Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
88379486
Commit
88379486
authored
Sep 14, 2015
by
Zhou Chao
Committed by
Maksim Shabunin
Dec 22, 2015
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add weighted median filter
parent
e8937cc0
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1034 additions
and
0 deletions
+1034
-0
ximgproc.bib
modules/ximgproc/doc/ximgproc.bib
+18
-0
ximgproc.hpp
modules/ximgproc/include/opencv2/ximgproc.hpp
+1
-0
edge_filter.hpp
modules/ximgproc/include/opencv2/ximgproc/edge_filter.hpp
+2
-0
weighted_median_filter.hpp
...gproc/include/opencv2/ximgproc/weighted_median_filter.hpp
+95
-0
perf_weighted_median_filter.cpp
modules/ximgproc/perf/perf_weighted_median_filter.cpp
+88
-0
weighted_median_filter.cpp
modules/ximgproc/src/weighted_median_filter.cpp
+723
-0
test_weighted_median_filter.cpp
modules/ximgproc/test/test_weighted_median_filter.cpp
+107
-0
No files found.
modules/ximgproc/doc/ximgproc.bib
View file @
88379486
...
...
@@ -136,3 +136,21 @@
month = {June},
year = {2015}
}
@incollection{zhang2014rolling,
title={Rolling guidance filter},
author={Zhang, Qi and Shen, Xiaoyong and Xu, Li and Jia, Jiaya},
booktitle={Computer Vision--ECCV 2014},
pages={815--830},
year={2014},
publisher={Springer}
}
@inproceedings{zhang2014100+,
title={100+ times faster weighted median filter (WMF)},
author={Zhang, Qi and Xu, Li and Jia, Jiaya},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
pages={2830--2837},
year={2014},
organization={IEEE}
}
modules/ximgproc/include/opencv2/ximgproc.hpp
View file @
88379486
...
...
@@ -45,6 +45,7 @@
#include "ximgproc/segmentation.hpp"
#include "ximgproc/fast_hough_transform.hpp"
#include "ximgproc/estimated_covariance.hpp"
#include "ximgproc/weighted_median_filter.hpp"
#include "ximgproc/slic.hpp"
#include "ximgproc/lsc.hpp"
...
...
modules/ximgproc/include/opencv2/ximgproc/edge_filter.hpp
View file @
88379486
...
...
@@ -321,6 +321,8 @@ void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int
/** @brief Applies the rolling guidance filter to an image.
For more details, please see @cite zhang2014rolling
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
@param dst Destination image of the same size and type as src.
...
...
modules/ximgproc/include/opencv2/ximgproc/weighted_median_filter.hpp
0 → 100644
View file @
88379486
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, The Chinese University of Hong Kong, all rights reserved.
//
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_WEIGHTED_MEDIAN_FILTER_HPP__
#define __OPENCV_WEIGHTED_MEDIAN_FILTER_HPP__
#ifdef __cplusplus
/**
* @file
* @date Sept 9, 2015
* @author Zhou Chao
*/
#include <opencv2/core.hpp>
#include <string>
namespace
cv
{
namespace
ximgproc
{
/**
* @brief Specifies weight types of weighted median filter.
*/
enum
WMFWeightType
{
WMF_EXP
,
//!< \f$exp(-|I1-I2|^2/(2*sigma^2))\f$
WMF_IV1
,
//!< \f$(|I1-I2|+sigma)^-1\f$
WMF_IV2
,
//!< \f$(|I1-I2|^2+sigma^2)^-1\f$
WMF_COS
,
//!< \f$dot(I1,I2)/(|I1|*|I2|)\f$
WMF_JAC
,
//!< \f$(min(r1,r2)+min(g1,g2)+min(b1,b2))/(max(r1,r2)+max(g1,g2)+max(b1,b2))\f$
WMF_OFF
//!< unweighted
};
/**
* @brief Applies weighted median filter to an image.
*
* For more details about this implementation, please see @cite zhang2014100+
*
* @param joint Joint 8-bit, 1-channel or 3-channel image.
* @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
* @param dst Destination image.
* @param r Radius of filtering kernel, should be a positive integer.
* @param sigma Filter range standard deviation for the joint image.
* @param weightType weightType The type of weight definition, see WMFWeightType
* @param mask A 0-1 mask that has the same size with I. This mask is used to ignore the effect of some pixels. If the pixel value on mask is 0,
* the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
*
* @sa medianBlur, jointBilateralFilter
*/
CV_EXPORTS
void
weightedMedianFilter
(
InputArray
joint
,
InputArray
src
,
OutputArray
dst
,
int
r
,
double
sigma
=
25.5
,
WMFWeightType
weightType
=
WMF_EXP
,
Mat
mask
=
Mat
());
}
}
#endif
#endif
modules/ximgproc/perf/perf_weighted_median_filter.cpp
0 → 100644
View file @
88379486
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace
cvtest
{
using
std
::
tr1
::
tuple
;
using
std
::
tr1
::
get
;
using
namespace
perf
;
using
namespace
testing
;
using
namespace
cv
;
using
namespace
cv
::
ximgproc
;
typedef
tuple
<
Size
,
MatType
,
int
,
int
,
int
,
WMFWeightType
>
WMFTestParam
;
typedef
TestBaseWithParam
<
WMFTestParam
>
WeightedMedianFilterTest
;
PERF_TEST_P
(
WeightedMedianFilterTest
,
perf
,
Combine
(
Values
(
szODD
,
szQVGA
),
Values
(
CV_8U
,
CV_32F
),
Values
(
1
,
3
),
Values
(
1
,
3
),
Values
(
3
,
5
),
Values
(
WMF_EXP
,
WMF_COS
))
)
{
RNG
rnd
(
1
);
WMFTestParam
params
=
GetParam
();
double
sigma
=
rnd
.
uniform
(
20.0
,
30.0
);
Size
sz
=
get
<
0
>
(
params
);
int
srcDepth
=
get
<
1
>
(
params
);
int
jCn
=
get
<
2
>
(
params
);
int
srcCn
=
get
<
3
>
(
params
);
int
r
=
get
<
4
>
(
params
);
WMFWeightType
weightType
=
get
<
5
>
(
params
);
Mat
joint
(
sz
,
CV_MAKE_TYPE
(
CV_8U
,
jCn
));
Mat
src
(
sz
,
CV_MAKE_TYPE
(
srcDepth
,
srcCn
));
Mat
dst
(
sz
,
src
.
type
());
cv
::
setNumThreads
(
cv
::
getNumberOfCPUs
());
declare
.
in
(
joint
,
src
,
WARMUP_RNG
).
out
(
dst
).
tbb_threads
(
cv
::
getNumberOfCPUs
());
TEST_CYCLE_N
(
1
)
{
weightedMedianFilter
(
joint
,
src
,
dst
,
r
,
sigma
,
weightType
);
}
SANITY_CHECK_NOTHING
();
}
}
modules/ximgproc/src/weighted_median_filter.cpp
0 → 100644
View file @
88379486
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include <opencv2/imgproc.hpp>
using
namespace
std
;
using
namespace
cv
;
namespace
{
using
namespace
cv
::
ximgproc
;
/***************************************************************/
/* Function: from32FTo32S
* Description: adaptive quantization for changing a floating-point 1D image to integer image.
* The adaptive quantization strategy is based on binary search, which searches an
* upper bound of quantization error.
* The function also return a mapping between quantized value (32F) and quantized index (32S).
* The mapping is used to convert integer image back to floating-point image after filtering.
***************************************************************/
void
from32FTo32S
(
Mat
&
img
,
Mat
&
outImg
,
int
nI
,
float
*
mapping
)
{
int
rows
=
img
.
rows
,
cols
=
img
.
cols
;
int
alls
=
rows
*
cols
;
float
*
imgPtr
=
img
.
ptr
<
float
>
();
typedef
pair
<
float
,
int
>
pairFI
;
pairFI
*
data
=
(
pairFI
*
)
malloc
(
alls
*
sizeof
(
pairFI
));
// Sort all pixels of the image by ascending order of pixel value
for
(
int
i
=
0
;
i
<
alls
;
i
++
){
data
[
i
].
second
=
i
;
data
[
i
].
first
=
imgPtr
[
i
];
}
sort
(
data
,
data
+
alls
);
// Find lower bound and upper bound of the pixel values
double
maxVal
,
minVal
;
minMaxLoc
(
img
,
&
minVal
,
&
maxVal
);
float
maxRange
=
(
float
)(
maxVal
-
minVal
);
float
th
=
1e-5
f
;
float
l
=
0
,
r
=
maxRange
*
2.0
f
/
nI
;
// Perform binary search on error bound
while
(
r
-
l
>
th
)
{
float
m
=
(
r
+
l
)
*
0.5
f
;
bool
suc
=
true
;
float
base
=
(
float
)
minVal
;
int
cnt
=
0
;
for
(
int
i
=
0
;
i
<
alls
;
i
++
)
{
if
(
data
[
i
].
first
>
base
+
m
)
{
cnt
++
;
base
=
data
[
i
].
first
;
if
(
cnt
==
nI
)
{
suc
=
false
;
break
;
}
}
}
if
(
suc
)
r
=
m
;
else
l
=
m
;
}
Mat
retImg
(
img
.
size
(),
CV_32SC1
);
int
*
retImgPtr
=
retImg
.
ptr
<
int
>
();
// In the sorted list, divide pixel values into clusters according to the minimum error bound
// Quantize each value to the median of its cluster
// Also record the mapping of quantized value and quantized index.
float
base
=
(
float
)
minVal
;
int
baseI
=
0
;
int
cnt
=
0
;
for
(
int
i
=
0
;
i
<=
alls
;
i
++
)
{
if
(
i
==
alls
||
data
[
i
].
first
>
base
+
r
)
{
mapping
[
cnt
]
=
data
[(
baseI
+
i
-
1
)
>>
1
].
first
;
//median
if
(
i
==
alls
)
break
;
cnt
++
;
base
=
data
[
i
].
first
;
baseI
=
i
;
}
retImgPtr
[
data
[
i
].
second
]
=
cnt
;
}
free
(
data
);
//end of the function
outImg
=
retImg
;
}
/***************************************************************/
/* Function: from32STo32F
* Description: convert the quantization index image back to the floating-point image accroding to the mapping
***************************************************************/
void
from32STo32F
(
Mat
&
img
,
Mat
&
outImg
,
float
*
mapping
)
{
Mat
retImg
(
img
.
size
(),
CV_32F
);
int
rows
=
img
.
rows
,
cols
=
img
.
cols
,
alls
=
rows
*
cols
;
float
*
retImgPtr
=
retImg
.
ptr
<
float
>
();
int
*
imgPtr
=
img
.
ptr
<
int
>
();
// convert 32S index to 32F real value
for
(
int
i
=
0
;
i
<
alls
;
i
++
)
{
retImgPtr
[
i
]
=
mapping
[
imgPtr
[
i
]];
}
// end of the function
outImg
=
retImg
;
}
/***************************************************************
* Function: float2D
* Description: allocate a 2D float array with dimension "dim1 x dim2"
***************************************************************/
float
**
float2D
(
int
dim1
,
int
dim2
)
{
float
**
ret
=
new
float
*
[
dim1
];
ret
[
0
]
=
new
float
[
dim1
*
dim2
];
for
(
int
i
=
1
;
i
<
dim1
;
i
++
)
ret
[
i
]
=
ret
[
i
-
1
]
+
dim2
;
return
ret
;
}
/***************************************************************
* Function: float2D_release
* Description: deallocate the 2D array created by float2D()
***************************************************************/
void
float2D_release
(
float
**
p
)
{
delete
[]
p
[
0
];
delete
[]
p
;
}
/***************************************************************
* Function: int2D
* Description: allocate a 2D integer array with dimension "dim1 x dim2"
***************************************************************/
int
**
int2D
(
int
dim1
,
int
dim2
)
{
int
**
ret
=
new
int
*
[
dim1
];
ret
[
0
]
=
new
int
[
dim1
*
dim2
];
for
(
int
i
=
1
;
i
<
dim1
;
i
++
)
ret
[
i
]
=
ret
[
i
-
1
]
+
dim2
;
return
ret
;
}
/***************************************************************
* Function: int2D_release
* Description: deallocate the 2D array created by int2D()
***************************************************************/
void
int2D_release
(
int
**
p
)
{
delete
[]
p
[
0
];
delete
[]
p
;
}
/***************************************************************
* Function: updateBCB
* Description: maintain the necklace table of BCB
***************************************************************/
inline
void
updateBCB
(
int
&
num
,
int
*
f
,
int
*
b
,
int
i
,
int
v
)
{
static
int
p1
,
p2
;
if
(
i
)
{
if
(
!
num
)
{
// cell is becoming non-empty
p2
=
f
[
0
];
f
[
0
]
=
i
;
f
[
i
]
=
p2
;
b
[
p2
]
=
i
;
b
[
i
]
=
0
;
}
else
if
(
!
(
num
+
v
))
{
// cell is becoming empty
p1
=
b
[
i
],
p2
=
f
[
i
];
f
[
p1
]
=
p2
;
b
[
p2
]
=
p1
;
}
}
// update the cell count
num
+=
v
;
}
/***************************************************************
* Function: featureIndexing
* Description: convert uchar feature image "F" to CV_32SC1 type.
* If F is 3-channel, perform k-means clustering
* If F is 1-channel, only perform type-casting
***************************************************************/
void
featureIndexing
(
Mat
&
F
,
float
**&
wMap
,
int
&
nF
,
float
sigmaI
,
WMFWeightType
weightType
){
// Configuration and Declaration
Mat
FNew
;
int
cols
=
F
.
cols
,
rows
=
F
.
rows
;
int
alls
=
cols
*
rows
;
int
KmeansAttempts
=
1
;
/* For 1 channel feature image (uchar)*/
if
(
F
.
channels
()
==
1
)
{
nF
=
256
;
// Type-casting
F
.
convertTo
(
FNew
,
CV_32S
);
// Compute weight map (weight between each pair of feature index)
wMap
=
float2D
(
nF
,
nF
);
float
nSigmaI
=
sigmaI
;
float
divider
=
(
1.0
f
/
(
2
*
nSigmaI
*
nSigmaI
));
for
(
int
i
=
0
;
i
<
nF
;
i
++
)
{
for
(
int
j
=
i
;
j
<
nF
;
j
++
)
{
float
diff
=
fabs
((
float
)(
i
-
j
));
float
val
;
switch
(
weightType
)
{
case
WMF_EXP
:
val
=
exp
(
-
(
diff
*
diff
)
*
divider
);
break
;
case
WMF_IV1
:
val
=
1.0
f
/
(
diff
+
nSigmaI
);
break
;
case
WMF_IV2
:
val
=
1.0
f
/
(
diff
*
diff
+
nSigmaI
*
nSigmaI
);
break
;
case
WMF_COS
:
val
=
1.0
f
;
break
;
case
WMF_JAC
:
val
=
(
float
)(
min
(
i
,
j
)
*
1.0
/
max
(
i
,
j
));
break
;
case
WMF_OFF
:
val
=
1.0
f
;
break
;
default
:
val
=
exp
(
-
(
diff
*
diff
)
*
divider
);
}
wMap
[
i
][
j
]
=
wMap
[
j
][
i
]
=
val
;
}
}
}
/* For 3 channel feature image (uchar)*/
else
if
(
F
.
channels
()
==
3
)
{
const
int
shift
=
2
;
// 256(8-bit)->64(6-bit)
const
int
LOW_NUM
=
256
>>
shift
;
static
int
hash
[
LOW_NUM
][
LOW_NUM
][
LOW_NUM
]
=
{{{
0
}}};
memset
(
hash
,
0
,
sizeof
(
hash
));
// throw pixels into a 2D histogram
int
candCnt
=
0
;
{
int
lowR
,
lowG
,
lowB
;
uchar
*
FPtr
=
F
.
ptr
<
uchar
>
();
for
(
int
i
=
0
,
i3
=
0
;
i
<
alls
;
i
++
,
i3
+=
3
)
{
lowB
=
FPtr
[
i3
]
>>
shift
;
lowG
=
FPtr
[
i3
+
1
]
>>
shift
;
lowR
=
FPtr
[
i3
+
2
]
>>
shift
;
if
(
hash
[
lowB
][
lowG
][
lowR
]
==
0
)
{
candCnt
++
;
hash
[
lowB
][
lowG
][
lowR
]
=
1
;
}
}
}
nF
=
min
(
nF
,
candCnt
);
Mat
samples
(
candCnt
,
3
,
CV_32F
);
//prepare for K-means
int
top
=
0
;
for
(
int
i
=
0
;
i
<
LOW_NUM
;
i
++
)
for
(
int
j
=
0
;
j
<
LOW_NUM
;
j
++
)
for
(
int
k
=
0
;
k
<
LOW_NUM
;
k
++
){
if
(
hash
[
i
][
j
][
k
]){
samples
.
ptr
<
float
>
(
top
)[
0
]
=
(
float
)
i
;
samples
.
ptr
<
float
>
(
top
)[
1
]
=
(
float
)
j
;
samples
.
ptr
<
float
>
(
top
)[
2
]
=
(
float
)
k
;
top
++
;
}
}
//do K-means
Mat
labels
;
Mat
centers
;
kmeans
(
samples
,
nF
,
labels
,
TermCriteria
(
CV_TERMCRIT_ITER
|
CV_TERMCRIT_EPS
,
0
,
10000
),
KmeansAttempts
,
KMEANS_PP_CENTERS
,
centers
);
//make connection (i,j,k) <-> index
top
=
0
;
for
(
int
i
=
0
;
i
<
LOW_NUM
;
i
++
)
for
(
int
j
=
0
;
j
<
LOW_NUM
;
j
++
)
for
(
int
k
=
0
;
k
<
LOW_NUM
;
k
++
)
{
if
(
hash
[
i
][
j
][
k
])
{
hash
[
i
][
j
][
k
]
=
labels
.
ptr
<
int
>
(
top
)[
0
];
top
++
;
}
}
// generate index map
FNew
=
Mat
(
F
.
size
(),
CV_32SC1
);
int
lowR
,
lowG
,
lowB
;
uchar
*
FPtr
=
F
.
ptr
<
uchar
>
();
for
(
int
i
=
0
,
i3
=
0
;
i
<
alls
;
i
++
,
i3
+=
3
)
{
lowB
=
FPtr
[
i3
]
>>
shift
;
lowG
=
FPtr
[
i3
+
1
]
>>
shift
;
lowR
=
FPtr
[
i3
+
2
]
>>
shift
;
FNew
.
ptr
<
int
>
()[
i
]
=
hash
[
lowB
][
lowG
][
lowR
];
}
// Compute weight map (weight between each pair of feature index)
wMap
=
float2D
(
nF
,
nF
);
float
nSigmaI
=
sigmaI
/
256.0
f
*
LOW_NUM
;
float
divider
=
(
1.0
f
/
(
2
*
nSigmaI
*
nSigmaI
));
float
*
length
=
new
float
[
nF
];
for
(
int
i
=
0
;
i
<
nF
;
i
++
)
{
float
a0
=
centers
.
ptr
<
float
>
(
i
)[
0
];
float
a1
=
centers
.
ptr
<
float
>
(
i
)[
1
];
float
a2
=
centers
.
ptr
<
float
>
(
i
)[
2
];
length
[
i
]
=
sqrt
(
a0
*
a0
+
a1
*
a1
+
a2
*
a2
);
}
for
(
int
i
=
0
;
i
<
nF
;
i
++
)
{
for
(
int
j
=
i
;
j
<
nF
;
j
++
)
{
float
a0
=
centers
.
ptr
<
float
>
(
i
)[
0
],
b0
=
centers
.
ptr
<
float
>
(
j
)[
0
];
float
a1
=
centers
.
ptr
<
float
>
(
i
)[
1
],
b1
=
centers
.
ptr
<
float
>
(
j
)[
1
];
float
a2
=
centers
.
ptr
<
float
>
(
i
)[
2
],
b2
=
centers
.
ptr
<
float
>
(
j
)[
2
];
float
diff0
=
a0
-
b0
;
float
diff1
=
a1
-
b1
;
float
diff2
=
a2
-
b2
;
float
val
;
switch
(
weightType
)
{
case
WMF_EXP
:
val
=
exp
(
-
(
diff0
*
diff0
+
diff1
*
diff1
+
diff2
*
diff2
)
*
divider
);
break
;
case
WMF_IV1
:
val
=
1.0
f
/
(
fabs
(
diff0
)
+
fabs
(
diff1
)
+
fabs
(
diff2
)
+
nSigmaI
);
break
;
case
WMF_IV2
:
val
=
1.0
f
/
(
diff0
*
diff0
+
diff1
*
diff1
+
diff2
*
diff2
+
nSigmaI
*
nSigmaI
);
break
;
case
WMF_COS
:
val
=
(
a0
*
b0
+
a1
*
b1
+
a2
*
b2
)
/
(
length
[
i
]
*
length
[
j
]);
break
;
case
WMF_JAC
:
val
=
(
min
(
a0
,
b0
)
+
min
(
a1
,
b1
)
+
min
(
a2
,
b2
))
/
(
max
(
a0
,
b0
)
+
max
(
a1
,
b1
)
+
max
(
a2
,
b2
));
break
;
case
WMF_OFF
:
val
=
1.0
f
;
break
;
default
:
val
=
exp
(
-
(
diff0
*
diff0
+
diff1
*
diff1
+
diff2
*
diff2
)
*
divider
);
}
wMap
[
i
][
j
]
=
wMap
[
j
][
i
]
=
val
;
}
}
delete
[]
length
;
}
//end of the function
F
=
FNew
;
}
Mat
filterCore
(
Mat
&
I
,
Mat
&
F
,
float
**
wMap
,
int
r
=
20
,
int
nF
=
256
,
int
nI
=
256
,
Mat
mask
=
Mat
())
{
// Check validation
assert
(
I
.
depth
()
==
CV_32S
&&
I
.
channels
()
==
1
);
//input image: 32SC1
assert
(
F
.
depth
()
==
CV_32S
&&
F
.
channels
()
==
1
);
//feature image: 32SC1
// Configuration and declaration
int
rows
=
I
.
rows
,
cols
=
I
.
cols
;
Mat
outImg
=
I
.
clone
();
// Handle Mask
if
(
mask
.
empty
())
{
mask
=
Mat
(
I
.
size
(),
CV_8U
);
mask
=
Scalar
(
1
);
}
// Allocate memory for joint-histogram and BCB
int
**
H
=
int2D
(
nI
,
nF
);
int
*
BCB
=
new
int
[
nF
];
// Allocate links for necklace table
int
**
Hf
=
int2D
(
nI
,
nF
);
//forward link
int
**
Hb
=
int2D
(
nI
,
nF
);
//backward link
int
*
BCBf
=
new
int
[
nF
];
//forward link
int
*
BCBb
=
new
int
[
nF
];
//backward link
// Column Scanning
for
(
int
x
=
0
;
x
<
cols
;
x
++
)
{
// Reset histogram and BCB for each column
memset
(
BCB
,
0
,
sizeof
(
int
)
*
nF
);
memset
(
H
[
0
],
0
,
sizeof
(
int
)
*
nF
*
nI
);
for
(
int
i
=
0
;
i
<
nI
;
i
++
)
Hf
[
i
][
0
]
=
Hb
[
i
][
0
]
=
0
;
BCBf
[
0
]
=
BCBb
[
0
]
=
0
;
// Reset cut-point
int
medianVal
=
-
1
;
// Precompute "x" range and checks boundary
int
downX
=
max
(
0
,
x
-
r
);
int
upX
=
min
(
cols
-
1
,
x
+
r
);
// Initialize joint-histogram and BCB for the first window
int
upY
=
min
(
rows
-
1
,
r
);
for
(
int
i
=
0
;
i
<=
upY
;
i
++
)
{
int
*
IPtr
=
I
.
ptr
<
int
>
(
i
);
int
*
FPtr
=
F
.
ptr
<
int
>
(
i
);
uchar
*
maskPtr
=
mask
.
ptr
<
uchar
>
(
i
);
for
(
int
j
=
downX
;
j
<=
upX
;
j
++
)
{
if
(
!
maskPtr
[
j
])
continue
;
int
fval
=
IPtr
[
j
];
int
*
curHist
=
H
[
fval
];
int
gval
=
FPtr
[
j
];
// Maintain necklace table of joint-histogram
if
(
!
curHist
[
gval
]
&&
gval
)
{
int
*
curHf
=
Hf
[
fval
];
int
*
curHb
=
Hb
[
fval
];
int
p1
=
0
,
p2
=
curHf
[
0
];
curHf
[
p1
]
=
gval
;
curHf
[
gval
]
=
p2
;
curHb
[
p2
]
=
gval
;
curHb
[
gval
]
=
p1
;
}
curHist
[
gval
]
++
;
// Maintain necklace table of BCB
updateBCB
(
BCB
[
gval
],
BCBf
,
BCBb
,
gval
,
-
1
);
}
}
for
(
int
y
=
0
;
y
<
rows
;
y
++
)
{
// Find weighted median with help of BCB and joint-histogram
float
balanceWeight
=
0
;
int
curIndex
=
F
.
ptr
<
int
>
(
y
,
x
)[
0
];
float
*
fPtr
=
wMap
[
curIndex
];
int
&
curMedianVal
=
medianVal
;
// Compute current balance
{
int
i
=
0
;
do
{
balanceWeight
+=
BCB
[
i
]
*
fPtr
[
i
];
i
=
BCBf
[
i
];
}
while
(
i
);
}
// Move cut-point to the left
if
(
balanceWeight
>=
0
)
{
for
(;
balanceWeight
>=
0
&&
curMedianVal
;
curMedianVal
--
)
{
float
curWeight
=
0
;
int
*
nextHist
=
H
[
curMedianVal
];
int
*
nextHf
=
Hf
[
curMedianVal
];
// Compute weight change by shift cut-point
int
i
=
0
;
do
{
curWeight
+=
(
nextHist
[
i
]
<<
1
)
*
fPtr
[
i
];
// Update BCB and maintain the necklace table of BCB
updateBCB
(
BCB
[
i
],
BCBf
,
BCBb
,
i
,
-
(
nextHist
[
i
]
<<
1
));
i
=
nextHf
[
i
];
}
while
(
i
);
balanceWeight
-=
curWeight
;
}
}
// Move cut-point to the right
else
if
(
balanceWeight
<
0
)
{
for
(;
balanceWeight
<
0
&&
curMedianVal
!=
nI
-
1
;
curMedianVal
++
)
{
float
curWeight
=
0
;
int
*
nextHist
=
H
[
curMedianVal
+
1
];
int
*
nextHf
=
Hf
[
curMedianVal
+
1
];
// Compute weight change by shift cut-point
int
i
=
0
;
do
{
curWeight
+=
(
nextHist
[
i
]
<<
1
)
*
fPtr
[
i
];
// Update BCB and maintain the necklace table of BCB
updateBCB
(
BCB
[
i
],
BCBf
,
BCBb
,
i
,
nextHist
[
i
]
<<
1
);
i
=
nextHf
[
i
];
}
while
(
i
);
balanceWeight
+=
curWeight
;
}
}
// Weighted median is found and written to the output image
if
(
balanceWeight
<
0
)
outImg
.
ptr
<
int
>
(
y
,
x
)[
0
]
=
curMedianVal
+
1
;
else
outImg
.
ptr
<
int
>
(
y
,
x
)[
0
]
=
curMedianVal
;
// Update joint-histogram and BCB when local window is shifted.
int
fval
,
gval
,
*
curHist
;
// Add entering pixels into joint-histogram and BCB
int
rownum
=
y
+
r
+
1
;
if
(
rownum
<
rows
)
{
int
*
inputImgPtr
=
I
.
ptr
<
int
>
(
rownum
);
int
*
guideImgPtr
=
F
.
ptr
<
int
>
(
rownum
);
uchar
*
maskPtr
=
mask
.
ptr
<
uchar
>
(
rownum
);
for
(
int
j
=
downX
;
j
<=
upX
;
j
++
)
{
if
(
!
maskPtr
[
j
])
continue
;
fval
=
inputImgPtr
[
j
];
curHist
=
H
[
fval
];
gval
=
guideImgPtr
[
j
];
// Maintain necklace table of joint-histogram
if
(
!
curHist
[
gval
]
&&
gval
)
{
int
*
curHf
=
Hf
[
fval
];
int
*
curHb
=
Hb
[
fval
];
int
p1
=
0
,
p2
=
curHf
[
0
];
curHf
[
gval
]
=
p2
;
curHb
[
gval
]
=
p1
;
curHf
[
p1
]
=
curHb
[
p2
]
=
gval
;
}
curHist
[
gval
]
++
;
// Maintain necklace table of BCB
updateBCB
(
BCB
[
gval
],
BCBf
,
BCBb
,
gval
,((
fval
<=
medianVal
)
<<
1
)
-
1
);
}
}
// Delete leaving pixels into joint-histogram and BCB
rownum
=
y
-
r
;
if
(
rownum
>=
0
)
{
int
*
inputImgPtr
=
I
.
ptr
<
int
>
(
rownum
);
int
*
guideImgPtr
=
F
.
ptr
<
int
>
(
rownum
);
uchar
*
maskPtr
=
mask
.
ptr
<
uchar
>
(
rownum
);
for
(
int
j
=
downX
;
j
<=
upX
;
j
++
)
{
if
(
!
maskPtr
[
j
])
continue
;
fval
=
inputImgPtr
[
j
];
curHist
=
H
[
fval
];
gval
=
guideImgPtr
[
j
];
curHist
[
gval
]
--
;
// Maintain necklace table of joint-histogram
if
(
!
curHist
[
gval
]
&&
gval
)
{
int
*
curHf
=
Hf
[
fval
];
int
*
curHb
=
Hb
[
fval
];
int
p1
=
curHb
[
gval
],
p2
=
curHf
[
gval
];
curHf
[
p1
]
=
p2
;
curHb
[
p2
]
=
p1
;
}
// Maintain necklace table of BCB
updateBCB
(
BCB
[
gval
],
BCBf
,
BCBb
,
gval
,
-
((
fval
<=
medianVal
)
<<
1
)
+
1
);
}
}
}
}
// Deallocate the memory
{
delete
[]
BCB
;
delete
[]
BCBf
;
delete
[]
BCBb
;
int2D_release
(
H
);
int2D_release
(
Hf
);
int2D_release
(
Hb
);
}
// end of the function
return
outImg
;
}
}
namespace
cv
{
namespace
ximgproc
{
void
weightedMedianFilter
(
InputArray
joint
,
InputArray
src
,
OutputArray
dst
,
int
r
,
double
sigma
,
WMFWeightType
weightType
,
Mat
mask
)
{
CV_Assert
(
!
src
.
empty
());
CV_Assert
(
r
>
0
&&
sigma
>
0
);
int
nI
=
256
;
int
nF
=
256
;
Mat
I
=
src
.
getMat
();
Mat
F
=
joint
.
getMat
();
if
(
joint
.
empty
())
{
medianBlur
(
src
,
dst
,
r
);
return
;
}
CV_Assert
(
I
.
depth
()
==
CV_32F
||
I
.
depth
()
==
CV_8U
);
CV_Assert
(
F
.
depth
()
==
CV_8U
&&
(
F
.
channels
()
==
1
||
F
.
channels
()
==
3
));
dst
.
create
(
src
.
size
(),
src
.
type
());
Mat
D
=
dst
.
getMat
();
if
(
D
.
data
==
F
.
data
)
F
=
F
.
clone
();
if
(
D
.
data
==
I
.
data
)
I
=
I
.
clone
();
//Preprocess I
//OUTPUT OF THIS STEP: Is, iMap
//If I is floating point image, "adaptive quantization" is done in from32FTo32S.
//The mapping of floating value to integer value is stored in iMap (for each channel).
//"Is" stores each channel of "I". The channels are converted to CV_32S type after this step.
vector
<
float
*>
iMap
(
I
.
channels
());
vector
<
Mat
>
Is
;
split
(
I
,
Is
);
for
(
int
i
=
0
;
i
<
(
int
)
Is
.
size
();
i
++
)
{
if
(
I
.
depth
()
==
CV_32F
)
{
iMap
[
i
]
=
new
float
[
nI
];
from32FTo32S
(
Is
[
i
],
Is
[
i
],
nI
,
iMap
[
i
]);
}
else
if
(
I
.
depth
()
==
CV_8U
)
{
Is
[
i
].
convertTo
(
Is
[
i
],
CV_32S
);
}
}
//Preprocess F
//OUTPUT OF THIS STEP: F(new), wMap
//If "F" is 3-channel image, "clustering feature image" is done in featureIndexing.
//If "F" is 1-channel image, featureIndexing only does a type-casting on "F".
//The output "F" is CV_32S type, containing indexes of feature values.
//"wMap" is a 2D array that defines the distance between each pair of feature indexes.
// wMap[i][j] is the weight between feature index "i" and "j".
float
**
wMap
=
NULL
;
featureIndexing
(
F
,
wMap
,
nF
,
float
(
sigma
),
weightType
);
//Filtering - Joint-Histogram Framework
for
(
int
i
=
0
;
i
<
(
int
)
Is
.
size
();
i
++
)
{
Is
[
i
]
=
filterCore
(
Is
[
i
],
F
,
wMap
,
r
,
nF
,
nI
,
mask
);
}
float2D_release
(
wMap
);
//Postprocess F
//Convert input image back to the original type.
for
(
int
i
=
0
;
i
<
(
int
)
Is
.
size
();
i
++
)
{
if
(
I
.
depth
()
==
CV_32F
)
{
from32STo32F
(
Is
[
i
],
Is
[
i
],
iMap
[
i
]);
delete
[]
iMap
[
i
];
}
else
if
(
I
.
depth
()
==
CV_8U
)
{
Is
[
i
].
convertTo
(
Is
[
i
],
CV_8U
);
}
}
//merge the channels
merge
(
Is
,
D
);
}
}
}
modules/ximgproc/test/test_weighted_median_filter.cpp
0 → 100644
View file @
88379486
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace
cvtest
{
using
namespace
std
;
using
namespace
std
::
tr1
;
using
namespace
testing
;
using
namespace
perf
;
using
namespace
cv
;
using
namespace
cv
::
ximgproc
;
static
string
getDataDir
()
{
return
cvtest
::
TS
::
ptr
()
->
get_data_path
();
}
typedef
tuple
<
Size
,
WMFWeightType
>
WMFParams
;
typedef
TestWithParam
<
WMFParams
>
WeightedMedianFilterTest
;
TEST_P
(
WeightedMedianFilterTest
,
SplatSurfaceAccuracy
)
{
WMFParams
params
=
GetParam
();
Size
size
=
get
<
0
>
(
params
);
WMFWeightType
weightType
=
get
<
1
>
(
params
);
RNG
rnd
(
0
);
int
guideCn
=
rnd
.
uniform
(
1
,
2
);
if
(
guideCn
==
2
)
guideCn
++
;
//1 or 3 channels
Mat
guide
(
size
,
CV_MAKE_TYPE
(
CV_8U
,
guideCn
));
randu
(
guide
,
0
,
255
);
Scalar
surfaceValue
;
int
srcCn
=
rnd
.
uniform
(
1
,
4
);
rnd
.
fill
(
surfaceValue
,
RNG
::
UNIFORM
,
0
,
255
);
Mat
src
(
size
,
CV_MAKE_TYPE
(
CV_8U
,
srcCn
),
surfaceValue
);
int
r
=
int
(
rnd
.
uniform
(
3
,
11
));
double
sigma
=
rnd
.
uniform
(
9.0
,
100.0
);
Mat
res
;
weightedMedianFilter
(
guide
,
src
,
res
,
r
,
sigma
,
weightType
);
double
normL1
=
cvtest
::
norm
(
src
,
res
,
NORM_L1
)
/
src
.
total
()
/
src
.
channels
();
EXPECT_LE
(
normL1
,
1.0
/
64
);
}
TEST
(
WeightedMedianFilterTest
,
ReferenceAccuracy
)
{
string
dir
=
getDataDir
()
+
"cv/edgefilter"
;
Mat
src
=
imread
(
dir
+
"/kodim23.png"
);
Mat
ref
=
imread
(
dir
+
"/fgs/kodim23_lambda=1000_sigma=10.png"
);
ASSERT_FALSE
(
src
.
empty
());
ASSERT_FALSE
(
ref
.
empty
());
cv
::
setNumThreads
(
cv
::
getNumberOfCPUs
());
Mat
res
;
weightedMedianFilter
(
src
,
src
,
res
,
7
);
double
totalMaxError
=
1.0
/
32.0
*
src
.
total
()
*
src
.
channels
();
EXPECT_LE
(
cvtest
::
norm
(
res
,
ref
,
NORM_L2
),
totalMaxError
);
}
INSTANTIATE_TEST_CASE_P
(
TypicalSET
,
WeightedMedianFilterTest
,
Combine
(
Values
(
szODD
,
szQVGA
),
Values
(
WMF_EXP
,
WMF_IV2
,
WMF_OFF
)));
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment