_resize<T, decltype((void)std::declval<T>().resize(1), 0)>
: std::true_type {};
template <typename T, typename = int> struct has_assign : std::false_type {};
template <typename T>
struct has_assign<T, decltype((void)std::declval<T>().assign(1, 0), 0)>
: std::true_type {};
/**
* Free function to resize a resizable object
*/
template <typename Container>
inline typename std::enable_if<has_resize<Container>::value, void>::type
resize(Container &c, const size_t nElements) {
c.resize(nElements);
}
/**
* Free function that has no effects on non resizable containers (e.g.
* std::array) It raises an exception if the expected size does not match
*/
template <typename Container>
inline typename std::enable_if<!has_resize<Container>::value, void>::type
resize(Container &c, const size_t nElements) {
if (nElements != c.size())
throw std::logic_error("Try to change the size of a std::array.");
}
/**
* Free function to assign to a container
*/
template <typename Container, typename T>
inline typename std::enable_if<has_assign<Container>::value, void>::type
assign(Container &c, const size_t nElements, const T &value) {
c.assign(nElements, value);
}
/**
* Free function to assign to a std::array
*/
template <typename Container, typename T>
inline typename std::enable_if<!has_assign<Container>::value, void>::type
assign(Container &c, const size_t nElements, const T &value) {
for (size_t i = 0; i < nElements; i++)
c[i] = value;
}
/** @addtogroup result_sets_grp Result set classes
* @{ */
template <typename _DistanceType, typename _IndexType = size_t,
typename _CountType = size_t>
class KNNResultSet {
public:
typedef _DistanceType DistanceType;
typedef _IndexType IndexType;
typedef _CountType CountType;
private:
IndexType *indices;
DistanceType *dists;
CountType capacity;
CountType count;
public:
inline KNNResultSet(CountType capacity_)
: indices(0), dists(0), capacity(capacity_), count(0) {}
inline void init(IndexType *indices_, DistanceType *dists_) {
indices = indices_;
dists = dists_;
count = 0;
if (capacity)
dists[capacity - 1] = (std::numeric_limits<DistanceType>::max)();
}
inline CountType size() const { return count; }
inline bool full() const { return count == capacity; }
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are
* sufficient
*/
inline bool addPoint(DistanceType dist, IndexType index) {
CountType i;
for (i = count; i > 0; --i) {
#ifdef NANOFLANN_FIRST_MATCH // If defined and two points have the same
// distance, the one with the lowest-index will be
// returned first.
if ((dists[i - 1] > dist) ||
((dist == dists[i - 1]) && (indices[i - 1] > index))) {
#else
if (dists[i - 1] > dist) {
#endif
if (i < capacity) {
dists[i] = dists[i - 1];
indices[i] = indices[i - 1];
}
} else
break;
}
if (i < capacity) {
dists[i] = dist;
indices[i] = index;
}
if (count < capacity)
count++;
// tell caller that the search shall continue
return true;
}
inline DistanceType worstDist() const { return dists[capacity - 1]; }
};
/** operator "<" for std::sort() */
struct IndexDist_Sorter {
/** PairType will be typically: std::pair<IndexType,DistanceType> */
template <typename PairType>
inline bool operator()(const PairType &p1, const PairType &p2) const {
return p1.second < p2.second;
}
};
/**
* A result-set class used when performing a radius based search.
*/
template <typename _DistanceType, typename _IndexType = size_t>
class RadiusResultSet {
public:
typedef _DistanceType DistanceType;
typedef _IndexType IndexType;
public:
const DistanceType radius;
std::vector<std::pair<IndexType, DistanceType>> &m_indices_dists;
inline RadiusResultSet(
DistanceType radius_,
std::vector<std::pair<IndexType, DistanceType>> &indices_dists)
: radius(radius_), m_indices_dists(indices_dists) {
init();
}
inline void init() { clear(); }
inline void clear() { m_indices_dists.clear(); }
inline size_t size() const { return m_indices_dists.size(); }
inline bool full() const { return true; }
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are
* sufficient
*/
inline bool addPoint(DistanceType dist, IndexType index) {
if (dist < radius)
m_indices_dists.push_back(std::make_pair(index, dist));
return true;
}
inline DistanceType worstDist() const { return radius; }
/**
* Find the worst result (furtherest neighbor) without copying or sorting
* Pre-conditions: size() > 0
*/
std::pair<IndexType, DistanceType> worst_item() const {
if (m_indices_dists.empty())
throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on "
"an empty list of results.");
typedef
typename std::vector<std::pair<IndexType, DistanceType>>::const_iterator
DistIt;
DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end(),
IndexDist_Sorter());
return *it;
}
};
/** @} */
/** @addtogroup loadsave_grp Load/save auxiliary functions
* @{ */
template <typename T>
void save_value(FILE *stream, const T &value, size_t count = 1) {
fwrite(&value, sizeof(value), count, stream);
}
template <typename T>
void save_value(FILE *stream, const std::vector<T> &value) {
size_t size = value.size();
fwrite(&size, sizeof(size_t), 1, stream);
fwrite(&value[0], sizeof(T), size, stream);
}
template <typename T>
void load_value(FILE *stream, T &value, size_t count = 1) {
size_t read_cnt = fread(&value, sizeof(value), count, stream);
if (read_cnt != count) {
throw std::runtime_error("Cannot read from file");
}
}
template <typename T> void load_value(FILE *stream, std::vector<T> &value) {
size_t size;
size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
if (read_cnt != 1) {
throw std::runtime_error("Cannot read from file");
}
value.resize(size);
read_cnt = fread(&value[0], sizeof(T), size, stream);
if (read_cnt != size) {
throw std::runtime_error("Cannot read from file");
}
}
/** @} */
/** @addtogroup metric_grp Metric (distance) classes
* @{ */
struct Metric {};
/** Manhattan distance functor (generic version, optimized for
* high-dimensionality data sets). Corresponding distance traits:
* nanoflann::metric_L1 \tparam T Type of the elements (e.g. double, float,
* uint8_t) \tparam _DistanceType Type of distance variables (must be signed)
* (e.g. float, double, int64_t)
*/
template <class T, class DataSource, typename _DistanceType = T>
struct L1_Adaptor {
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) {}
inline DistanceType evalMetric(const T *a, const size_t b_idx, size_t size,
DistanceType worst_dist = -1) const {
DistanceType result = DistanceType();
const T *last = a + size;
const T *lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
const DistanceType diff0 =
std::abs(a[0] - data_source.kdtree_get_pt(b_idx, d++));
const DistanceType diff1 =
std::abs(a[1] - data_source.kdtree_get_pt(b_idx, d++));
const DistanceType diff2 =
std::abs(a[2] - data_source.kdtree_get_pt(b_idx, d++));
const DistanceType diff3 =
std::abs(a[3] - data_source.kdtree_get_pt(b_idx, d++));
result += diff0 + diff1 + diff2 + diff3;
a += 4;
if ((worst_dist > 0) && (result > worst_dist)) {
return result;
}
}
/* Process last 0-3 components. Not needed for standard vector lengths. */
while (a < last) {
result += std::abs(*a++ - data_source.kdtree_get_pt(b_idx, d++));
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, const size_t) const {
return std::abs(a - b);
}
};
/** Squared Euclidean distance functor (generic version, optimized for
* high-dimensionality data sets). Corresponding distance traits:
* nanoflann::metric_L2 \tparam T Type of the elements (e.g. double, float,
* uint8_t) \tparam _DistanceType Type of distance variables (must be signed)
* (e.g. float, double, int64_t)
*/
template <class T, class DataSource, typename _DistanceType = T>
struct L2_Adaptor {
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) {}
inline DistanceType evalMetric(const T *a, const size_t b_idx, size_t size,
DistanceType worst_dist = -1) const {
DistanceType result = DistanceType();
const T *last = a + size;
const T *lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx, d++);
const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx, d++);
const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx, d++);
const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx, d++);
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
a += 4;
if ((worst_dist > 0) && (result > worst_dist)) {
return result;
}
}
/* Process last 0-3 components. Not needed for standard vector lengths. */
while (a < last) {
const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx, d++);
result += diff0 * diff0;
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, const size_t) const {
return (a - b) * (a - b);
}
};
/** Squared Euclidean (L2) distance functor (suitable for low-dimensionality
* datasets, like 2D or 3D point clouds) Corresponding distance traits:
* nanoflann::metric_L2_Simple \tparam T Type of the elements (e.g. double,
* float, uint8_t) \tparam _DistanceType Type of distance variables (must be
* signed) (e.g. float, double, int64_t)
*/
template <class T, class DataSource, typename _DistanceType = T>
struct L2_Simple_Adaptor {
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L2_Simple_Adaptor(const DataSource &_data_source)
: data_source(_data_source) {}
inline DistanceType evalMetric(const T *a, const size_t b_idx,
size_t size) const {
DistanceType result = DistanceType();
for (size_t i = 0; i < size; ++i) {
const DistanceType diff = a[i] - data_source.kdtree_get_pt(b_idx, i);
result += diff * diff;
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, const size_t) const {
return (a - b) * (a - b);
}
};
/** SO2 distance functor
* Corresponding distance traits: nanoflann::metric_SO2
* \tparam T Type of the elements (e.g. double, float)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g.
* float, double) orientation is constrained to be in [-pi, pi]
*/
template <class T, class DataSource, typename _DistanceType = T>
struct SO2_Adaptor {
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
SO2_Adaptor(const DataSource &_data_source) : data_source(_data_source) {}
inline DistanceType evalMetric(const T *a, const size_t b_idx,
size_t size) const {
return accum_dist(a[size - 1], data_source.kdtree_get_pt(b_idx, size - 1),
size - 1);
}
/** Note: this assumes that input angles are already in the range [-pi,pi] */
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, const size_t) const {
DistanceType result = DistanceType();
DistanceType PI = pi_const<DistanceType>();
result = b - a;
if (result > PI)
result -= 2 * PI;
else if (result < -PI)
result += 2 * PI;
return result;
}
};
/** SO3 distance functor (Uses L2_Simple)
* Corresponding distance traits: nanoflann::metric_SO3
* \tparam T Type of the elements (e.g. double, float)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g.
* float, double)
*/
template <class T, class DataSource, typename _DistanceType = T>
struct SO3_Adaptor {
typedef T ElementType;
typedef _DistanceType DistanceType;
L2_Simple_Adaptor<T, DataSource> distance_L2_Simple;
SO3_Adaptor(const DataSource &_data_source)
: distance_L2_Simple(_data_source) {}
inline DistanceType evalMetric(const T *a, const size_t b_idx,
size_t size) const {
return distance_L2_Simple.evalMetric(a, b_idx, size);
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, const size_t idx) const {
return distance_L2_Simple.accum_dist(a, b, idx);
}
};
/** Metaprogramming helper traits class for the L1 (Manhattan) metric */
struct metric_L1 : public Metric {
template <class T, class DataSource> struct traits {
typedef L1_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the L2 (Euclidean) metric */
struct metric_L2 : public Metric {
template <class T, class DataSource> struct traits {
typedef L2_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */
struct metric_L2_Simple : public Metric {
template <class T, class DataSource> struct traits {
typedef L2_Simple_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */
struct metric_SO2 : public Metric {
template <class T, class DataSource> struct traits {
typedef SO2_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */
struct metric_SO3 : public Metric {
template <class T, class DataSource> struct traits {
typedef SO3_Adaptor<T, DataSource> distance_t;
};
};
/** @} */
/** @addtogroup param_grp Parameter structs
* @{ */
/** Parameters (see README.md) */
struct KDTreeSingleIndexAdaptorParams {
KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10)
: leaf_max_size(_leaf_max_size) {}
size_t leaf_max_size;
};
/** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */
struct SearchParams {
/** Note: The first argument (checks_IGNORED_) is ignored, but kept for
* compatibility with the FLANN interface */
SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true)
: checks(checks_IGNORED_), eps(eps_), sorted(sorted_) {}
int checks; //!< Ignored parameter (Kept for compatibility with the FLANN
//!< interface).
float eps; //!< search for eps-approximate neighbours (default: 0)
bool sorted; //!< only for radius search, require neighbours sorted by
//!< distance (default: true)
};
/** @} */
/** @addtogroup memalloc_grp Memory allocation
* @{ */
/**
* Allocates (using C's malloc) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T> inline T *allocate(size_t count = 1) {
T *mem = static_cast<T *>(::malloc(sizeof(T) * count));
return mem;
}
/**
* Pooled storage allocator
*
* The following routines allow for the efficient allocation of storage in
* small chunks from a specified pool. Rather than allowing each structure
* to be freed individually, an entire pool of storage is freed at once.
* This method has two advantages over just using malloc() and free(). First,
* it is far more efficient for allocating small objects, as there is
* no overhead for remembering all the information needed to free each
* object or consolidating fragmented memory. Second, the decision about
* how long to keep an object is made at the time of allocation, and there
* is no need to track down all the objects to free them.
*
*/
const size_t WORDSIZE = 16;
const size_t BLOCKSIZE = 8192;
class PooledAllocator {
/* We maintain memory alignment to word boundaries by requiring that all
allocations be in multiples of the machine wordsize. */
/* Size of machine word in bytes. Must be power of 2. */
/* Minimum number of bytes requested at a time from the system. Must be
* multiple of WORDSIZE. */
size_t remaining; /* Number of bytes left in current block of storage. */
void *base; /* Pointer to base of current block of storage. */
void *loc; /* Current location in block to next allocate memory. */
void internal_init() {
remaining = 0;
base = NULL;
usedMemory = 0;
wastedMemory = 0;
}
public:
size_t usedMemory;
size_t wastedMemory;
/**
Default constructor. Initializes a new pool.
*/
PooledAllocator() { internal_init(); }
/**
* Destructor. Frees all the memory allocated in this pool.
*/
~PooledAllocator() { free_all(); }
/** Frees all allocated memory chunks */
void free_all() {
while (base != NULL) {
void *prev =
*(static_cast<void **>(base)); /* Get pointer to prev block. */
::free(base);
base = prev;
}
internal_init();
}
/**
* Returns a pointer to a piece of new memory of the given size in bytes
* allocated from the pool.
*/
void *malloc(const size_t req_size) {
/* Round size up to a multiple of wordsize. The following expression
only works for WORDSIZE that is a power of 2, by masking last bits of
incremented size to zero.
*/
const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
/* Check whether a new block must be allocated. Note that the first word
of a block is reserved for a pointer to the previous block.
*/
if (size > remaining) {
wastedMemory += remaining;
/* Allocate new storage. */
const size_t blocksize =
(size + sizeof(void *) + (WORDSIZE - 1) > BLOCKSIZE)
? size + sizeof(void *) + (WORDSIZE - 1)
: BLOCKSIZE;
// use the standard C malloc to allocate memory
void *m = ::malloc(blocksize);
if (!m) {
fprintf(stderr, "Failed to allocate memory.\n");
return NULL;
}
/* Fill first word of new block with pointer to previous block. */
static_cast<void **>(m)[0] = base;
base = m;
size_t shift = 0;
// int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) &
// (WORDSIZE-1))) & (WORDSIZE-1);
remaining = blocksize - sizeof(void *) - shift;
loc = (static_cast<char *>(m) + sizeof(void *) + shift);
}
void *rloc = loc;
loc = static_cast<char *>(loc) + size;
remaining -= size;
usedMemory += size;
return rloc;
}
/**
* Allocates (using this pool) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T> T *allocate(const size_t count = 1) {
T *mem = static_cast<T *>(this->malloc(sizeof(T) * count));
return mem;
}
};
/** @} */
/** @addtogroup nanoflann_metaprog_grp Auxiliary metaprogramming stuff
* @{ */
/** Used to declare fixed-size arrays when DIM>0, dynamically-allocated vectors
* when DIM=-1. Fixed size version for a generic DIM:
*/
template <int DIM, typename T> struct array_or_vector_selector {
typedef std::array<T, DIM> container_t;
};
/** Dynamic size version */
template <typename T> struct array_or_vector_selector<-1, T> {
typedef std::vector<T> container_t;
};
/** @} */
/** kd-tree base-class
*
* Contains the member functions common to the classes KDTreeSingleIndexAdaptor
* and KDTreeSingleIndexDynamicAdaptor_.
*
* \tparam Derived The name of the class which inherits this class.
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use, these are all classes derived
* from nanoflann::Metric \tparam DIM Dimensionality of data points (e.g. 3 for
* 3D points) \tparam IndexType Will be typically size_t or int
*/
template <class Derived, typename Distance, class DatasetAdaptor, int DIM = -1,
typename IndexType = size_t>
class KDTreeBaseClass {
public:
/** Frees the previously-built index. Automatically called within
* buildIndex(). */
void freeIndex(Derived &obj) {
obj.pool.free_all();
obj.root_node = NULL;
obj.m_size_at_index_build = 0;
}
typedef typename Distance::ElementType ElementType;
typedef typename Distance::DistanceType DistanceType;
/*--------------------- Internal Data Structures --------------------------*/
struct Node {
/** Union used because a node can be either a LEAF node or a non-leaf node,
* so both data fields are never used simultaneously */
union {
struct leaf {
IndexType left, right; //!< Indices of points in leaf node
} lr;
struct nonleaf {
int divfeat; //!< Dimension used for subdivision.
DistanceType divlow, divhigh; //!< The values used for subdivision.
} sub;
} node_type;
Node *child1, *child2; //!< Child nodes (both=NULL mean its a leaf node)
};
typedef Node *NodePtr;
struct Interval {
ElementType low, high;
};
/**
* Array of indices to vectors in the dataset.
*/
std::vector<IndexType> vind;
NodePtr root_node;
size_t m_leaf_max_size;
size_t m_size; //!< Number of current points in the dataset
size_t m_size_at_index_build; //!< Number of points in the dataset when the
//!< index was built
int dim; //!< Dimensionality of each data point
/** Define "BoundingBox" as a fixed-size or variable-size container depending
* on "DIM" */
typedef
typename array_or_vector_selector<DIM, Interval>::container_t BoundingBox;
/** Define "distance_vector_t" as a fixed-size or variable-size container
* depending on "DIM" */
typedef typename array_or_vector_selector<DIM, DistanceType>::container_t
distance_vector_t;
/** The KD-tree used to find neighbours */
BoundingBox root_bbox;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool;
/** Returns number of points in dataset */
size_t size(const Derived &obj) const { return obj.m_size; }
/** Returns the length of each point in the dataset */
size_t veclen(const Derived &obj) {
return static_cast<size_t>(DIM > 0 ? DIM : obj.dim);
}
/// Helper accessor to the dataset points:
inline ElementType dataset_get(const Derived &obj, size_t idx,
int component) const {
return obj.dataset.kdtree_get_pt(idx, component);
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
size_t usedMemory(Derived &obj) {
return obj.pool.usedMemory + obj.pool.wastedMemory +
obj.dataset.kdtree_get_point_count() *
sizeof(IndexType); // pool memory and vind array memory
}
void computeMinMax(const Derived &obj, IndexType *ind, IndexType count,
int element, ElementType &min_elem,
ElementType &max_elem) {
min_elem = dataset_get(obj, ind[0], element);
max_elem = dataset_get(obj, ind[0], element);
for (IndexType i = 1; i < count; ++i) {
ElementType val = dataset_get(obj, ind[i], element);
if (val < min_elem)
min_elem = val;
if (val > max_elem)
max_elem = val;
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
*
* @param left index of the first vector
* @param right index of the last vector
*/
NodePtr divideTree(Derived &obj, const IndexType left, const IndexType right,
BoundingBox &bbox) {
NodePtr node = obj.pool.template allocate<Node>(); // allocate memory
/* If too few exemplars remain, then make this a leaf node. */
if ((right - left) <= static_cast<IndexType>(obj.m_leaf_max_size)) {
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
node->node_type.lr.left = left;
node->node_type.lr.right = right;
// compute bounding-box of leaf points
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
bbox[i].low = dataset_get(obj, obj.vind[left], i);
bbox[i].high = dataset_get(obj, obj.vind[left], i);
}
for (IndexType k = left + 1; k < right; ++k) {
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
if (bbox[i].low > dataset_get(obj, obj.vind[k], i))
bbox[i].low = dataset_get(obj, obj.vind[k], i);
if (bbox[i].high < dataset_get(obj, obj.vind[k], i))
bbox[i].high = dataset_get(obj, obj.vind[k], i);
}
}
} else {
IndexType idx;
int cutfeat;
DistanceType cutval;
middleSplit_(obj, &obj.vind[0] + left, right - left, idx, cutfeat, cutval,
bbox);
node->node_type.sub.divfeat = cutfeat;
BoundingBox left_bbox(bbox);
left_bbox[cutfeat].high = cutval;
node->child1 = divideTree(obj, left, left + idx, left_bbox);
BoundingBox right_bbox(bbox);
right_bbox[cutfeat].low = cutval;
node->child2 = divideTree(obj, left + idx, right, right_bbox);
node->node_type.sub.divlow = left_bbox[cutfeat].high;
node->node_type.sub.divhigh = right_bbox[cutfeat].low;
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
}
}
return node;
}
void middleSplit_(Derived &obj, IndexType *ind, IndexType count,
IndexType &index, int &cutfeat, DistanceType &cutval,
const BoundingBox &bbox) {
const DistanceType EPS = static_cast<DistanceType>(0.00001);
ElementType max_span = bbox[0].high - bbox[0].low;
for (int i = 1; i < (DIM > 0 ? DIM : obj.dim); ++i) {
ElementType span = bbox[i].high - bbox[i].low;
if (span > max_span) {
max_span = span;
}
}
ElementType max_spread = -1;
cutfeat = 0;
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
ElementType span = bbox[i].high - bbox[i].low;
if (span > (1 - EPS) * max_span) {
ElementType min_elem, max_elem;
computeMinMax(obj, ind, count, i, min_elem, max_elem);
ElementType spread = max_elem - min_elem;
;
if (spread > max_spread) {
cutfeat = i;
max_spread = spread;
}
}
}
// split in the middle
DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2;
ElementType min_elem, max_elem;
computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem);
if (split_val < min_elem)
cutval = min_elem;
else if (split_val > max_elem)
cutval = max_elem;
else
cutval = split_val;
IndexType lim1, lim2;
planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2);
if (lim1 > count / 2)
index = lim1;
else if (lim2 < count / 2)
index = lim2;
else
index = count / 2;
}
/**
* Subdivide the list of points by a plane perpendicular on axe corresponding
* to the 'cutfeat' dimension at 'cutval' position.
*
* On return:
* dataset[ind[0..lim1-1]][cutfeat]<cutval
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
* dataset[ind[lim2..count]][cutfeat]>cutval
*/
void planeSplit(Derived &obj, IndexType *ind, const IndexType count,
int cutfeat, DistanceType &cutval, IndexType &lim1,
IndexType &lim2) {
/* Move vector indices for left subtree to front of list. */
IndexType left = 0;
IndexType right = count - 1;
for (;;) {
while (left <= right && dataset_get(obj, ind[left], cutfeat) < cutval)
++left;
while (right && left <= right &&
dataset_get(obj, ind[right], cutfeat) >= cutval)
--right;
if (left > right || !right)
break; // "!right" was added to support unsigned Index types
std::swap(ind[left], ind[right]);
++left;
--right;
}
/* If either list is empty, it means that all remaining features
* are identical. Split in the middle to maintain a balanced tree.
*/
lim1 = left;
right = count - 1;
for (;;) {
while (left <= right && dataset_get(obj, ind[left], cutfeat) <= cutval)
++left;
while (right && left <= right &&
dataset_get(obj, ind[right], cutfeat) > cutval)
--right;
if (left > right || !right)
break; // "!right" was added to support unsigned Index types
std::swap(ind[left], ind[right]);
++left;
--right;
}
lim2 = left;
}
DistanceType computeInitialDistances(const Derived &obj,
const ElementType *vec,
distance_vector_t &dists) const {
assert(vec);
DistanceType distsq = DistanceType();
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
if (vec[i] < obj.root_bbox[i].low) {
dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].low, i);
distsq += dists[i];
}
if (vec[i] > obj.root_bbox[i].high) {
dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].high, i);
distsq += dists[i];
}
}
return distsq;
}
void save_tree(Derived &obj, FILE *stream, NodePtr tree) {
save_value(stream, *tree);
if (tree->child1 != NULL) {
save_tree(obj, stream, tree->child1);
}
if (tree->child2 != NULL) {
save_tree(obj, stream, tree->child2);
}
}
void load_tree(Derived &obj, FILE *stream, NodePtr &tree) {
tree = obj.pool.template allocate<Node>();
load_value(stream, *tree);
if (tree->child1 != NULL) {
load_tree(obj, stream, tree->child1);
}
if (tree->child2 != NULL) {
load_tree(obj, stream, tree->child2);
}
}
/** Stores the index in a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so when
* loading the index object it must be constructed associated to the same
* source of data points used while building it. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void saveIndex_(Derived &obj, FILE *stream) {
save_value(stream, obj.m_size);
save_value(stream, obj.dim);
save_value(stream, obj.root_bbox);
save_value(stream, obj.m_leaf_max_size);
save_value(stream, obj.vind);
save_tree(obj, stream, obj.root_node);
}
/** Loads a previous index from a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so the
* index object must be constructed associated to the same source of data
* points used while building the index. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void loadIndex_(Derived &obj, FILE *stream) {
load_value(stream, obj.m_size);
load_value(stream, obj.dim);
load_value(stream, obj.root_bbox);
load_value(stream, obj.m_leaf_max_size);
load_value(stream, obj.vind);
load_tree(obj, stream, obj.root_node);
}
};
/** @addtogroup kdtrees_grp KD-tree classes and adaptors
* @{ */
/** kd-tree static index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*
* The class "DatasetAdaptor" must provide the following interface (can be
* non-virtual, inlined methods):
*
* \code
* // Must return the number of data poins
* inline size_t kdtree_get_point_count() const { ... }
*
*
* // Must return the dim'th component of the idx'th point in the class:
* inline T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
*
* // Optional bounding-box computation: return false to default to a standard
* bbox computation loop.
* // Return true if the BBOX was already computed by the class and returned
* in "bb" so it can be avoided to redo it again.
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
* for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
* {
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
* ...
* return true;
* }
*
* \endcode
*
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will
* be typically size_t or int
*/
template <typename Distance, class DatasetAdaptor, int DIM = -1,
typename IndexType = size_t>
class KDTreeSingleIndexAdaptor
: public KDTreeBaseClass<
KDTreeSingleIndexAdaptor<Distance, DatasetAdaptor, DIM, IndexType>,
Distance, DatasetAdaptor, DIM, IndexType> {
public:
/** Deleted copy constructor*/
KDTreeSingleIndexAdaptor(
const KDTreeSingleIndexAdaptor<Distance, DatasetAdaptor, DIM, IndexType>
&) = delete;
/**
* The dataset used by this index
*/
const DatasetAdaptor &dataset; //!< The source of our data
const KDTreeSingleIndexAdaptorParams index_params;
Distance distance;
typedef typename nanoflann::KDTreeBaseClass<
nanoflann::KDTreeSingleIndexAdaptor<Distance, DatasetAdaptor, DIM,
IndexType>,
Distance, DatasetAdaptor, DIM, IndexType>
BaseClassRef;
typedef typename BaseClassRef::ElementType ElementType;
typedef typename BaseClassRef::DistanceType DistanceType;
typedef typename BaseClassRef::Node Node;
typedef Node *NodePtr;
typedef typename BaseClassRef::Interval Interval;
/** Define "BoundingBox" as a fixed-size or variable-size container depending
* on "DIM" */
typedef typename BaseClassRef::BoundingBox BoundingBox;
/** Define "distance_vector_t" as a fixed-size or variable-size container
* depending on "DIM" */
typedef typename BaseClassRef::distance_vector_t distance_vector_t;
/**
* KDTree constructor
*
* Refer to docs in README.md or online in
* https://github.com/jlblancoc/nanoflann
*
* The KD-Tree point dimension (the length of each point in the datase, e.g. 3
* for 3D points) is determined by means of:
* - The \a DIM template parameter if >0 (highest priority)
* - Otherwise, the \a dimensionality parameter of this constructor.
*
* @param inputData Dataset with the input features
* @param params Basically, the maximum leaf node size
*/
KDTreeSingleIndexAdaptor(const int dimensionality,
const DatasetAdaptor &inputData,
const KDTreeSingleIndexAdaptorParams &params =
KDTreeSingleIndexAdaptorParams())
: dataset(inputData), index_params(params), distance(inputData) {
BaseClassRef::root_node = NULL;
BaseClassRef::m_size = dataset.kdtree_get_point_count();
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
BaseClassRef::dim = dimensionality;
if (DIM > 0)
BaseClassRef::dim = DIM;
BaseClassRef::m_leaf_max_size = params.leaf_max_size;
// Create a permutable array of indices to the input vectors.
init_vind();
}
/**
* Builds the index
*/
void buildIndex() {
BaseClassRef::m_size = dataset.kdtree_get_point_count();
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
init_vind();
this->freeIndex(*this);
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
if (BaseClassRef::m_size == 0)
return;
computeBoundingBox(BaseClassRef::root_bbox);
BaseClassRef::root_node =
this->divideTree(*this, 0, BaseClassRef::m_size,
BaseClassRef::root_bbox); // construct the tree
}
/** \name Query methods
* @{ */
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
* inside the result object.
*
* Params:
* result = the result object in which the indices of the
* nearest-neighbors are stored vec = the vector for which to search the
* nearest neighbors
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return True if the requested neighbors could be found.
* \sa knnSearch, radiusSearch
*/
template <typename RESULTSET>
bool findNeighbors(RESULTSET &result, const ElementType *vec,
const SearchParams &searchParams) const {
assert(vec);
if (this->size(*this) == 0)
return false;
if (!BaseClassRef::root_node)
throw std::runtime_error(
"[nanoflann] findNeighbors() called before building the index.");
float epsError = 1 + searchParams.eps;
distance_vector_t
dists; // fixed or variable-sized container (depending on DIM)
auto zero = static_cast<decltype(result.worstDist())>(0);
assign(dists, (DIM > 0 ? DIM : BaseClassRef::dim),
zero); // Fill it with zeros.
DistanceType distsq = this->computeInitialDistances(*this, vec, dists);
searchLevel(result, vec, BaseClassRef::root_node, distsq, dists,
epsError); // "count_leaf" parameter removed since was neither
// used nor returned to the user.
return result.full();
}
/**
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1].
* Their indices are stored inside the result object. \sa radiusSearch,
* findNeighbors \note nChecks_IGNORED is ignored but kept for compatibility
* with the original FLANN interface. \return Number `N` of valid points in
* the result set. Only the first `N` entries in `out_indices` and
* `out_distances_sq` will be valid. Return may be less than `num_closest`
* only if the number of elements in the tree is less than `num_closest`.
*/
size_t knnSearch(const ElementType *query_point, const size_t num_closest,
IndexType *out_indices, DistanceType *out_distances_sq,
const int /* nChecks_IGNORED */ = 10) const {
nanoflann::KNNResultSet<DistanceType, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
this->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
return resultSet.size();
}
/**
* Find all the neighbors to \a query_point[0:dim-1] within a maximum radius.
* The output is given as a vector of pairs, of which the first element is a
* point index and the second the corresponding distance. Previous contents of
* \a IndicesDists are cleared.
*
* If searchParams.sorted==true, the output list is sorted by ascending
* distances.
*
* For a better performance, it is advisable to do a .reserve() on the vector
* if you have any wild guess about the number of expected matches.
*
* \sa knnSearch, findNeighbors, radiusSearchCustomCallback
* \return The number of points within the given radius (i.e. indices.size()
* or dists.size() )
*/
size_t
radiusSearch(const ElementType *query_point, const DistanceType &radius,
std::vector<std::pair<IndexType, DistanceType>> &IndicesDists,
const SearchParams &searchParams) const {
RadiusResultSet<DistanceType, IndexType> resultSet(radius, IndicesDists);
const size_t nFound =
radiusSearchCustomCallback(query_point, resultSet, searchParams);
if (searchParams.sorted)
std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
return nFound;
}
/**
* Just like radiusSearch() but with a custom callback class for each point
* found in the radius of the query. See the source of RadiusResultSet<> as a
* start point for your own classes. \sa radiusSearch
*/
template <class SEARCH_CALLBACK>
size_t radiusSearchCustomCallback(
const ElementType *query_point, SEARCH_CALLBACK &resultSet,
const SearchParams &searchParams = SearchParams()) const {
this->findNeighbors(resultSet, query_point, searchParams);
return resultSet.size();
}
/** @} */
public:
/** Make sure the auxiliary list \a vind has the same size than the current
* dataset, and re-generate if size has changed. */
void init_vind() {
// Create a permutable array of indices to the input vectors.
BaseClassRef::m_size = dataset.kdtree_get_point_count();
if (BaseClassRef::vind.size() != BaseClassRef::m_size)
BaseClassRef::vind.resize(BaseClassRef::m_size);
for (size_t i = 0; i < BaseClassRef::m_size; i++)
BaseClassRef::vind[i] = i;
}
void computeBoundingBox(BoundingBox &bbox) {
resize(bbox, (DIM > 0 ? DIM : BaseClassRef::dim));
if (dataset.kdtree_get_bbox(bbox)) {
// Done! It was implemented in derived class
} else {
const size_t N = dataset.kdtree_get_point_count();
if (!N)
throw std::runtime_error("[nanoflann] computeBoundingBox() called but "
"no data points found.");
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
bbox[i].low = bbox[i].high = this->dataset_get(*this, 0, i);
}
for (size_t k = 1; k < N; ++k) {
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
if (this->dataset_get(*this, k, i) < bbox[i].low)
bbox[i].low = this->dataset_get(*this, k, i);
if (this->dataset_get(*this, k, i) > bbox[i].high)
bbox[i].high = this->dataset_get(*this, k, i);
}
}
}
}
/**
* Performs an exact search in the tree starting from a node.
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return true if the search should be continued, false if the results are
* sufficient
*/
template <class RESULTSET>
bool searchLevel(RESULTSET &result_set, const ElementType *vec,
const NodePtr node, DistanceType mindistsq,
distance_vector_t &dists, const float epsError) const {
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL) && (node->child2 == NULL)) {
// count_leaf += (node->lr.right-node->lr.left); // Removed since was
// neither used nor returned to the user.
DistanceType worst_dist = result_set.worstDist();
for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right;
++i) {
const IndexType index = BaseClassRef::vind[i]; // reorder... : i;
DistanceType dist = distance.evalMetric(
vec, index, (DIM > 0 ? DIM : BaseClassRef::dim));
if (dist < worst_dist) {
if (!result_set.addPoint(dist, BaseClassRef::vind[i])) {
// the resultset doesn't want to receive any more points, we're done
// searching!
return false;
}
}
}
return true;
}
/* Which child branch should be taken first? */
int idx = node->node_type.sub.divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->node_type.sub.divlow;
DistanceType diff2 = val - node->node_type.sub.divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1 + diff2) < 0) {
bestChild = node->child1;
otherChild = node->child2;
cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx);
} else {
bestChild = node->child2;
otherChild = node->child1;
cut_dist = distance.accum_dist(val, node->node_type.sub.divlow, idx);
}
/* Call recursively to search next level down. */
if (!searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError)) {
// the resultset doesn't want to receive any more points, we're done
// searching!
return false;
}
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq * epsError <= result_set.worstDist()) {
if (!searchLevel(result_set, vec, otherChild, mindistsq, dists,
epsError)) {
// the resultset doesn't want to receive any more points, we're done
// searching!
return false;
}
}
dists[idx] = dst;
return true;
}
public:
/** Stores the index in a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so when
* loading the index object it must be constructed associated to the same
* source of data points used while building it. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void saveIndex(FILE *stream) { this->saveIndex_(*this, stream); }
/** Loads a previous index from a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so the
* index object must be constructed associated to the same source of data
* points used while building the index. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void loadIndex(FILE *stream) { this->loadIndex_(*this, stream); }
}; // class KDTree
/** kd-tree dynamic index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*
* The class "DatasetAdaptor" must provide the following interface (can be
* non-virtual, inlined methods):
*
* \code
* // Must return the number of data poins
* inline size_t kdtree_get_point_count() const { ... }
*
* // Must return the dim'th component of the idx'th point in the class:
* inline T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
*
* // Optional bounding-box computation: return false to default to a standard
* bbox computation loop.
* // Return true if the BBOX was already computed by the class and returned
* in "bb" so it can be avoided to redo it again.
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
* for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
* {
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
* ...
* return true;
* }
*
* \endcode
*
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will
* be typically size_t or int
*/
template <typename Distance, class DatasetAdaptor, int DIM = -1,
typename IndexType = size_t>
class KDTreeSingleIndexDynamicAdaptor_
: public KDTreeBaseClass<KDTreeSingleIndexDynamicAdaptor_<
Distance, DatasetAdaptor, DIM, IndexType>,
Distance, DatasetAdaptor, DIM, IndexType> {
public:
/**
* The dataset used by this index
*/
const DatasetAdaptor &dataset; //!< The source of our data
KDTreeSingleIndexAdaptorParams index_params;
std::vector<int> &treeIndex;
Distance distance;
typedef typename nanoflann::KDTreeBaseClass<
nanoflann::KDTreeSingleIndexDynamicAdaptor_<Distance, DatasetAdaptor, DIM,
IndexType>,
Distance, DatasetAdaptor, DIM, IndexType>
BaseClassRef;
typedef typename BaseClassRef::ElementType ElementType;
typedef typename BaseClassRef::DistanceType DistanceType;
typedef typename BaseClassRef::Node Node;
typedef Node *NodePtr;
typedef typename BaseClassRef::Interval Interval;
/** Define "BoundingBox" as a fixed-size or variable-size container depending
* on "DIM" */
typedef typename BaseClassRef::BoundingBox BoundingBox;
/** Define "distance_vector_t" as a fixed-size or variable-size container
* depending on "DIM" */
typedef typename BaseClassRef::distance_vector_t distance_vector_t;
/**
* KDTree constructor
*
* Refer to docs in README.md or online in
* https://github.com/jlblancoc/nanoflann
*
* The KD-Tree point dimension (the length of each point in the datase, e.g. 3
* for 3D points) is determined by means of:
* - The \a DIM template parameter if >0 (highest priority)
* - Otherwise, the \a dimensionality parameter of this constructor.
*
* @param inputData Dataset with the input features
* @param params Basically, the maximum leaf node size
*/
KDTreeSingleIndexDynamicAdaptor_(
const int dimensionality, const DatasetAdaptor &inputData,
std::vector<int> &treeIndex_,
const KDTreeSingleIndexAdaptorParams &params =
KDTreeSingleIndexAdaptorParams())
: dataset(inputData), index_params(params), treeIndex(treeIndex_),
distance(inputData) {
BaseClassRef::root_node = NULL;
BaseClassRef::m_size = 0;
BaseClassRef::m_size_at_index_build = 0;
BaseClassRef::dim = dimensionality;
if (DIM > 0)
BaseClassRef::dim = DIM;
BaseClassRef::m_leaf_max_size = params.leaf_max_size;
}
/** Assignment operator definiton */
KDTreeSingleIndexDynamicAdaptor_
operator=(const KDTreeSingleIndexDynamicAdaptor_ &rhs) {
KDTreeSingleIndexDynamicAdaptor_ tmp(rhs);
std::swap(BaseClassRef::vind, tmp.BaseClassRef::vind);
std::swap(BaseClassRef::m_leaf_max_size, tmp.BaseClassRef::m_leaf_max_size);
std::swap(index_params, tmp.index_params);
std::swap(treeIndex, tmp.treeIndex);
std::swap(BaseClassRef::m_size, tmp.BaseClassRef::m_size);
std::swap(BaseClassRef::m_size_at_index_build,
tmp.BaseClassRef::m_size_at_index_build);
std::swap(BaseClassRef::root_node, tmp.BaseClassRef::root_node);
std::swap(BaseClassRef::root_bbox, tmp.BaseClassRef::root_bbox);
std::swap(BaseClassRef::pool, tmp.BaseClassRef::pool);
return *this;
}
/**
* Builds the index
*/
void buildIndex() {
BaseClassRef::m_size = BaseClassRef::vind.size();
this->freeIndex(*this);
BaseClassRef::m_size_at_index_build = BaseClassRef::m_size;
if (BaseClassRef::m_size == 0)
return;
computeBoundingBox(BaseClassRef::root_bbox);
BaseClassRef::root_node =
this->divideTree(*this, 0, BaseClassRef::m_size,
BaseClassRef::root_bbox); // construct the tree
}
/** \name Query methods
* @{ */
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
* inside the result object.
*
* Params:
* result = the result object in which the indices of the
* nearest-neighbors are stored vec = the vector for which to search the
* nearest neighbors
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return True if the requested neighbors could be found.
* \sa knnSearch, radiusSearch
*/
template <typename RESULTSET>
bool findNeighbors(RESULTSET &result, const ElementType *vec,
const SearchParams &searchParams) const {
assert(vec);
if (this->size(*this) == 0)
return false;
if (!BaseClassRef::root_node)
return false;
float epsError = 1 + searchParams.eps;
// fixed or variable-sized container (depending on DIM)
distance_vector_t dists;
// Fill it with zeros.
assign(dists, (DIM > 0 ? DIM : BaseClassRef::dim),
static_cast<typename distance_vector_t::value_type>(0));
DistanceType distsq = this->computeInitialDistances(*this, vec, dists);
searchLevel(result, vec, BaseClassRef::root_node, distsq, dists,
epsError); // "count_leaf" parameter removed since was neither
// used nor returned to the user.
return result.full();
}
/**
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1].
* Their indices are stored inside the result object. \sa radiusSearch,
* findNeighbors \note nChecks_IGNORED is ignored but kept for compatibility
* with the original FLANN interface. \return Number `N` of valid points in
* the result set. Only the first `N` entries in `out_indices` and
* `out_distances_sq` will be valid. Return may be less than `num_closest`
* only if the number of elements in the tree is less than `num_closest`.
*/
size_t knnSearch(const ElementType *query_point, const size_t num_closest,
IndexType *out_indices, DistanceType *out_distances_sq,
const int /* nChecks_IGNORED */ = 10) const {
nanoflann::KNNResultSet<DistanceType, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
this->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
return resultSet.size();
}
/**
* Find all the neighbors to \a query_point[0:dim-1] within a maximum radius.
* The output is given as a vector of pairs, of which the first element is a
* point index and the second the corresponding distance. Previous contents of
* \a IndicesDists are cleared.
*
* If searchParams.sorted==true, the output list is sorted by ascending
* distances.
*
* For a better performance, it is advisable to do a .reserve() on the vector
* if you have any wild guess about the number of expected matches.
*
* \sa knnSearch, findNeighbors, radiusSearchCustomCallback
* \return The number of points within the given radius (i.e. indices.size()
* or dists.size() )
*/
size_t
radiusSearch(const ElementType *query_point, const DistanceType &radius,
std::vector<std::pair<IndexType, DistanceType>> &IndicesDists,
const SearchParams &searchParams) const {
RadiusResultSet<DistanceType, IndexType> resultSet(radius, IndicesDists);
const size_t nFound =
radiusSearchCustomCallback(query_point, resultSet, searchParams);
if (searchParams.sorted)
std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
return nFound;
}
/**
* Just like radiusSearch() but with a custom callback class for each point
* found in the radius of the query. See the source of RadiusResultSet<> as a
* start point for your own classes. \sa radiusSearch
*/
template <class SEARCH_CALLBACK>
size_t radiusSearchCustomCallback(
const ElementType *query_point, SEARCH_CALLBACK &resultSet,
const SearchParams &searchParams = SearchParams()) const {
this->findNeighbors(resultSet, query_point, searchParams);
return resultSet.size();
}
/** @} */
public:
void computeBoundingBox(BoundingBox &bbox) {
resize(bbox, (DIM > 0 ? DIM : BaseClassRef::dim));
if (dataset.kdtree_get_bbox(bbox)) {
// Done! It was implemented in derived class
} else {
const size_t N = BaseClassRef::m_size;
if (!N)
throw std::runtime_error("[nanoflann] computeBoundingBox() called but "
"no data points found.");
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
bbox[i].low = bbox[i].high =
this->dataset_get(*this, BaseClassRef::vind[0], i);
}
for (size_t k = 1; k < N; ++k) {
for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) {
if (this->dataset_get(*this, BaseClassRef::vind[k], i) < bbox[i].low)
bbox[i].low = this->dataset_get(*this, BaseClassRef::vind[k], i);
if (this->dataset_get(*this, BaseClassRef::vind[k], i) > bbox[i].high)
bbox[i].high = this->dataset_get(*this, BaseClassRef::vind[k], i);
}
}
}
}
/**
* Performs an exact search in the tree starting from a node.
* \tparam RESULTSET Should be any ResultSet<DistanceType>
*/
template <class RESULTSET>
void searchLevel(RESULTSET &result_set, const ElementType *vec,
const NodePtr node, DistanceType mindistsq,
distance_vector_t &dists, const float epsError) const {
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL) && (node->child2 == NULL)) {
// count_leaf += (node->lr.right-node->lr.left); // Removed since was
// neither used nor returned to the user.
DistanceType worst_dist = result_set.worstDist();
for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right;
++i) {
const IndexType index = BaseClassRef::vind[i]; // reorder... : i;
if (treeIndex[index] == -1)
continue;
DistanceType dist = distance.evalMetric(
vec, index, (DIM > 0 ? DIM : BaseClassRef::dim));
if (dist < worst_dist) {
if (!result_set.addPoint(
static_cast<typename RESULTSET::DistanceType>(dist),
static_cast<typename RESULTSET::IndexType>(
BaseClassRef::vind[i]))) {
// the resultset doesn't want to receive any more points, we're done
// searching!
return; // false;
}
}
}
return;
}
/* Which child branch should be taken first? */
int idx = node->node_type.sub.divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->node_type.sub.divlow;
DistanceType diff2 = val - node->node_type.sub.divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1 + diff2) < 0) {
bestChild = node->child1;
otherChild = node->child2;
cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx);
} else {
bestChild = node->child2;
otherChild = node->child1;
cut_dist = distance.accum_dist(val, node->node_type.sub.divlow, idx);
}
/* Call recursively to search next level down. */
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq * epsError <= result_set.worstDist()) {
searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
}
dists[idx] = dst;
}
public:
/** Stores the index in a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so when
* loading the index object it must be constructed associated to the same
* source of data points used while building it. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void saveIndex(FILE *stream) { this->saveIndex_(*this, stream); }
/** Loads a previous index from a binary file.
* IMPORTANT NOTE: The set of data points is NOT stored in the file, so the
* index object must be constructed associated to the same source of data
* points used while building the index. See the example:
* examples/saveload_example.cpp \sa loadIndex */
void loadIndex(FILE *stream) { this->loadIndex_(*this, stream); }
};
/** kd-tree dynaimic index
*
* class to create multiple static index and merge their results to behave as
* single dynamic index as proposed in Logarithmic Approach.
*
* Example of usage:
* examples/dynamic_pointcloud_example.cpp
*
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM
* Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will
* be typically size_t or int
*/
template <typename Distance, class DatasetAdaptor, int DIM = -1,
typename IndexType = size_t>
class KDTreeSingleIndexDynamicAdaptor {
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::DistanceType DistanceType;
protected:
size_t m_leaf_max_size;
size_t treeCount;
size_t pointCount;
/**
* The dataset used by this index
*/
const DatasetAdaptor &dataset; //!< The source of our data
std::vector<int> treeIndex; //!< treeIndex[idx] is the index of tree in which
//!< point at idx is stored. treeIndex[idx]=-1
//!< means that point has been removed.
KDTreeSingleIndexAdaptorParams index_params;
int dim; //!< Dimensionality of each data point
typedef KDTreeSingleIndexDynamicAdaptor_<Distance, DatasetAdaptor, DIM>
index_container_t;
std::vector<index_container_t> index;
public:
/** Get a const ref to the internal list of indices; the number of indices is
* adapted dynamically as the dataset grows in size. */
const std::vector<index_container_t> &getAllIndices() const { return index; }
private:
/** finds position of least significant unset bit */
int First0Bit(IndexType num) {
int pos = 0;
while (num & 1) {
num = num >> 1;
pos++;
}
return pos;
}
/** Creates multiple empty trees to handle dynamic support */
void init() {
typedef KDTreeSingleIndexDynamicAdaptor_<Distance, DatasetAdaptor, DIM>
my_kd_tree_t;
std::vector<my_kd_tree_t> index_(
treeCount, my_kd_tree_t(dim /*dim*/, dataset, treeIndex, index_params));
index = index_;
}
public:
Distance distance;
/**
* KDTree constructor
*
* Refer to docs in README.md or online in
* https://github.com/jlblancoc/nanoflann
*
* The KD-Tree point dimension (the length of each point in the datase, e.g. 3
* for 3D points) is determined by means of:
* - The \a DIM template parameter if >0 (highest priority)
* - Otherwise, the \a dimensionality parameter of this constructor.
*
* @param inputData Dataset with the input features
* @param params Basically, the maximum leaf node size
*/
KDTreeSingleIndexDynamicAdaptor(const int dimensionality,
const DatasetAdaptor &inputData,
const KDTreeSingleIndexAdaptorParams &params =
KDTreeSingleIndexAdaptorParams(),
const size_t maximumPointCount = 1000000000U)
: dataset(inputData), index_params(params), distance(inputData) {
treeCount = static_cast<size_t>(std::log2(maximumPointCount));
pointCount = 0U;
dim = dimensionality;
treeIndex.clear();
if (DIM > 0)
dim = DIM;
m_leaf_max_size = params.leaf_max_size;
init();
const size_t num_initial_points = dataset.kdtree_get_point_count();
if (num_initial_points > 0) {
addPoints(0, num_initial_points - 1);
}
}
/** Deleted copy constructor*/
KDTreeSingleIndexDynamicAdaptor(
const KDTreeSingleIndexDynamicAdaptor<Distance, DatasetAdaptor, DIM,
IndexType> &) = delete;
/** Add points to the set, Inserts all points from [start, end] */
void addPoints(IndexType start, IndexType end) {
size_t count = end - start + 1;
treeIndex.resize(treeIndex.size() + count);
for (IndexType idx = start; idx <= end; idx++) {
int pos = First0Bit(pointCount);
index[pos].vind.clear();
treeIndex[pointCount] = pos;
for (int i = 0; i < pos; i++) {
for (int j = 0; j < static_cast<int>(index[i].vind.size()); j++) {
index[pos].vind.push_back(index[i].vind[j]);
if (treeIndex[index[i].vind[j]] != -1)
treeIndex[index[i].vind[j]] = pos;
}
index[i].vind.clear();
index[i].freeIndex(index[i]);
}
index[pos].vind.push_back(idx);
index[pos].buildIndex();
pointCount++;
}
}
/** Remove a point from the set (Lazy Deletion) */
void removePoint(size_t idx) {
if (idx >= pointCount)
return;
treeIndex[idx] = -1;
}
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored
* inside the result object.
*
* Params:
* result = the result object in which the indices of the
* nearest-neighbors are stored vec = the vector for which to search the
* nearest neighbors
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \return True if the requested neighbors could be found.
* \sa knnSearch, radiusSearch
*/
template <typename RESULTSET>
bool findNeighbors(RESULTSET &result, const ElementType *vec,
const SearchParams &searchParams) const {
for (size_t i = 0; i < treeCount; i++) {
index[i].findNeighbors(result, &vec[0], searchParams);
}
return result.full();
}
};
/** An L2-metric KD-tree adaptor for working with data directly stored in an
* Eigen Matrix, without duplicating the data storage. Each row in the matrix
* represents a point in the state space.
*
* Example of usage:
* \code
* Eigen::Matrix<num_t,Dynamic,Dynamic> mat;
* // Fill out "mat"...
*
* typedef KDTreeEigenMatrixAdaptor< Eigen::Matrix<num_t,Dynamic,Dynamic> >
* my_kd_tree_t; const int max_leaf = 10; my_kd_tree_t mat_index(mat, max_leaf
* ); mat_index.index->buildIndex(); mat_index.index->... \endcode
*
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality
* for the points in the data set, allowing more compiler optimizations. \tparam
* Distance The distance metric to use: nanoflann::metric_L1,
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
*/
template <class MatrixType, int DIM = -1, class Distance = nanoflann::metric_L2>
struct KDTreeEigenMatrixAdaptor {
typedef KDTreeEigenMatrixAdaptor<MatrixType, DIM, Distance> self_t;
typedef typename MatrixType::Scalar num_t;
typedef typename MatrixType::Index IndexType;
typedef
typename Distance::template traits<num_t, self_t>::distance_t metric_t;
typedef KDTreeSingleIndexAdaptor<metric_t, self_t,
MatrixType::ColsAtCompileTime, IndexType>
index_t;
index_t *index; //! The kd-tree index for the user to call its methods as
//! usual with any other FLANN index.
/// Constructor: takes a const ref to the matrix object with the data points
KDTreeEigenMatrixAdaptor(const size_t dimensionality,
const std::reference_wrapper<const MatrixType> &mat,
const int leaf_max_size = 10)
: m_data_matrix(mat) {
const auto dims = mat.get().cols();
if (size_t(dims) != dimensionality)
throw std::runtime_error(
"Error: 'dimensionality' must match column count in data matrix");
if (DIM > 0 && int(dims) != DIM)
throw std::runtime_error(
"Data set dimensionality does not match the 'DIM' template argument");
index =
new index_t(static_cast<int>(dims), *this /* adaptor */,
nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size));
index->buildIndex();
}
public:
/** Deleted copy constructor */
KDTreeEigenMatrixAdaptor(const self_t &) = delete;
~KDTreeEigenMatrixAdaptor() { delete index; }
const std::reference_wrapper<const MatrixType> m_data_matrix;
/** Query for the \a num_closest closest points to a given point (entered as
* query_point[0:dim-1]). Note that this is a short-cut method for
* index->findNeighbors(). The user can also call index->... methods as
* desired. \note nChecks_IGNORED is ignored but kept for compatibility with
* the original FLANN interface.
*/
inline void query(const num_t *query_point, const size_t num_closest,
IndexType *out_indices, num_t *out_distances_sq,
const int /* nChecks_IGNORED */ = 10) const {
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
/** @name Interface expected by KDTreeSingleIndexAdaptor
* @{ */
const self_t &derived() const { return *this; }
self_t &derived() { return *this; }
// Must return the number of data points
inline size_t kdtree_get_point_count() const {
return m_data_matrix.get().rows();
}
// Returns the dim'th component of the idx'th point in the class:
inline num_t kdtree_get_pt(const IndexType idx, size_t dim) const {
return m_data_matrix.get().coeff(idx, IndexType(dim));
}
// Optional bounding-box computation: return false to default to a standard
// bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in
// "bb" so it can be avoided to redo it again. Look at bb.size() to find out
// the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX> bool kdtree_get_bbox(BBOX & /*bb*/) const {
return false;
}
/** @} */
}; // end of KDTreeEigenMatrixAdaptor
/** @} */
/** @} */ // end of grouping
} // namespace nanoflann
#endif /* NANOFLANN_HPP_ */
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "intraU.hpp"
#include "cm.hpp"
namespace cv { namespace alphamat {
static
void generateFVectorCM(my_vector_of_vectors_t& samples, Mat& img)
{
int nRows = img.rows;
int nCols = img.cols;
samples.resize(nRows * nCols);
int i, j;
for (i = 0; i < nRows; ++i)
{
for (j = 0; j < nCols; ++j)
{
samples[i * nCols + j].resize(ALPHAMAT_DIM);
samples[i * nCols + j][0] = img.at<cv::Vec3b>(i, j)[0] / 255.0;
samples[i * nCols + j][1] = img.at<cv::Vec3b>(i, j)[1] / 255.0;
samples[i * nCols + j][2] = img.at<cv::Vec3b>(i, j)[2] / 255.0;
samples[i * nCols + j][3] = double(i) / nRows;
samples[i * nCols + j][4] = double(j) / nCols;
}
}
}
static
void kdtree_CM(Mat& img, my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, std::unordered_set<int>& unk)
{
// Generate feature vectors for intra U:
generateFVectorCM(samples, img);
// Query point: same as samples from which KD tree is generated
// construct a kd-tree index:
// Dimensionality set at run-time (default: L2)
// ------------------------------------------------------------
typedef KDTreeVectorOfVectorsAdaptor<my_vector_of_vectors_t, double> my_kd_tree_t;
my_kd_tree_t mat_index(ALPHAMAT_DIM /*dim*/, samples, 10 /* max leaf */);
mat_index.index->buildIndex();
// do a knn search with cm = 20
const size_t num_results = 20 + 1;
int N = unk.size();
std::vector<size_t> ret_indexes(num_results);
std::vector<double> out_dists_sqr(num_results);
nanoflann::KNNResultSet<double> resultSet(num_results);
indm.resize(N);
int i = 0;
for (std::unordered_set<int>::iterator it = unk.begin(); it != unk.end(); it++)
{
resultSet.init(&ret_indexes[0], &out_dists_sqr[0]);
mat_index.index->findNeighbors(resultSet, &samples[*it][0], nanoflann::SearchParams(10));
indm[i].resize(num_results - 1);
for (std::size_t j = 1; j < num_results; j++)
{
indm[i][j - 1] = ret_indexes[j];
}
i++;
}
}
static
void lle(my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, float eps, std::unordered_set<int>& unk,
SparseMatrix<double>& Wcm, SparseMatrix<double>& Dcm, Mat& img)
{
CV_LOG_INFO(NULL, "ALPHAMAT: In cm's lle function");
int k = indm[0].size(); //number of neighbours that we are considering
int n = indm.size(); //number of unknown pixels
typedef Triplet<double> T;
std::vector<T> triplets, td;
my_vector_of_vectors_t wcm;
wcm.resize(n);
Mat C(20, 20, DataType<float>::type), rhs(20, 1, DataType<float>::type), Z(3, 20, DataType<float>::type), weights(20, 1, DataType<float>::type), pt(3, 1, DataType<float>::type);
Mat ptDotN(20, 1, DataType<float>::type), imd(20, 1, DataType<float>::type);
Mat Cones(20, 1, DataType<float>::type), Cinv(20, 1, DataType<float>::type);
float alpha, beta, lagrangeMult;
Cones += 1;
C = 0;
rhs = 1;
int i, ind = 0;
for (std::unordered_set<int>::iterator it = unk.begin(); it != unk.end(); it++)
{
// filling values in Z
i = *it;
int index_nbr;
for (int j = 0; j < k; j++)
{
index_nbr = indm[ind][j];
for (int p = 0; p < ALPHAMAT_DIM - 2; p++)
{
Z.at<float>(p, j) = samples[index_nbr][p];
}
}
pt.at<float>(0, 0) = samples[i][0];
pt.at<float>(1, 0) = samples[i][1];
pt.at<float>(2, 0) = samples[i][2];
C = Z.t() * Z;
for (int p = 0; p < k; p++)
{
C.at<float>(p, p) += eps;
}
ptDotN = Z.t() * pt;
solve(C, ptDotN, imd);
alpha = 1 - cv::sum(imd)[0];
solve(C, Cones, Cinv);
beta = cv::sum(Cinv)[0]; //% sum of elements of inv(corr)
lagrangeMult = alpha / beta;
solve(C, ptDotN + lagrangeMult * Cones, weights);
float sum = cv::sum(weights)[0];
weights = weights / sum;
int cMaj_i = findColMajorInd(i, img.rows, img.cols);
for (int j = 0; j < k; j++)
{
int cMaj_ind_j = findColMajorInd(indm[ind][j], img.rows, img.cols);
triplets.push_back(T(cMaj_i, cMaj_ind_j, weights.at<float>(j, 0)));
td.push_back(T(cMaj_i, cMaj_i, weights.at<float>(j, 0)));
}
ind++;
}
Wcm.setFromTriplets(triplets.begin(), triplets.end());
Dcm.setFromTriplets(td.begin(), td.end());
}
void cm(Mat& image, Mat& tmap, SparseMatrix<double>& Wcm, SparseMatrix<double>& Dcm)
{
my_vector_of_vectors_t samples, indm, Euu;
int i, j;
std::unordered_set<int> unk;
for (i = 0; i < tmap.rows; i++)
{
for (j = 0; j < tmap.cols; j++)
{
uchar pix = tmap.at<uchar>(i, j);
if (pix == 128)
unk.insert(i * tmap.cols + j);
}
}
kdtree_CM(image, indm, samples, unk);
float eps = 0.00001;
lle(indm, samples, eps, unk, Wcm, Dcm, image);
CV_LOG_INFO(NULL, "ALPHAMAT: cm DONE");
}
}} // namespace cv::alphamat
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_ALPHAMAT_CM_H__
#define __OPENCV_ALPHAMAT_CM_H__
namespace cv { namespace alphamat {
using namespace Eigen;
using namespace nanoflann;
void cm(Mat& image, Mat& tmap, SparseMatrix<double>& Wcm, SparseMatrix<double>& Dcm);
}}
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <Eigen/Sparse>
using namespace Eigen;
namespace cv { namespace alphamat {
static
void solve(SparseMatrix<double> Wcm, SparseMatrix<double> Wuu, SparseMatrix<double> Wl, SparseMatrix<double> Dcm,
SparseMatrix<double> Duu, SparseMatrix<double> Dl, SparseMatrix<double> T,
Mat& wf, Mat& alpha)
{
float suu = 0.01, sl = 0.1, lamd = 100;
SparseMatrix<double> Lifm = ((Dcm - Wcm).transpose()) * (Dcm - Wcm) + sl * (Dl - Wl) + suu * (Duu - Wuu);
SparseMatrix<double> A;
int n = wf.rows;
VectorXd b(n), x(n);
Eigen::VectorXd wf_;
cv2eigen(wf, wf_);
A = Lifm + lamd * T;
b = (lamd * T) * (wf_);
ConjugateGradient<SparseMatrix<double>, Lower | Upper> cg;
cg.setMaxIterations(500);
cg.compute(A);
x = cg.solve(b);
CV_LOG_INFO(NULL, "ALPHAMAT: #iterations: " << cg.iterations());
CV_LOG_INFO(NULL, "ALPHAMAT: estimated error: " << cg.error());
int nRows = alpha.rows;
int nCols = alpha.cols;
float pix_alpha;
for (int j = 0; j < nCols; ++j)
{
for (int i = 0; i < nRows; ++i)
{
pix_alpha = x(i + j * nRows);
if (pix_alpha < 0)
pix_alpha = 0;
if (pix_alpha > 1)
pix_alpha = 1;
alpha.at<uchar>(i, j) = uchar(pix_alpha * 255);
}
}
}
void infoFlow(InputArray image_ia, InputArray tmap_ia, OutputArray result)
{
Mat image = image_ia.getMat();
Mat tmap = tmap_ia.getMat();
int64 begin = cv::getTickCount();
int nRows = image.rows;
int nCols = image.cols;
int N = nRows * nCols;
SparseMatrix<double> T(N, N);
typedef Triplet<double> Tr;
std::vector<Tr> triplets;
//Pre-process trimap
for (int i = 0; i < nRows; ++i)
{
for (int j = 0; j < nCols; ++j)
{
uchar& pix = tmap.at<uchar>(i, j);
if (pix <= 0.2f * 255)
pix = 0;
else if (pix >= 0.8f * 255)
pix = 255;
else
pix = 128;
}
}
Mat wf = Mat::zeros(nRows * nCols, 1, CV_8U);
// Column Major Interpretation for working with SparseMatrix
for (int i = 0; i < nRows; ++i)
{
for (int j = 0; j < nCols; ++j)
{
uchar pix = tmap.at<uchar>(i, j);
// collection of known pixels samples
triplets.push_back(Tr(i + j * nRows, i + j * nRows, (pix != 128) ? 1 : 0));
// foreground pixel
wf.at<uchar>(i + j * nRows, 0) = (pix > 200) ? 1 : 0;
}
}
SparseMatrix<double> Wl(N, N), Dl(N, N);
local_info(image, tmap, Wl, Dl);
SparseMatrix<double> Wcm(N, N), Dcm(N, N);
cm(image, tmap, Wcm, Dcm);
Mat new_tmap = tmap.clone();
SparseMatrix<double> Wuu(N, N), Duu(N, N);
Mat image_t = image.t();
Mat tmap_t = tmap.t();
UU(image, tmap, Wuu, Duu);
double elapsed_secs = ((double)(getTickCount() - begin)) / getTickFrequency();
T.setFromTriplets(triplets.begin(), triplets.end());
Mat alpha = Mat::zeros(nRows, nCols, CV_8UC1);
solve(Wcm, Wuu, Wl, Dcm, Duu, Dl, T, wf, alpha);
alpha.copyTo(result);
elapsed_secs = ((double)(getTickCount() - begin)) / getTickFrequency();
CV_LOG_INFO(NULL, "ALPHAMAT: total time: " << elapsed_secs);
}
}} // namespace cv::alphamat
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "intraU.hpp"
namespace cv { namespace alphamat {
int findColMajorInd(int rowMajorInd, int nRows, int nCols)
{
int iInd = rowMajorInd / nCols;
int jInd = rowMajorInd % nCols;
return (jInd * nRows + iInd);
}
static
void generateFVectorIntraU(my_vector_of_vectors_t& samples, Mat& img, Mat& tmap, std::vector<int>& orig_ind)
{
int nRows = img.rows;
int nCols = img.cols;
int unk_count = 0;
int i, j;
for (i = 0; i < nRows; ++i)
{
for (j = 0; j < nCols; ++j)
{
uchar pix = tmap.at<uchar>(i, j);
if (pix == 128)
unk_count++;
}
}
samples.resize(unk_count);
orig_ind.resize(unk_count);
int c1 = 0;
for (i = 0; i < nRows; ++i)
{
for (j = 0; j < nCols; ++j)
{
uchar pix = tmap.at<uchar>(i, j);
if (pix == 128) // collection of unknown pixels samples
{
samples[c1].resize(ALPHAMAT_DIM);
samples[c1][0] = img.at<cv::Vec3b>(i, j)[0] / 255.0;
samples[c1][1] = img.at<cv::Vec3b>(i, j)[1] / 255.0;
samples[c1][2] = img.at<cv::Vec3b>(i, j)[2] / 255.0;
samples[c1][3] = (double(i + 1) / nRows) / 20;
samples[c1][4] = (double(j + 1) / nCols) / 20;
orig_ind[c1] = i * nCols + j;
c1++;
}
}
}
CV_LOG_INFO(NULL, "ALPHAMAT: Total number of unknown pixels : " << c1);
}
static
void kdtree_intraU(Mat& img, Mat& tmap, my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, std::vector<int>& orig_ind)
{
// Generate feature vectors for intra U:
generateFVectorIntraU(samples, img, tmap, orig_ind);
typedef KDTreeVectorOfVectorsAdaptor<my_vector_of_vectors_t, double> my_kd_tree_t;
my_kd_tree_t mat_index(ALPHAMAT_DIM /*dim*/, samples, 10 /* max leaf */);
mat_index.index->buildIndex();
// do a knn search with ku = 5
const size_t num_results = 5 + 1;
int N = samples.size(); // no. of unknown samples
std::vector<size_t> ret_indexes(num_results);
std::vector<double> out_dists_sqr(num_results);
nanoflann::KNNResultSet<double> resultSet(num_results);
indm.resize(N);
for (int i = 0; i < N; i++)
{
resultSet.init(&ret_indexes[0], &out_dists_sqr[0]);
mat_index.index->findNeighbors(resultSet, &samples[i][0], nanoflann::SearchParams(10));
indm[i].resize(num_results - 1);
for (std::size_t j = 1; j < num_results; j++)
{
indm[i][j - 1] = ret_indexes[j];
}
}
}
static
double l1norm(std::vector<double>& x, std::vector<double>& y)
{
double sum = 0;
for (int i = 0; i < ALPHAMAT_DIM; i++)
sum += abs(x[i] - y[i]);
return sum / ALPHAMAT_DIM;
}
static
void intraU(Mat& img, my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples,
std::vector<int>& orig_ind, SparseMatrix<double>& Wuu, SparseMatrix<double>& Duu)
{
// input: indm, samples
int n = indm.size(); // num of unknown samples
CV_LOG_INFO(NULL, "ALPHAMAT: num of unknown samples, n : " << n);
int i, j, nbr_ind;
for (i = 0; i < n; i++)
{
samples[i][3] *= 1 / 100;
samples[i][4] *= 1 / 100;
}
my_vector_of_vectors_t weights;
typedef Triplet<double> T;
std::vector<T> triplets, td;
double weight;
for (i = 0; i < n; i++)
{
int num_nbr = indm[i].size();
int cMaj_i = findColMajorInd(orig_ind[i], img.rows, img.cols);
for (j = 0; j < num_nbr; j++)
{
nbr_ind = indm[i][j];
int cMaj_nbr_j = findColMajorInd(orig_ind[nbr_ind], img.rows, img.cols);
weight = max(1 - l1norm(samples[i], samples[j]), 0.0);
triplets.push_back(T(cMaj_i, cMaj_nbr_j, weight / 2));
td.push_back(T(cMaj_i, cMaj_i, weight / 2));
triplets.push_back(T(cMaj_nbr_j, cMaj_i, weight / 2));
td.push_back(T(cMaj_nbr_j, cMaj_nbr_j, weight / 2));
}
}
Wuu.setFromTriplets(triplets.begin(), triplets.end());
Duu.setFromTriplets(td.begin(), td.end());
}
void UU(Mat& image, Mat& tmap, SparseMatrix<double>& Wuu, SparseMatrix<double>& Duu)
{
my_vector_of_vectors_t samples, indm;
std::vector<int> orig_ind;
kdtree_intraU(image, tmap, indm, samples, orig_ind);
intraU(image, indm, samples, orig_ind, Wuu, Duu);
CV_LOG_INFO(NULL, "ALPHAMAT: Intra U Done");
}
}} // namespace cv::alphamat
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_ALPHAMAT_INTRAU_H__
#define __OPENCV_ALPHAMAT_INTRAU_H__
namespace cv { namespace alphamat {
const int ALPHAMAT_DIM = 5; // dimension of feature vectors
using namespace Eigen;
using namespace nanoflann;
typedef std::vector<std::vector<double>> my_vector_of_vectors_t;
int findColMajorInd(int rowMajorInd, int nRows, int nCols);
void UU(Mat& image, Mat& tmap, SparseMatrix<double>& Wuu, SparseMatrix<double>& Duu);
}} // namespace
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// #ifndef local_info
// #define local_info
#include "precomp.hpp"
#include "local_info.hpp"
namespace cv { namespace alphamat {
void local_info(Mat& img, Mat& tmap, SparseMatrix<double>& Wl, SparseMatrix<double>& Dl)
{
float eps = 0.000001;
int win_size = 1;
int nRows = img.rows;
int nCols = img.cols;
int N = img.rows * img.cols;
Mat unk_img = Mat::zeros(cv::Size(nCols, nRows), CV_32FC1);
for (int i = 0; i < nRows; ++i)
{
for (int j = 0; j < nCols; ++j)
{
uchar pix = tmap.at<uchar>(i, j);
if (pix == 128) // collection of unknown pixels samples
{
unk_img.at<float>(i, j) = 255;
}
}
}
Mat element = getStructuringElement(MORPH_RECT, Size(2 * win_size + 1, 2 * win_size + 1));
/// Apply the dilation operation
Mat dilation_dst = unk_img.clone();
//dilate(unk_img, dilation_dst, element);
int num_win = (win_size * 2 + 1) * (win_size * 2 + 1); // number of pixels in window
typedef Triplet<double> T;
std::vector<T> triplets, td, tl;
int neighInd[9];
int i, j;
for (j = win_size; j < nCols - win_size; j++)
{
for (i = win_size; i < nRows - win_size; i++)
{
uchar pix = tmap.at<uchar>(i, j);
//std::cout << i+j*nRows << " --> " << pix << std::endl;
if (pix != 128)
continue;
// extract the window out of image
Mat win = img.rowRange(i - win_size, i + win_size + 1);
win = win.colRange(j - win_size, j + win_size + 1);
Mat win_ravel = Mat::zeros(9, 3, CV_64F); // doubt ??
double sum1 = 0;
double sum2 = 0;
double sum3 = 0;
int c = 0;
for (int q = -1; q <= 1; q++)
{
for (int p = -1; p <= 1; p++)
{
neighInd[c] = (j + q) * nRows + (i + p); // column major
c++;
}
}
c = 0;
//parsing column major way in the window
for (int q = 0; q < win_size * 2 + 1; q++)
{
for (int p = 0; p < win_size * 2 + 1; p++)
{
win_ravel.at<double>(c, 0) = win.at<cv::Vec3b>(p, q)[0] / 255.0;
win_ravel.at<double>(c, 1) = win.at<cv::Vec3b>(p, q)[1] / 255.0;
win_ravel.at<double>(c, 2) = win.at<cv::Vec3b>(p, q)[2] / 255.0;
sum1 += win.at<cv::Vec3b>(p, q)[0] / 255.0;
sum2 += win.at<cv::Vec3b>(p, q)[1] / 255.0;
sum3 += win.at<cv::Vec3b>(p, q)[2] / 255.0;
c++;
}
}
win = win_ravel;
Mat win_mean = Mat::zeros(1, 3, CV_64F);
win_mean.at<double>(0, 0) = sum1 / num_win;
win_mean.at<double>(0, 1) = sum2 / num_win;
win_mean.at<double>(0, 2) = sum3 / num_win;
// calculate the covariance matrix
Mat covariance = (win.t() * win / num_win) - (win_mean.t() * win_mean);
Mat I = Mat::eye(img.channels(), img.channels(), CV_64F);
Mat I1 = (covariance + (eps / num_win) * I);
Mat I1_inv = I1.inv();
Mat X = win - repeat(win_mean, num_win, 1);
Mat vals = (1 + X * I1_inv * X.t()) / num_win;
for (int q = 0; q < num_win; q++)
{
for (int p = 0; p < num_win; p++)
{
triplets.push_back(T(neighInd[p], neighInd[q], vals.at<double>(p, q)));
}
}
}
}
std::vector<T> tsp;
SparseMatrix<double> W(N, N), Wsp(N, N);
W.setFromTriplets(triplets.begin(), triplets.end());
SparseMatrix<double> Wt = W.transpose();
SparseMatrix<double> Ws = Wt + W;
W = Ws;
for (int k = 0; k < W.outerSize(); ++k)
{
double sumCol = 0;
for (SparseMatrix<double>::InnerIterator it(W, k); it; ++it)
{
sumCol += it.value();
}
if (sumCol < 0.05)
sumCol = 1;
tsp.push_back(T(k, k, 1 / sumCol));
}
Wsp.setFromTriplets(tsp.begin(), tsp.end());
Wl = Wsp * W; // For normalization
//Wl = W; // No normalization
SparseMatrix<double> Wlt = Wl.transpose();
for (int k = 0; k < Wlt.outerSize(); ++k)
{
double sumarr = 0;
for (SparseMatrix<double>::InnerIterator it(Wlt, k); it; ++it)
sumarr += it.value();
td.push_back(T(k, k, sumarr));
}
Dl.setFromTriplets(td.begin(), td.end());
CV_LOG_INFO(NULL, "ALPHAMAT: local_info DONE");
}
}} // namespace cv::alphamat
// #endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_ALPHAMAT_LOCAL_INFO_H__
#define __OPENCV_ALPHAMAT_LOCAL_INFO_H__
namespace cv { namespace alphamat {
using namespace Eigen;
void local_info(Mat& img, Mat& tmap, SparseMatrix<double>& Wl, SparseMatrix<double>& Dl);
}} // namespace
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include <vector>
#include <unordered_set>
#include <set>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/alphamat.hpp>
#include "3rdparty/nanoflann.hpp"
#include "3rdparty/KDTreeVectorOfVectorsAdaptor.h"
#ifdef HAVE_EIGEN
#include <Eigen/Eigen>
#include <opencv2/core/eigen.hpp>
#include <Eigen/IterativeLinearSolvers>
#endif
#include "intraU.hpp"
#include "cm.hpp"
#include "local_info.hpp"
#endif
Information Flow Alpha Matting {#tutorial_alphamat}
============================
This project was part of Google Summer of Code 2019.
*Student:* Muskaan Kularia
*Mentor:* Sunita Nayak
Alphamatting is the problem of extracting the foreground from an image. The extracted foreground can be used for further operations like changing the background in an image.
Given an input image and its corresponding trimap, we try to extract the foreground from the background. Following is an example:
Input Image: ![](samples/input_images/plant.jpg)
Input Trimap: ![](samples/trimaps/plant.png)
Output alpha Matte: ![](samples/output_mattes/plant_result.jpg)
This project is implementation of @cite aksoy2017designing . It required implementation of parts of other papers [2,3,4].
# Building
This module uses the Eigen package.
Build the sample code of the alphamat module using the following two cmake commands run inside the build folder:
```
cmake -DOPENCV_EXTRA_MODULES_PATH=<path to opencv_contrib modules> -DBUILD_EXAMPLES=ON ..
cmake --build . --config Release --target example_alphamat_information_flow_matting
```
Please refer to OpenCV building tutorials for further details, if needed.
# Testing
The built target can be tested as follows:
```
example_alphamat_information_flow_matting -img=<path to input image file> -tri=<path to the corresponding trimap> -out=<path to save output matte file>
```
# Source Code of the sample
@includelineno alphamat/samples/information_flow_matting.cpp
# References
[1] Yagiz Aksoy, Tunc Ozan Aydin, Marc Pollefeys, "[Designing Effective Inter-Pixel Information Flow for Natural Image Matting](http://people.inf.ethz.ch/aksoyy/ifm/)", CVPR, 2017.
[2] Roweis, Sam T., and Lawrence K. Saul. "[Nonlinear dimensionality reduction by locally linear embedding](https://science.sciencemag.org/content/290/5500/2323)" Science 290.5500 (2000): 2323-2326.
[3] Anat Levin, Dani Lischinski, Yair Weiss, "[A Closed Form Solution to Natural Image Matting](https://www.researchgate.net/publication/5764820_A_Closed-Form_Solution_to_Natural_Image_Matting)", IEEE TPAMI, 2008.
[4] Qifeng Chen, Dingzeyu Li, Chi-Keung Tang, "[KNN Matting](http://dingzeyu.li/files/knn-matting-tpami.pdf)", IEEE TPAMI, 2013.
[5] Yagiz Aksoy, "[Affinity Based Matting Toolbox](https://github.com/yaksoy/AffinityBasedMattingToolbox)".
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment