Commit 88379486 authored by Zhou Chao's avatar Zhou Chao Committed by Maksim Shabunin

Add weighted median filter

parent e8937cc0
...@@ -136,3 +136,21 @@ ...@@ -136,3 +136,21 @@
month = {June}, month = {June},
year = {2015} year = {2015}
} }
@incollection{zhang2014rolling,
title={Rolling guidance filter},
author={Zhang, Qi and Shen, Xiaoyong and Xu, Li and Jia, Jiaya},
booktitle={Computer Vision--ECCV 2014},
pages={815--830},
year={2014},
publisher={Springer}
}
@inproceedings{zhang2014100+,
title={100+ times faster weighted median filter (WMF)},
author={Zhang, Qi and Xu, Li and Jia, Jiaya},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
pages={2830--2837},
year={2014},
organization={IEEE}
}
...@@ -45,6 +45,7 @@ ...@@ -45,6 +45,7 @@
#include "ximgproc/segmentation.hpp" #include "ximgproc/segmentation.hpp"
#include "ximgproc/fast_hough_transform.hpp" #include "ximgproc/fast_hough_transform.hpp"
#include "ximgproc/estimated_covariance.hpp" #include "ximgproc/estimated_covariance.hpp"
#include "ximgproc/weighted_median_filter.hpp"
#include "ximgproc/slic.hpp" #include "ximgproc/slic.hpp"
#include "ximgproc/lsc.hpp" #include "ximgproc/lsc.hpp"
......
...@@ -321,6 +321,8 @@ void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int ...@@ -321,6 +321,8 @@ void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int
/** @brief Applies the rolling guidance filter to an image. /** @brief Applies the rolling guidance filter to an image.
For more details, please see @cite zhang2014rolling
@param src Source 8-bit or floating-point, 1-channel or 3-channel image. @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
@param dst Destination image of the same size and type as src. @param dst Destination image of the same size and type as src.
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, The Chinese University of Hong Kong, all rights reserved.
//
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_WEIGHTED_MEDIAN_FILTER_HPP__
#define __OPENCV_WEIGHTED_MEDIAN_FILTER_HPP__
#ifdef __cplusplus
/**
* @file
* @date Sept 9, 2015
* @author Zhou Chao
*/
#include <opencv2/core.hpp>
#include <string>
namespace cv
{
namespace ximgproc
{
/**
* @brief Specifies weight types of weighted median filter.
*/
enum WMFWeightType
{
WMF_EXP, //!< \f$exp(-|I1-I2|^2/(2*sigma^2))\f$
WMF_IV1, //!< \f$(|I1-I2|+sigma)^-1\f$
WMF_IV2, //!< \f$(|I1-I2|^2+sigma^2)^-1\f$
WMF_COS, //!< \f$dot(I1,I2)/(|I1|*|I2|)\f$
WMF_JAC, //!< \f$(min(r1,r2)+min(g1,g2)+min(b1,b2))/(max(r1,r2)+max(g1,g2)+max(b1,b2))\f$
WMF_OFF //!< unweighted
};
/**
* @brief Applies weighted median filter to an image.
*
* For more details about this implementation, please see @cite zhang2014100+
*
* @param joint Joint 8-bit, 1-channel or 3-channel image.
* @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
* @param dst Destination image.
* @param r Radius of filtering kernel, should be a positive integer.
* @param sigma Filter range standard deviation for the joint image.
* @param weightType weightType The type of weight definition, see WMFWeightType
* @param mask A 0-1 mask that has the same size with I. This mask is used to ignore the effect of some pixels. If the pixel value on mask is 0,
* the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
*
* @sa medianBlur, jointBilateralFilter
*/
CV_EXPORTS void weightedMedianFilter(InputArray joint, InputArray src, OutputArray dst, int r, double sigma=25.5, WMFWeightType weightType=WMF_EXP, Mat mask=Mat());
}
}
#endif
#endif
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::ximgproc;
typedef tuple<Size, MatType, int, int, int, WMFWeightType> WMFTestParam;
typedef TestBaseWithParam<WMFTestParam> WeightedMedianFilterTest;
PERF_TEST_P(WeightedMedianFilterTest, perf,
Combine(
Values(szODD, szQVGA),
Values(CV_8U, CV_32F),
Values(1, 3),
Values(1, 3),
Values(3, 5),
Values(WMF_EXP, WMF_COS))
)
{
RNG rnd(1);
WMFTestParam params = GetParam();
double sigma = rnd.uniform(20.0, 30.0);
Size sz = get<0>(params);
int srcDepth = get<1>(params);
int jCn = get<2>(params);
int srcCn = get<3>(params);
int r = get<4>(params);
WMFWeightType weightType = get<5>(params);
Mat joint(sz, CV_MAKE_TYPE(CV_8U, jCn));
Mat src(sz, CV_MAKE_TYPE(srcDepth, srcCn));
Mat dst(sz, src.type());
cv::setNumThreads(cv::getNumberOfCPUs());
declare.in(joint, src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs());
TEST_CYCLE_N(1)
{
weightedMedianFilter(joint, src, dst, r, sigma, weightType);
}
SANITY_CHECK_NOTHING();
}
}
This diff is collapsed.
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
static string getDataDir()
{
return cvtest::TS::ptr()->get_data_path();
}
typedef tuple<Size, WMFWeightType> WMFParams;
typedef TestWithParam<WMFParams> WeightedMedianFilterTest;
TEST_P(WeightedMedianFilterTest, SplatSurfaceAccuracy)
{
WMFParams params = GetParam();
Size size = get<0>(params);
WMFWeightType weightType = get<1>(params);
RNG rnd(0);
int guideCn = rnd.uniform(1, 2);
if(guideCn==2) guideCn++; //1 or 3 channels
Mat guide(size, CV_MAKE_TYPE(CV_8U, guideCn));
randu(guide, 0, 255);
Scalar surfaceValue;
int srcCn = rnd.uniform(1, 4);
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
Mat src(size, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
int r = int(rnd.uniform(3, 11));
double sigma = rnd.uniform(9.0, 100.0);
Mat res;
weightedMedianFilter(guide, src, res, r, sigma, weightType);
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
EXPECT_LE(normL1, 1.0/64);
}
TEST(WeightedMedianFilterTest, ReferenceAccuracy)
{
string dir = getDataDir() + "cv/edgefilter";
Mat src = imread(dir + "/kodim23.png");
Mat ref = imread(dir + "/fgs/kodim23_lambda=1000_sigma=10.png");
ASSERT_FALSE(src.empty());
ASSERT_FALSE(ref.empty());
cv::setNumThreads(cv::getNumberOfCPUs());
Mat res;
weightedMedianFilter(src, src, res, 7);
double totalMaxError = 1.0/32.0*src.total()*src.channels();
EXPECT_LE(cvtest::norm(res, ref, NORM_L2), totalMaxError);
}
INSTANTIATE_TEST_CASE_P(TypicalSET, WeightedMedianFilterTest, Combine(Values(szODD, szQVGA), Values(WMF_EXP, WMF_IV2, WMF_OFF)));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment