Commit 88379486 authored by Zhou Chao's avatar Zhou Chao Committed by Maksim Shabunin

Add weighted median filter

parent e8937cc0
......@@ -136,3 +136,21 @@
month = {June},
year = {2015}
}
@incollection{zhang2014rolling,
title={Rolling guidance filter},
author={Zhang, Qi and Shen, Xiaoyong and Xu, Li and Jia, Jiaya},
booktitle={Computer Vision--ECCV 2014},
pages={815--830},
year={2014},
publisher={Springer}
}
@inproceedings{zhang2014100+,
title={100+ times faster weighted median filter (WMF)},
author={Zhang, Qi and Xu, Li and Jia, Jiaya},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
pages={2830--2837},
year={2014},
organization={IEEE}
}
......@@ -45,6 +45,7 @@
#include "ximgproc/segmentation.hpp"
#include "ximgproc/fast_hough_transform.hpp"
#include "ximgproc/estimated_covariance.hpp"
#include "ximgproc/weighted_median_filter.hpp"
#include "ximgproc/slic.hpp"
#include "ximgproc/lsc.hpp"
......
......@@ -321,6 +321,8 @@ void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int
/** @brief Applies the rolling guidance filter to an image.
For more details, please see @cite zhang2014rolling
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
@param dst Destination image of the same size and type as src.
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, The Chinese University of Hong Kong, all rights reserved.
//
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_WEIGHTED_MEDIAN_FILTER_HPP__
#define __OPENCV_WEIGHTED_MEDIAN_FILTER_HPP__
#ifdef __cplusplus
/**
* @file
* @date Sept 9, 2015
* @author Zhou Chao
*/
#include <opencv2/core.hpp>
#include <string>
namespace cv
{
namespace ximgproc
{
/**
* @brief Specifies weight types of weighted median filter.
*/
enum WMFWeightType
{
WMF_EXP, //!< \f$exp(-|I1-I2|^2/(2*sigma^2))\f$
WMF_IV1, //!< \f$(|I1-I2|+sigma)^-1\f$
WMF_IV2, //!< \f$(|I1-I2|^2+sigma^2)^-1\f$
WMF_COS, //!< \f$dot(I1,I2)/(|I1|*|I2|)\f$
WMF_JAC, //!< \f$(min(r1,r2)+min(g1,g2)+min(b1,b2))/(max(r1,r2)+max(g1,g2)+max(b1,b2))\f$
WMF_OFF //!< unweighted
};
/**
* @brief Applies weighted median filter to an image.
*
* For more details about this implementation, please see @cite zhang2014100+
*
* @param joint Joint 8-bit, 1-channel or 3-channel image.
* @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
* @param dst Destination image.
* @param r Radius of filtering kernel, should be a positive integer.
* @param sigma Filter range standard deviation for the joint image.
* @param weightType weightType The type of weight definition, see WMFWeightType
* @param mask A 0-1 mask that has the same size with I. This mask is used to ignore the effect of some pixels. If the pixel value on mask is 0,
* the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
*
* @sa medianBlur, jointBilateralFilter
*/
CV_EXPORTS void weightedMedianFilter(InputArray joint, InputArray src, OutputArray dst, int r, double sigma=25.5, WMFWeightType weightType=WMF_EXP, Mat mask=Mat());
}
}
#endif
#endif
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::ximgproc;
typedef tuple<Size, MatType, int, int, int, WMFWeightType> WMFTestParam;
typedef TestBaseWithParam<WMFTestParam> WeightedMedianFilterTest;
PERF_TEST_P(WeightedMedianFilterTest, perf,
Combine(
Values(szODD, szQVGA),
Values(CV_8U, CV_32F),
Values(1, 3),
Values(1, 3),
Values(3, 5),
Values(WMF_EXP, WMF_COS))
)
{
RNG rnd(1);
WMFTestParam params = GetParam();
double sigma = rnd.uniform(20.0, 30.0);
Size sz = get<0>(params);
int srcDepth = get<1>(params);
int jCn = get<2>(params);
int srcCn = get<3>(params);
int r = get<4>(params);
WMFWeightType weightType = get<5>(params);
Mat joint(sz, CV_MAKE_TYPE(CV_8U, jCn));
Mat src(sz, CV_MAKE_TYPE(srcDepth, srcCn));
Mat dst(sz, src.type());
cv::setNumThreads(cv::getNumberOfCPUs());
declare.in(joint, src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs());
TEST_CYCLE_N(1)
{
weightedMedianFilter(joint, src, dst, r, sigma, weightType);
}
SANITY_CHECK_NOTHING();
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
namespace{
using namespace cv::ximgproc;
/***************************************************************/
/* Function: from32FTo32S
* Description: adaptive quantization for changing a floating-point 1D image to integer image.
* The adaptive quantization strategy is based on binary search, which searches an
* upper bound of quantization error.
* The function also return a mapping between quantized value (32F) and quantized index (32S).
* The mapping is used to convert integer image back to floating-point image after filtering.
***************************************************************/
void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping)
{
int rows = img.rows, cols = img.cols;
int alls = rows * cols;
float *imgPtr = img.ptr<float>();
typedef pair<float,int> pairFI;
pairFI *data = (pairFI *)malloc(alls*sizeof(pairFI));
// Sort all pixels of the image by ascending order of pixel value
for(int i=0;i<alls;i++){
data[i].second = i;
data[i].first = imgPtr[i];
}
sort(data,data+alls);
// Find lower bound and upper bound of the pixel values
double maxVal,minVal;
minMaxLoc(img,&minVal,&maxVal);
float maxRange = (float)(maxVal - minVal);
float th = 1e-5f;
float l = 0, r = maxRange*2.0f/nI;
// Perform binary search on error bound
while(r-l > th)
{
float m = (r+l)*0.5f;
bool suc = true;
float base = (float)minVal;
int cnt=0;
for(int i=0;i<alls;i++)
{
if(data[i].first>base+m)
{
cnt++;
base = data[i].first;
if(cnt==nI)
{
suc = false;
break;
}
}
}
if(suc)r=m;
else l=m;
}
Mat retImg(img.size(),CV_32SC1);
int *retImgPtr = retImg.ptr<int>();
// In the sorted list, divide pixel values into clusters according to the minimum error bound
// Quantize each value to the median of its cluster
// Also record the mapping of quantized value and quantized index.
float base = (float)minVal;
int baseI = 0;
int cnt = 0;
for(int i=0;i<=alls;i++)
{
if(i==alls || data[i].first>base+r)
{
mapping[cnt] = data[(baseI+i-1)>>1].first; //median
if(i==alls)break;
cnt++;
base = data[i].first;
baseI = i;
}
retImgPtr[data[i].second] = cnt;
}
free(data);
//end of the function
outImg = retImg;
}
/***************************************************************/
/* Function: from32STo32F
* Description: convert the quantization index image back to the floating-point image accroding to the mapping
***************************************************************/
void from32STo32F(Mat &img, Mat &outImg, float *mapping)
{
Mat retImg(img.size(),CV_32F);
int rows = img.rows, cols = img.cols, alls = rows*cols;
float *retImgPtr = retImg.ptr<float>();
int *imgPtr = img.ptr<int>();
// convert 32S index to 32F real value
for(int i=0;i<alls;i++)
{
retImgPtr[i] = mapping[imgPtr[i]];
}
// end of the function
outImg = retImg;
}
/***************************************************************
* Function: float2D
* Description: allocate a 2D float array with dimension "dim1 x dim2"
***************************************************************/
float** float2D(int dim1, int dim2)
{
float **ret = new float*[dim1];
ret[0] = new float[dim1*dim2];
for(int i=1;i<dim1;i++)ret[i] = ret[i-1]+dim2;
return ret;
}
/***************************************************************
* Function: float2D_release
* Description: deallocate the 2D array created by float2D()
***************************************************************/
void float2D_release(float **p)
{
delete []p[0];
delete []p;
}
/***************************************************************
* Function: int2D
* Description: allocate a 2D integer array with dimension "dim1 x dim2"
***************************************************************/
int** int2D(int dim1, int dim2)
{
int **ret = new int*[dim1];
ret[0] = new int[dim1*dim2];
for(int i=1;i<dim1;i++)ret[i] = ret[i-1]+dim2;
return ret;
}
/***************************************************************
* Function: int2D_release
* Description: deallocate the 2D array created by int2D()
***************************************************************/
void int2D_release(int **p)
{
delete []p[0];
delete []p;
}
/***************************************************************
* Function: updateBCB
* Description: maintain the necklace table of BCB
***************************************************************/
inline void updateBCB(int &num,int *f,int *b,int i,int v)
{
static int p1,p2;
if(i)
{
if(!num)
{ // cell is becoming non-empty
p2=f[0];
f[0]=i;
f[i]=p2;
b[p2]=i;
b[i]=0;
}
else if(!(num+v))
{// cell is becoming empty
p1=b[i],p2=f[i];
f[p1]=p2;
b[p2]=p1;
}
}
// update the cell count
num += v;
}
/***************************************************************
* Function: featureIndexing
* Description: convert uchar feature image "F" to CV_32SC1 type.
* If F is 3-channel, perform k-means clustering
* If F is 1-channel, only perform type-casting
***************************************************************/
void featureIndexing(Mat &F, float **&wMap, int &nF, float sigmaI, WMFWeightType weightType){
// Configuration and Declaration
Mat FNew;
int cols = F.cols, rows = F.rows;
int alls = cols * rows;
int KmeansAttempts=1;
/* For 1 channel feature image (uchar)*/
if(F.channels() == 1)
{
nF = 256;
// Type-casting
F.convertTo(FNew, CV_32S);
// Compute weight map (weight between each pair of feature index)
wMap = float2D(nF,nF);
float nSigmaI = sigmaI;
float divider = (1.0f/(2*nSigmaI*nSigmaI));
for(int i=0;i<nF;i++)
{
for(int j=i;j<nF;j++)
{
float diff = fabs((float)(i-j));
float val;
switch(weightType)
{
case WMF_EXP: val = exp(-(diff*diff)*divider); break;
case WMF_IV1: val = 1.0f/(diff+nSigmaI); break;
case WMF_IV2: val = 1.0f / (diff*diff+nSigmaI*nSigmaI); break;
case WMF_COS: val = 1.0f; break;
case WMF_JAC: val = (float)(min(i,j)*1.0/max(i,j)); break;
case WMF_OFF: val = 1.0f; break;
default: val = exp(-(diff*diff)*divider);
}
wMap[i][j] = wMap[j][i] = val;
}
}
}
/* For 3 channel feature image (uchar)*/
else if(F.channels() == 3)
{
const int shift = 2; // 256(8-bit)->64(6-bit)
const int LOW_NUM = 256>>shift;
static int hash[LOW_NUM][LOW_NUM][LOW_NUM]={{{0}}};
memset(hash,0,sizeof(hash));
// throw pixels into a 2D histogram
int candCnt = 0;
{
int lowR,lowG,lowB;
uchar *FPtr = F.ptr<uchar>();
for(int i=0,i3=0;i<alls;i++,i3+=3)
{
lowB = FPtr[i3]>>shift;
lowG = FPtr[i3+1]>>shift;
lowR = FPtr[i3+2]>>shift;
if(hash[lowB][lowG][lowR]==0)
{
candCnt++;
hash[lowB][lowG][lowR]=1;
}
}
}
nF = min(nF, candCnt);
Mat samples(candCnt,3,CV_32F);
//prepare for K-means
int top=0;
for(int i=0;i<LOW_NUM;i++)for(int j=0;j<LOW_NUM;j++)for(int k=0;k<LOW_NUM;k++){
if(hash[i][j][k]){
samples.ptr<float>(top)[0] = (float)i;
samples.ptr<float>(top)[1] = (float)j;
samples.ptr<float>(top)[2] = (float)k;
top++;
}
}
//do K-means
Mat labels;
Mat centers;
kmeans(samples, nF, labels, TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 0, 10000), KmeansAttempts, KMEANS_PP_CENTERS, centers );
//make connection (i,j,k) <-> index
top = 0;
for(int i=0;i<LOW_NUM;i++)for(int j=0;j<LOW_NUM;j++)for(int k=0;k<LOW_NUM;k++)
{
if(hash[i][j][k])
{
hash[i][j][k] = labels.ptr<int>(top)[0];
top++;
}
}
// generate index map
FNew = Mat(F.size(),CV_32SC1);
int lowR,lowG,lowB;
uchar *FPtr = F.ptr<uchar>();
for(int i=0,i3=0;i<alls;i++,i3+=3)
{
lowB = FPtr[i3]>>shift;
lowG = FPtr[i3+1]>>shift;
lowR = FPtr[i3+2]>>shift;
FNew.ptr<int>()[i] = hash[lowB][lowG][lowR];
}
// Compute weight map (weight between each pair of feature index)
wMap = float2D(nF,nF);
float nSigmaI = sigmaI/256.0f*LOW_NUM;
float divider = (1.0f/(2*nSigmaI*nSigmaI));
float *length = new float[nF];
for(int i=0;i<nF;i++)
{
float a0 = centers.ptr<float>(i)[0];
float a1 = centers.ptr<float>(i)[1];
float a2 = centers.ptr<float>(i)[2];
length[i] = sqrt(a0*a0+a1*a1+a2*a2);
}
for(int i=0;i<nF;i++)
{
for(int j=i;j<nF;j++)
{
float a0 = centers.ptr<float>(i)[0], b0 = centers.ptr<float>(j)[0];
float a1 = centers.ptr<float>(i)[1], b1 = centers.ptr<float>(j)[1];
float a2 = centers.ptr<float>(i)[2], b2 = centers.ptr<float>(j)[2];
float diff0 = a0-b0;
float diff1 = a1-b1;
float diff2 = a2-b2;
float val;
switch(weightType)
{
case WMF_EXP: val = exp(-(diff0*diff0+diff1*diff1+diff2*diff2)*divider); break;
case WMF_IV1: val = 1.0f/(fabs(diff0)+fabs(diff1)+fabs(diff2)+nSigmaI); break;
case WMF_IV2: val = 1.0f / (diff0*diff0+diff1*diff1+diff2*diff2+nSigmaI*nSigmaI); break;
case WMF_COS: val = (a0*b0+a1*b1+a2*b2)/(length[i]*length[j]); break;
case WMF_JAC: val = (min(a0,b0)+min(a1,b1)+min(a2,b2))/(max(a0,b0)+max(a1,b1)+max(a2,b2)); break;
case WMF_OFF: val = 1.0f; break;
default: val = exp(-(diff0*diff0+diff1*diff1+diff2*diff2)*divider);
}
wMap[i][j] = wMap[j][i] = val;
}
}
delete []length;
}
//end of the function
F = FNew;
}
Mat filterCore(Mat &I, Mat &F, float **wMap, int r=20, int nF=256, int nI=256, Mat mask=Mat())
{
// Check validation
assert(I.depth() == CV_32S && I.channels()==1);//input image: 32SC1
assert(F.depth() == CV_32S && F.channels()==1);//feature image: 32SC1
// Configuration and declaration
int rows = I.rows, cols = I.cols;
Mat outImg = I.clone();
// Handle Mask
if(mask.empty())
{
mask = Mat(I.size(),CV_8U);
mask = Scalar(1);
}
// Allocate memory for joint-histogram and BCB
int **H = int2D(nI,nF);
int *BCB = new int[nF];
// Allocate links for necklace table
int **Hf = int2D(nI,nF);//forward link
int **Hb = int2D(nI,nF);//backward link
int *BCBf = new int[nF];//forward link
int *BCBb = new int[nF];//backward link
// Column Scanning
for(int x=0;x<cols;x++)
{
// Reset histogram and BCB for each column
memset(BCB, 0, sizeof(int)*nF);
memset(H[0], 0, sizeof(int)*nF*nI);
for(int i=0;i<nI;i++)Hf[i][0]=Hb[i][0]=0;
BCBf[0]=BCBb[0]=0;
// Reset cut-point
int medianVal = -1;
// Precompute "x" range and checks boundary
int downX = max(0,x-r);
int upX = min(cols-1,x+r);
// Initialize joint-histogram and BCB for the first window
int upY = min(rows-1,r);
for(int i=0;i<=upY;i++)
{
int *IPtr = I.ptr<int>(i);
int *FPtr = F.ptr<int>(i);
uchar *maskPtr = mask.ptr<uchar>(i);
for(int j=downX;j<=upX;j++)
{
if(!maskPtr[j])continue;
int fval = IPtr[j];
int *curHist = H[fval];
int gval = FPtr[j];
// Maintain necklace table of joint-histogram
if(!curHist[gval] && gval)
{
int *curHf = Hf[fval];
int *curHb = Hb[fval];
int p1=0,p2=curHf[0];
curHf[p1]=gval;
curHf[gval]=p2;
curHb[p2]=gval;
curHb[gval]=p1;
}
curHist[gval]++;
// Maintain necklace table of BCB
updateBCB(BCB[gval],BCBf,BCBb,gval,-1);
}
}
for(int y=0;y<rows;y++)
{
// Find weighted median with help of BCB and joint-histogram
float balanceWeight = 0;
int curIndex = F.ptr<int>(y,x)[0];
float *fPtr = wMap[curIndex];
int &curMedianVal = medianVal;
// Compute current balance
{
int i=0;
do
{
balanceWeight += BCB[i]*fPtr[i];
i=BCBf[i];
}while(i);
}
// Move cut-point to the left
if(balanceWeight >= 0)
{
for(;balanceWeight >= 0 && curMedianVal; curMedianVal--)
{
float curWeight = 0;
int *nextHist = H[curMedianVal];
int *nextHf = Hf[curMedianVal];
// Compute weight change by shift cut-point
int i=0;
do
{
curWeight += (nextHist[i]<<1)*fPtr[i];
// Update BCB and maintain the necklace table of BCB
updateBCB(BCB[i],BCBf,BCBb,i,-(nextHist[i]<<1));
i=nextHf[i];
}while(i);
balanceWeight -= curWeight;
}
}
// Move cut-point to the right
else if(balanceWeight < 0)
{
for(;balanceWeight < 0 && curMedianVal != nI-1; curMedianVal++)
{
float curWeight = 0;
int *nextHist = H[curMedianVal+1];
int *nextHf = Hf[curMedianVal+1];
// Compute weight change by shift cut-point
int i=0;
do
{
curWeight += (nextHist[i]<<1)*fPtr[i];
// Update BCB and maintain the necklace table of BCB
updateBCB(BCB[i],BCBf,BCBb,i,nextHist[i]<<1);
i=nextHf[i];
}while(i);
balanceWeight += curWeight;
}
}
// Weighted median is found and written to the output image
if(balanceWeight<0)outImg.ptr<int>(y,x)[0] = curMedianVal+1;
else outImg.ptr<int>(y,x)[0] = curMedianVal;
// Update joint-histogram and BCB when local window is shifted.
int fval,gval,*curHist;
// Add entering pixels into joint-histogram and BCB
int rownum = y + r + 1;
if(rownum < rows)
{
int *inputImgPtr = I.ptr<int>(rownum);
int *guideImgPtr = F.ptr<int>(rownum);
uchar *maskPtr = mask.ptr<uchar>(rownum);
for(int j=downX;j<=upX;j++)
{
if(!maskPtr[j])continue;
fval = inputImgPtr[j];
curHist = H[fval];
gval = guideImgPtr[j];
// Maintain necklace table of joint-histogram
if(!curHist[gval] && gval)
{
int *curHf = Hf[fval];
int *curHb = Hb[fval];
int p1=0,p2=curHf[0];
curHf[gval]=p2;
curHb[gval]=p1;
curHf[p1]=curHb[p2]=gval;
}
curHist[gval]++;
// Maintain necklace table of BCB
updateBCB(BCB[gval],BCBf,BCBb,gval,((fval <= medianVal)<<1)-1);
}
}
// Delete leaving pixels into joint-histogram and BCB
rownum = y - r;
if(rownum >= 0)
{
int *inputImgPtr = I.ptr<int>(rownum);
int *guideImgPtr = F.ptr<int>(rownum);
uchar *maskPtr = mask.ptr<uchar>(rownum);
for(int j=downX;j<=upX;j++)
{
if(!maskPtr[j])continue;
fval = inputImgPtr[j];
curHist = H[fval];
gval = guideImgPtr[j];
curHist[gval]--;
// Maintain necklace table of joint-histogram
if(!curHist[gval] && gval)
{
int *curHf = Hf[fval];
int *curHb = Hb[fval];
int p1=curHb[gval],p2=curHf[gval];
curHf[p1]=p2;
curHb[p2]=p1;
}
// Maintain necklace table of BCB
updateBCB(BCB[gval],BCBf,BCBb,gval,-((fval <= medianVal)<<1)+1);
}
}
}
}
// Deallocate the memory
{
delete []BCB;
delete []BCBf;
delete []BCBb;
int2D_release(H);
int2D_release(Hf);
int2D_release(Hb);
}
// end of the function
return outImg;
}
}
namespace cv
{
namespace ximgproc
{
void weightedMedianFilter(InputArray joint, InputArray src, OutputArray dst, int r, double sigma, WMFWeightType weightType, Mat mask)
{
CV_Assert(!src.empty());
CV_Assert(r > 0 && sigma > 0);
int nI = 256;
int nF = 256;
Mat I = src.getMat();
Mat F = joint.getMat();
if(joint.empty())
{
medianBlur(src, dst, r);
return;
}
CV_Assert(I.depth() == CV_32F || I.depth() == CV_8U);
CV_Assert(F.depth() == CV_8U && (F.channels() == 1 || F.channels() == 3));
dst.create(src.size(), src.type());
Mat D = dst.getMat();
if(D.data == F.data)
F = F.clone();
if(D.data == I.data)
I = I.clone();
//Preprocess I
//OUTPUT OF THIS STEP: Is, iMap
//If I is floating point image, "adaptive quantization" is done in from32FTo32S.
//The mapping of floating value to integer value is stored in iMap (for each channel).
//"Is" stores each channel of "I". The channels are converted to CV_32S type after this step.
vector<float *> iMap(I.channels());
vector<Mat> Is;
split(I,Is);
for(int i=0;i<(int)Is.size();i++)
{
if(I.depth() == CV_32F)
{
iMap[i] = new float[nI];
from32FTo32S(Is[i],Is[i],nI,iMap[i]);
}
else if(I.depth() == CV_8U)
{
Is[i].convertTo(Is[i],CV_32S);
}
}
//Preprocess F
//OUTPUT OF THIS STEP: F(new), wMap
//If "F" is 3-channel image, "clustering feature image" is done in featureIndexing.
//If "F" is 1-channel image, featureIndexing only does a type-casting on "F".
//The output "F" is CV_32S type, containing indexes of feature values.
//"wMap" is a 2D array that defines the distance between each pair of feature indexes.
// wMap[i][j] is the weight between feature index "i" and "j".
float **wMap = NULL;
featureIndexing(F, wMap, nF, float(sigma), weightType);
//Filtering - Joint-Histogram Framework
for(int i=0; i<(int)Is.size(); i++)
{
Is[i] = filterCore(Is[i], F, wMap, r, nF,nI,mask);
}
float2D_release(wMap);
//Postprocess F
//Convert input image back to the original type.
for(int i = 0; i < (int)Is.size(); i++)
{
if(I.depth()==CV_32F)
{
from32STo32F(Is[i],Is[i],iMap[i]);
delete []iMap[i];
}
else if(I.depth()==CV_8U)
{
Is[i].convertTo(Is[i],CV_8U);
}
}
//merge the channels
merge(Is, D);
}
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
static string getDataDir()
{
return cvtest::TS::ptr()->get_data_path();
}
typedef tuple<Size, WMFWeightType> WMFParams;
typedef TestWithParam<WMFParams> WeightedMedianFilterTest;
TEST_P(WeightedMedianFilterTest, SplatSurfaceAccuracy)
{
WMFParams params = GetParam();
Size size = get<0>(params);
WMFWeightType weightType = get<1>(params);
RNG rnd(0);
int guideCn = rnd.uniform(1, 2);
if(guideCn==2) guideCn++; //1 or 3 channels
Mat guide(size, CV_MAKE_TYPE(CV_8U, guideCn));
randu(guide, 0, 255);
Scalar surfaceValue;
int srcCn = rnd.uniform(1, 4);
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
Mat src(size, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
int r = int(rnd.uniform(3, 11));
double sigma = rnd.uniform(9.0, 100.0);
Mat res;
weightedMedianFilter(guide, src, res, r, sigma, weightType);
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
EXPECT_LE(normL1, 1.0/64);
}
TEST(WeightedMedianFilterTest, ReferenceAccuracy)
{
string dir = getDataDir() + "cv/edgefilter";
Mat src = imread(dir + "/kodim23.png");
Mat ref = imread(dir + "/fgs/kodim23_lambda=1000_sigma=10.png");
ASSERT_FALSE(src.empty());
ASSERT_FALSE(ref.empty());
cv::setNumThreads(cv::getNumberOfCPUs());
Mat res;
weightedMedianFilter(src, src, res, 7);
double totalMaxError = 1.0/32.0*src.total()*src.channels();
EXPECT_LE(cvtest::norm(res, ref, NORM_L2), totalMaxError);
}
INSTANTIATE_TEST_CASE_P(TypicalSET, WeightedMedianFilterTest, Combine(Values(szODD, szQVGA), Values(WMF_EXP, WMF_IV2, WMF_OFF)));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment