Commit 870e9ffc authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #461 from fran6co:simple_optflow

parents 173512b9 96194df8
...@@ -42,6 +42,10 @@ ...@@ -42,6 +42,10 @@
#include "precomp.hpp" #include "precomp.hpp"
#ifdef _MSC_VER
# pragma warning(disable: 4512)
#endif
// //
// 2D dense optical flow algorithm from the following paper: // 2D dense optical flow algorithm from the following paper:
// Michael Tao, Jiamin Bai, Pushmeet Kohli, and Sylvain Paris. // Michael Tao, Jiamin Bai, Pushmeet Kohli, and Sylvain Paris.
...@@ -57,15 +61,19 @@ namespace optflow ...@@ -57,15 +61,19 @@ namespace optflow
static const uchar MASK_TRUE_VALUE = (uchar)255; static const uchar MASK_TRUE_VALUE = (uchar)255;
inline static float dist(const Vec3b& p1, const Vec3b& p2) { inline static int dist(const Vec3b &p1, const Vec3b &p2) {
return (float)((p1[0] - p2[0]) * (p1[0] - p2[0]) + int a = p1[0] - p2[0];
(p1[1] - p2[1]) * (p1[1] - p2[1]) + int b = p1[1] - p2[1];
(p1[2] - p2[2]) * (p1[2] - p2[2])); int c = p1[2] - p2[2];
return a*a+b*b+c*c;
} }
inline static float dist(const Vec2f& p1, const Vec2f& p2) { inline static float dist(const Vec2f &p1, const Vec2f &p2) {
return (p1[0] - p2[0]) * (p1[0] - p2[0]) + float a = p1[0] - p2[0];
(p1[1] - p2[1]) * (p1[1] - p2[1]); float b = p1[1] - p2[1];
return a*a+b*b;
} }
template<class T> template<class T>
...@@ -93,7 +101,7 @@ static void removeOcclusions(const Mat& flow, ...@@ -93,7 +101,7 @@ static void removeOcclusions(const Mat& flow,
} }
} }
static void wd(Mat& d, int top_shift, int bottom_shift, int left_shift, int right_shift, float sigma) { static void wd(Mat& d, int top_shift, int bottom_shift, int left_shift, int right_shift, double sigma) {
for (int dr = -top_shift, r = 0; dr <= bottom_shift; ++dr, ++r) { for (int dr = -top_shift, r = 0; dr <= bottom_shift; ++dr, ++r) {
for (int dc = -left_shift, c = 0; dc <= right_shift; ++dc, ++c) { for (int dc = -left_shift, c = 0; dc <= right_shift; ++dc, ++c) {
d.at<float>(r, c) = (float)-(dr*dr + dc*dc); d.at<float>(r, c) = (float)-(dr*dr + dc*dc);
...@@ -103,62 +111,115 @@ static void wd(Mat& d, int top_shift, int bottom_shift, int left_shift, int righ ...@@ -103,62 +111,115 @@ static void wd(Mat& d, int top_shift, int bottom_shift, int left_shift, int righ
exp(d, d); exp(d, d);
} }
static void wc(const Mat& image, Mat& d, int r0, int c0, template<typename JointVec, typename SrcVec>
int top_shift, int bottom_shift, int left_shift, int right_shift, float sigma) { class CrossBilateralFilter : public ParallelLoopBody {
const Vec3b centeral_point = image.at<Vec3b>(r0, c0); Mat &joint, &confidence, &src;
int left_border = c0-left_shift, right_border = c0+right_shift; Mat &dst;
for (int dr = r0-top_shift, r = 0; dr <= r0+bottom_shift; ++dr, ++r) { int radius;
const Vec3b *row = image.ptr<Vec3b>(dr); bool flag;
float *d_row = d.ptr<float>(r); Mat &spaceWeights;
for (int dc = left_border, c = 0; dc <= right_border; ++dc, ++c) { std::vector<double> &expLut;
d_row[c] = -dist(centeral_point, row[dc]);
public:
CrossBilateralFilter(Mat &joint_, Mat &confidence_, Mat &src_, Mat &dst_, int radius_, bool flag_, Mat &spaceWeights_, std::vector<double> &expLut_)
:
joint(joint_),
confidence(confidence_),
src(src_),
dst(dst_),
radius(radius_),
flag(flag_),
spaceWeights(spaceWeights_),
expLut(expLut_) {
CV_DbgAssert(joint.type() == JointVec::type && confidence.type() == CV_32F && src.type() == dst.type() && src.type() == SrcVec::type);
CV_DbgAssert(joint.rows == src.rows && confidence.rows == src.rows && src.rows == dst.rows + 2 * radius);
CV_DbgAssert(joint.cols == src.cols && confidence.cols == src.cols && src.cols == dst.cols + 2 * radius);
} }
}
d *= 1.0 / (2.0 * sigma * sigma);
exp(d, d);
}
static void crossBilateralFilter(const Mat& image, void operator()(const Range &range) const {
const Mat& edge_image, const int d = 2*radius +1;
const Mat confidence, for (int i = range.start; i < range.end; i++) {
Mat& dst, int d, SrcVec* dstRow = dst.ptr<SrcVec>(i);
float sigma_color, float sigma_space, for (int j = 0; j < dst.cols; j++) {
bool flag=false) { const JointVec& centeralPoint = joint.at<JointVec>(i+radius, j+radius);
const int rows = image.rows;
const int cols = image.cols; Scalar totalSum = Scalar::all(0);
Mat image_extended, edge_image_extended, confidence_extended; double weightsSum = 0;
copyMakeBorder(image, image_extended, d, d, d, d, BORDER_DEFAULT); for (int dr = i, r = 0; dr < i + d; ++dr, ++r) {
copyMakeBorder(edge_image, edge_image_extended, d, d, d, d, BORDER_DEFAULT); const JointVec *jointRow = joint.ptr<JointVec>(dr);
copyMakeBorder(confidence, confidence_extended, d, d, d, d, BORDER_CONSTANT, Scalar(0)); const SrcVec *srcRow = src.ptr<SrcVec>(dr);
Mat weights_space(2*d+1, 2*d+1, CV_32F); const float *confidenceRow = confidence.ptr<float>(dr);
wd(weights_space, d, d, d, d, sigma_space); const float *spaceWeightsRow = spaceWeights.ptr<float>(r);
Mat weights(2*d+1, 2*d+1, CV_32F); for (int dc = j, c = 0; dc < j + d; ++dc, ++c) {
Mat weighted_sum(2*d+1, 2*d+1, CV_32F); double weight = spaceWeightsRow[c]*confidenceRow[dc];
for (int cn = 0; cn < JointVec::channels; cn++) {
std::vector<Mat> image_extended_channels; weight *= expLut[std::abs(centeralPoint[cn] - jointRow[dc][cn])];
split(image_extended, image_extended_channels); }
for (int cn = 0; cn < SrcVec::channels; cn++) {
for (int row = 0; row < rows; ++row) { totalSum[cn] += weight * srcRow[dc][cn];
for (int col = 0; col < cols; ++col) { }
wc(edge_image_extended, weights, row+d, col+d, d, d, d, d, sigma_color); weightsSum += weight;
}
Range window_rows(row,row+2*d+1); }
Range window_cols(col,col+2*d+1);
SrcVec& srcSum = dstRow[j];
multiply(weights, confidence_extended(window_rows, window_cols), weights); for (int cn = 0; cn < SrcVec::channels; cn++) {
multiply(weights, weights_space, weights); srcSum[cn] = (flag && fabs(weightsSum) < 1e-9)
float weights_sum = (float)sum(weights)[0]; ? src.at<SrcVec>(i+radius, j+radius)[cn]
: static_cast<float>(totalSum[cn] / weightsSum);
for (int ch = 0; ch < 2; ++ch) { }
multiply(weights, image_extended_channels[ch](window_rows, window_cols), weighted_sum); }
float total_sum = (float)sum(weighted_sum)[0];
dst.at<Vec2f>(row, col)[ch] = (flag && fabs(weights_sum) < 1e-9)
? image.at<float>(row, col)
: total_sum / weights_sum;
} }
} }
};
static void crossBilateralFilter(InputArray joint_,
InputArray confidence_,
InputOutputArray src_,
int radius,
double sigmaColor, double sigmaSpace,
bool flag = false) {
CV_Assert(!src_.empty());
CV_Assert(!confidence_.empty());
CV_Assert(!joint_.empty());
Mat src = src_.getMat();
Mat joint = joint_.getMat();
Mat confidence = confidence_.getMat();
CV_Assert(src.size() == joint.size() && confidence.size() == src.size());
CV_Assert(joint.depth() == CV_8U && confidence.type() == CV_32F);
if (sigmaColor <= 0)
sigmaColor = 1;
if (sigmaSpace <= 0)
sigmaSpace = 1;
if (radius <= 0)
radius = cvRound(sigmaSpace * 1.5);
radius = std::max(radius, 1);
if (src.data == joint.data)
joint = joint.clone();
int d = 2 * radius + 1;
Mat jointTemp, confidenceTemp, srcTemp;
copyMakeBorder(joint, jointTemp, radius, radius, radius, radius, BORDER_DEFAULT);
copyMakeBorder(confidence, confidenceTemp, radius, radius, radius, radius, BORDER_CONSTANT, Scalar(0));
copyMakeBorder(src, srcTemp, radius, radius, radius, radius, BORDER_DEFAULT);
Mat spaceWeights(d, d, CV_32F);
wd(spaceWeights, radius, radius, radius, radius, sigmaSpace);
double gaussColorCoeff = -0.5 / (sigmaColor * sigmaColor);
std::vector<double> expLut (256);
for (size_t i = 0; i < expLut.size(); i++) {
expLut[i] = std::exp(i * i * gaussColorCoeff);
} }
Range range(0, src.rows);
parallel_for_(range, CrossBilateralFilter<Vec3b, Vec2f>(jointTemp, confidenceTemp, srcTemp, src, radius, flag, spaceWeights, expLut));
} }
static void calcConfidence(const Mat& prev, static void calcConfidence(const Mat& prev,
...@@ -186,11 +247,11 @@ static void calcConfidence(const Mat& prev, ...@@ -186,11 +247,11 @@ static void calcConfidence(const Mat& prev,
const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow); const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow);
bool first_flow_iteration = true; bool first_flow_iteration = true;
float sum_e = 0, min_e = 0; int sum_e = 0, min_e = 0;
for (int u = top_row_shift; u <= bottom_row_shift; ++u) { for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
for (int v = left_col_shift; v <= right_col_shift; ++v) { for (int v = left_col_shift; v <= right_col_shift; ++v) {
float e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v)); int e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v));
if (first_flow_iteration) { if (first_flow_iteration) {
sum_e = e; sum_e = e;
min_e = e; min_e = e;
...@@ -204,88 +265,144 @@ static void calcConfidence(const Mat& prev, ...@@ -204,88 +265,144 @@ static void calcConfidence(const Mat& prev,
int windows_square = (bottom_row_shift - top_row_shift + 1) * int windows_square = (bottom_row_shift - top_row_shift + 1) *
(right_col_shift - left_col_shift + 1); (right_col_shift - left_col_shift + 1);
confidence.at<float>(r0, c0) = (windows_square == 0) ? 0 confidence.at<float>(r0, c0) = (windows_square == 0) ? 0
: sum_e / windows_square - min_e; : static_cast<float>(sum_e) / windows_square - min_e;
CV_Assert(confidence.at<float>(r0, c0) >= 0); CV_Assert(confidence.at<float>(r0, c0) >= 0);
} }
} }
} }
static void calcOpticalFlowSingleScaleSF(const Mat& prev_extended, template<typename SrcVec, typename DstVec>
const Mat& next_extended, class CalcOpticalFlowSingleScaleSF : public ParallelLoopBody {
const Mat& mask, Mat &prev, &next;
Mat& flow, Mat &mask;
int averaging_radius, Mat &dst;
int max_flow, int radius, maxFlow;
float sigma_dist, Mat &spaceWeights;
float sigma_color) { std::vector<double> &expLut;
const int averaging_radius_2 = averaging_radius << 1;
const int rows = prev_extended.rows - averaging_radius_2; public:
const int cols = prev_extended.cols - averaging_radius_2; CalcOpticalFlowSingleScaleSF(Mat &prev_, Mat &next_, Mat &mask_, Mat &dst_, int radius_, int maxFlow_, Mat &spaceWeights_, std::vector<double> &expLut_)
:
Mat weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F); prev(prev_),
Mat space_weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F); next(next_),
mask(mask_),
wd(space_weight_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist); dst(dst_),
radius(radius_),
for (int r0 = 0; r0 < rows; ++r0) { maxFlow(maxFlow_),
for (int c0 = 0; c0 < cols; ++c0) { spaceWeights(spaceWeights_),
if (!mask.at<uchar>(r0, c0)) { expLut(expLut_){
continue; CV_DbgAssert(prev.type() == next.type());
} CV_DbgAssert(prev.rows == next.rows && prev.rows == dst.rows + 2 * radius);
CV_DbgAssert(prev.cols == next.cols && next.cols == dst.cols + 2 * radius);
// TODO: do smth with this creepy staff }
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
int u0 = cvRound(flow_at_point[0]);
if (r0 + u0 < 0) { u0 = -r0; }
if (r0 + u0 >= rows) { u0 = rows - 1 - r0; }
int v0 = cvRound(flow_at_point[1]);
if (c0 + v0 < 0) { v0 = -c0; }
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
const int top_row_shift = -std::min(r0 + u0, max_flow);
const int bottom_row_shift = std::min(rows - 1 - (r0 + u0), max_flow);
const int left_col_shift = -std::min(c0 + v0, max_flow);
const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow);
float min_cost = FLT_MAX, best_u = (float)u0, best_v = (float)v0;
wc(prev_extended, weight_window, r0 + averaging_radius, c0 + averaging_radius,
averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color);
multiply(weight_window, space_weight_window, weight_window);
const int prev_extended_top_window_row = r0; void operator()(const Range &range) const {
const int prev_extended_left_window_col = c0; int d = 2 * radius + 1;
Mat weights(d, d, CV_32F);
for (int i = range.start; i < range.end; i++) {
const uchar *maskRow = mask.ptr<uchar>(i);
const DstVec *dstRow = dst.ptr<DstVec>(i);
for (int j = 0; j < dst.cols; j++) {
if (!maskRow[j]) {
continue;
}
for (int u = top_row_shift; u <= bottom_row_shift; ++u) { // TODO: do smth with this creepy staff
const int next_extended_top_window_row = r0 + u0 + u; const DstVec &flowAtPoint = dstRow[j];
for (int v = left_col_shift; v <= right_col_shift; ++v) { int u0 = cvRound(flowAtPoint[0]);
const int next_extended_left_window_col = c0 + v0 + v; if (i + u0 < 0) {u0 = -i;}
if (i + u0 >= dst.rows) {u0 = dst.rows - 1 - i;}
float cost = 0; int v0 = cvRound(flowAtPoint[1]);
for (int r = 0; r <= averaging_radius_2; ++r) { if (j + v0 < 0) {v0 = -j;}
const Vec3b *prev_extended_window_row = prev_extended.ptr<Vec3b>(prev_extended_top_window_row + r); if (j + v0 >= dst.cols) {v0 = dst.cols - 1 - j;}
const Vec3b *next_extended_window_row = next_extended.ptr<Vec3b>(next_extended_top_window_row + r);
const float* weight_window_row = weight_window.ptr<float>(r); const int topRowShift = -std::min(i + u0, maxFlow);
for (int c = 0; c <= averaging_radius_2; ++c) { const int bottomRowShift = std::min(dst.rows - 1 - (i + u0), maxFlow);
cost += weight_window_row[c] * const int leftColShift = -std::min(j + v0, maxFlow);
dist(prev_extended_window_row[prev_extended_left_window_col + c], const int rightColShift = std::min(dst.cols - 1 - (j + v0), maxFlow);
next_extended_window_row[next_extended_left_window_col + c]);
float minCost = FLT_MAX, bestU = (float) u0, bestV = (float) v0;
const SrcVec& centeralPoint = prev.at<SrcVec>(i+radius, j+radius);
int left_border = j, right_border = j + d;
for (int dr = i, r = 0; dr < i + d; ++dr, ++r) {
const SrcVec *prevRow = prev.ptr<SrcVec>(dr);
const float* spaceWeightsRow = spaceWeights.ptr<float>(r);
float *weightsRow = weights.ptr<float>(r);
for (int dc = left_border, c = 0; dc < right_border; ++dc, ++c) {
double weight = spaceWeightsRow[c];
for(int cn=0;cn<SrcVec::channels;cn++){
weight *= expLut[std::abs(centeralPoint[cn]-prevRow[dc][cn])];
}
weightsRow[c] = static_cast<float>(weight);
} }
} }
// cost should be divided by sum(weight_window), but because
// we interested only in min(cost) and sum(weight_window) is constant for (int u = topRowShift; u <= bottomRowShift; ++u) {
// for every point - we remove it const int next_extended_top_window_row = i + u0 + u;
for (int v = leftColShift; v <= rightColShift; ++v) {
if (cost < min_cost) { const int next_extended_left_window_col = j + v0 + v;
min_cost = cost;
best_u = (float)(u + u0); float cost = 0;
best_v = (float)(v + v0); for (int r = 0; r < d; ++r) {
const SrcVec *prev_extended_window_row = prev.ptr<SrcVec>(i + r);
const SrcVec *next_extended_window_row = next.ptr<SrcVec>(next_extended_top_window_row + r);
const float *weight_window_row = weights.ptr<float>(r);
for (int c = 0; c < d; ++c) {
cost += weight_window_row[c] *
dist(prev_extended_window_row[j + c],
next_extended_window_row[next_extended_left_window_col + c]);
}
}
// cost should be divided by sum(weight_window), but because
// we interested only in min(cost) and sum(weight_window) is constant
// for every point - we remove it
if (cost < minCost) {
minCost = cost;
bestU = (float) (u + u0);
bestV = (float) (v + v0);
}
}
} }
dst.at<DstVec>(i, j) = DstVec(bestU, bestV);
} }
} }
flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v);
} }
};
static void calcOpticalFlowSingleScaleSF(InputArray prev_,
InputArray next_,
InputArray mask_,
InputOutputArray dst_,
int radius,
int max_flow,
float sigmaSpace,
float sigmaColor) {
Mat prev = prev_.getMat();
Mat next = next_.getMat();
Mat mask = mask_.getMat();
Mat dst = dst_.getMat();
Mat prevTemp, nextTemp;
copyMakeBorder(prev, prevTemp, radius, radius, radius, radius, BORDER_DEFAULT);
copyMakeBorder(next, nextTemp, radius, radius, radius, radius, BORDER_DEFAULT);
int d = 2 * radius + 1;
Mat spaceWeights(d, d, CV_32F);
wd(spaceWeights, radius, radius, radius, radius, sigmaSpace);
double gaussColorCoeff = -0.5 / (sigmaColor * sigmaColor);
std::vector<double> expLut (256);
for (size_t i = 0; i < expLut.size(); i++) {
expLut[i] = std::exp(i * i * gaussColorCoeff);
} }
Range range(0, dst.rows);
parallel_for_(range, CalcOpticalFlowSingleScaleSF<Vec3b, Vec2f>(prevTemp, nextTemp, mask, dst, radius, max_flow, spaceWeights, expLut));
} }
static Mat upscaleOpticalFlow(int new_rows, static Mat upscaleOpticalFlow(int new_rows,
...@@ -296,7 +413,7 @@ static Mat upscaleOpticalFlow(int new_rows, ...@@ -296,7 +413,7 @@ static Mat upscaleOpticalFlow(int new_rows,
int averaging_radius, int averaging_radius,
float sigma_dist, float sigma_dist,
float sigma_color) { float sigma_color) {
crossBilateralFilter(flow, image, confidence, flow, averaging_radius, sigma_color, sigma_dist, true); crossBilateralFilter(image, confidence, flow, averaging_radius, sigma_color, sigma_dist, true);
Mat new_flow; Mat new_flow;
resize(flow, new_flow, Size(new_cols, new_rows), 0, 0, INTER_NEAREST); resize(flow, new_flow, Size(new_cols, new_rows), 0, 0, INTER_NEAREST);
new_flow *= 2; new_flow *= 2;
...@@ -513,18 +630,10 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -513,18 +630,10 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
CV_Assert((int)pyr_from_images.size() == layers && (int)pyr_to_images.size() == layers); CV_Assert((int)pyr_from_images.size() == layers && (int)pyr_to_images.size() == layers);
Mat curr_from, curr_to, prev_from, prev_to; Mat curr_from, curr_to, prev_from, prev_to;
Mat curr_from_extended, curr_to_extended;
curr_from = pyr_from_images[layers - 1]; curr_from = pyr_from_images[layers - 1];
curr_to = pyr_to_images[layers - 1]; curr_to = pyr_to_images[layers - 1];
copyMakeBorder(curr_from, curr_from_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
copyMakeBorder(curr_to, curr_to_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
Mat mask = Mat::ones(curr_from.size(), CV_8U); Mat mask = Mat::ones(curr_from.size(), CV_8U);
Mat mask_inv = Mat::ones(curr_from.size(), CV_8U); Mat mask_inv = Mat::ones(curr_from.size(), CV_8U);
...@@ -535,8 +644,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -535,8 +644,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
Mat confidence_inv; Mat confidence_inv;
calcOpticalFlowSingleScaleSF(curr_from_extended, calcOpticalFlowSingleScaleSF(curr_from,
curr_to_extended, curr_to,
mask, mask,
flow, flow,
averaging_radius, averaging_radius,
...@@ -544,8 +653,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -544,8 +653,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
(float)sigma_dist, (float)sigma_dist,
(float)sigma_color); (float)sigma_color);
calcOpticalFlowSingleScaleSF(curr_to_extended, calcOpticalFlowSingleScaleSF(curr_to,
curr_from_extended, curr_from,
mask_inv, mask_inv,
flow_inv, flow_inv,
averaging_radius, averaging_radius,
...@@ -572,13 +681,6 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -572,13 +681,6 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
prev_from = pyr_from_images[curr_layer + 1]; prev_from = pyr_from_images[curr_layer + 1];
prev_to = pyr_to_images[curr_layer + 1]; prev_to = pyr_to_images[curr_layer + 1];
copyMakeBorder(curr_from, curr_from_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
copyMakeBorder(curr_to, curr_to_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
const int curr_rows = curr_from.rows; const int curr_rows = curr_from.rows;
const int curr_cols = curr_from.cols; const int curr_cols = curr_from.cols;
...@@ -624,8 +726,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -624,8 +726,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
(float)upscale_sigma_color); (float)upscale_sigma_color);
calcConfidence(curr_from, curr_to, flow, confidence, max_flow); calcConfidence(curr_from, curr_to, flow, confidence, max_flow);
calcOpticalFlowSingleScaleSF(curr_from_extended, calcOpticalFlowSingleScaleSF(curr_from,
curr_to_extended, curr_to,
mask, mask,
flow, flow,
averaging_radius, averaging_radius,
...@@ -634,8 +736,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -634,8 +736,8 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
(float)sigma_color); (float)sigma_color);
calcConfidence(curr_to, curr_from, flow_inv, confidence_inv, max_flow); calcConfidence(curr_to, curr_from, flow_inv, confidence_inv, max_flow);
calcOpticalFlowSingleScaleSF(curr_to_extended, calcOpticalFlowSingleScaleSF(curr_to,
curr_from_extended, curr_from,
mask_inv, mask_inv,
flow_inv, flow_inv,
averaging_radius, averaging_radius,
...@@ -651,7 +753,7 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from, ...@@ -651,7 +753,7 @@ CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
removeOcclusions(flow_inv, flow, (float)occ_thr, confidence_inv); removeOcclusions(flow_inv, flow, (float)occ_thr, confidence_inv);
} }
crossBilateralFilter(flow, curr_from, confidence, flow, crossBilateralFilter(curr_from, confidence, flow,
postprocess_window, (float)sigma_color_fix, (float)sigma_dist_fix); postprocess_window, (float)sigma_color_fix, (float)sigma_dist_fix);
GaussianBlur(flow, flow, Size(3, 3), 5); GaussianBlur(flow, flow, Size(3, 3), 5);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment