Commit 86342522 authored by LaurentBerger's avatar LaurentBerger Committed by Alexander Alekhin

Merge pull request #701 from LaurentBerger:DericheFilter

parent af26ce3a
Extended Image Processing
=========================
1. Structured Forests
2. Domain Transform Filter
3. Guided Filter
4. Adaptive Manifold Filter
5. Joint Bilateral Filter
6. Superpixels
7. Graph segmentation
8. Selective search from segmentation
10. Paillou Filter
11. Fast Line Detector
- Structured Forests
- Domain Transform Filter
- Guided Filter
- Adaptive Manifold Filter
- Joint Bilateral Filter
- Superpixels
- Graph segmentation
- Selective search from segmentation
- Paillou Filter
- Fast Line Detector
- Deriche Filter
......@@ -76,6 +76,16 @@
publisher={Springer}
}
@article{deriche1987using,
title={Using Canny's criteria to derive a recursively implemented optimal edge detector},
author={Deriche, Rachid},
journal={International journal of computer vision},
volume={1},
number={2},
pages={167--187},
year={1987},
publisher={Springer}
}
@article{uijlings2013selective,
title={Selective search for object recognition},
......
......@@ -50,7 +50,7 @@
#include "ximgproc/lsc.hpp"
#include "ximgproc/paillou_filter.hpp"
#include "ximgproc/fast_line_detector.hpp"
#include "ximgproc/deriche_filter.hpp"
/** @defgroup ximgproc Extended Image Processing
@{
......
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_DERICHEFILTER_HPP__
#define __OPENCV_DERICHEFILTER_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
namespace cv {
namespace ximgproc {
//! @addtogroup ximgproc_filters
//! @{
/**
* @brief Applies Y Deriche filter to an image.
*
* For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
*
* @param _op Source 8-bit or 16bit image, 1-channel or 3-channel image.
* @param _dst result CV_32FC image with same number of channel than _op.
* @param alphaDerive double see paper
* @param alphaMean double see paper
*
*/
CV_EXPORTS void GradientDericheY(InputArray _op, OutputArray _dst, double alphaDerive,double alphaMean);
/**
* @brief Applies X Deriche filter to an image.
*
* For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
*
* @param _op Source 8-bit or 16bit image, 1-channel or 3-channel image.
* @param _dst result CV_32FC image with same number of channel than _op.
* @param alphaDerive double see paper
* @param alphaMean double see paper
*
*/
CV_EXPORTS void GradientDericheX(InputArray _op, OutputArray _dst, double alphaDerive,double alphaMean);
}
}
#endif
#endif
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/ximgproc.hpp>
#include "opencv2/ximgproc/deriche_filter.hpp"
using namespace cv;
using namespace cv::ximgproc;
#include <iostream>
using namespace std;
int alDerive=100;
int alMean=100;
Ptr<Mat> img;
const string & winName = "Gradient Modulus";
static void DisplayImage(Mat x,string s)
{
vector<Mat> sx;
split(x, sx);
vector<double> minVal(3), maxVal(3);
for (size_t i = 0; i < sx.size(); i++)
{
minMaxLoc(sx[i], &minVal[i], &maxVal[i]);
}
maxVal[0] = *max_element(maxVal.begin(), maxVal.end());
minVal[0] = *min_element(minVal.begin(), minVal.end());
Mat uc;
x.convertTo(uc, CV_8U,255/(maxVal[0]-minVal[0]),-255*minVal[0]/(maxVal[0]-minVal[0]));
imshow(s, uc);
}
/**
* @function DericheFilter
* @brief Trackbar callback
*/
static void DericheFilter(int, void*)
{
Mat dst;
double d=alDerive/100.0,m=alMean/100.0;
Mat rx,ry;
GradientDericheX(*img.get(),rx,d,m);
GradientDericheY(*img.get(),ry,d,m);
DisplayImage(rx, "Gx");
DisplayImage(ry, "Gy");
add(rx.mul(rx),ry.mul(ry),dst);
sqrt(dst,dst);
DisplayImage(dst, winName );
}
int main(int argc, char* argv[])
{
Mat *m=new Mat;
cv::CommandLineParser parser(argc, argv, "{help h | | show help message}{@input | | input image}");
if (parser.has("help"))
{
parser.printMessage();
return -1;
}
string input_image = parser.get<string>("@input");
if (input_image.empty())
{
parser.printMessage();
parser.printErrors();
return -2;
}
if (argc==2)
*m = imread(input_image);
if (m->empty())
{
cout << "File not found or empty image\n";
return -3;
}
imshow("Original", *m);
img =Ptr<Mat>(m);
namedWindow( winName, WINDOW_AUTOSIZE );
/// Create a Trackbar for user to enter threshold
createTrackbar( "Derive:",winName, &alDerive, 400, DericheFilter );
createTrackbar( "Mean:", winName, &alMean, 400, DericheFilter );
DericheFilter(0,NULL);
waitKey();
return 0;
}
\ No newline at end of file
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include "opencv2/highgui.hpp"
#include <math.h>
#include <vector>
#include <iostream>
/*
If you use this code please cite this @cite deriche1987using
Using Canny's criteria to derive a recursively implemented optimal edge detector International journal of computer vision (Volume:1 , Issue: 2 ) 1987
*/
namespace cv {
namespace ximgproc {
template<typename T> static void
VerticalIIRFilter(Mat &img,Mat &dst,const Range &r,double alphaDerive)
{
float *f2;
int tailleSequence = (img.rows>img.cols) ? img.rows : img.cols;
Mat matG1(1, tailleSequence, CV_64FC1), matG2(1, tailleSequence, CV_64FC1);
double *g1 = matG1.ptr<double>(0), *g2 = (double*)matG2.ptr<double>(0);
double kp = pow(1 - exp(-alphaDerive), 2.0) / exp(-alphaDerive);
double a1, a2, a3, a4;
double b1, b2;
int rows = img.rows, cols = img.cols;
kp = pow(1 - exp(-alphaDerive), 2.0) / exp(-alphaDerive);
a1 = 0;
a2 = kp*exp(-alphaDerive), a3 = -kp*exp(-alphaDerive);
a4 = 0;
b1 = 2 * exp(-alphaDerive);
b2 = -exp(-2 * alphaDerive);
for (int j = r.start; j<r.end; j++)
{
// Causal vertical IIR filter
T *c1 = img.ptr<T>(0);
f2 = dst.ptr<float>(0);
f2 += j;
c1 += j;
int i = 0;
g1[i] = (a1 + a2)* *c1;
i++;
c1 += cols;
g1[i] = a1 * *c1 + a2 * c1[-cols] + (b1)* g1[i - 1];
i++;
c1 += cols;
for (i = 2; i<rows; i++, c1 += cols)
g1[i] = a1 * *c1 + a2 * c1[-cols] + b1*g1[i - 1] + b2 *g1[i - 2];
// Anticausal vertical IIR filter
c1 = img.ptr<T>(0);
c1 += (rows - 1)*cols + j;
i = rows - 1;
g2[i] = (a3 + a4)* *c1;
i--;
c1 -= cols;
g2[i] = a3* c1[cols] + a4 * c1[cols] + (b1)*g2[i + 1];
i--;
c1 -= cols;
for (i = rows - 3; i >= 0; i--, c1 -= cols)
g2[i] = a3*c1[cols] + a4* c1[2 * cols] +
b1*g2[i + 1] + b2*g2[i + 2];
for (i = 0; i<rows; i++, f2 += cols)
*f2 = (float)(g1[i] + g2[i]);
}
}
template<typename T> static void
HorizontalIIRFilter(Mat &img, Mat &dst, const Range &r, double alphaDerive)
{
float *f1;
int rows = img.rows, cols = img.cols;
int tailleSequence = (rows>cols) ? rows : cols;
Mat matG1(1, tailleSequence, CV_64FC1), matG2(1, tailleSequence, CV_64FC1);
double *g1 = (double*)matG1.ptr(0), *g2 = (double*)matG2.ptr(0);
double kp;;
double a1, a2, a3, a4;
double b1, b2;
kp = pow(1 - exp(-alphaDerive), 2.0) / exp(-alphaDerive);
a1 = 0;
a2 = kp*exp(-alphaDerive);
a3 = -kp*exp(-alphaDerive);
a4 = 0;
b1 = 2 * exp(-alphaDerive);
b2 = -exp(-2 * alphaDerive);
for (int i = r.start; i<r.end; i++)
{
f1 = dst.ptr<float>(i);
T *c1 = img.ptr<T>(i);
int j = 0;
g1[j] = (a1 + a2)* *c1;
j++;
c1++;
g1[j] = a1 * c1[0] + a2*c1[j - 1] + (b1)* g1[j - 1];
j++;
c1++;
for (j = 2; j<cols; j++, c1++)
g1[j] = a1 * c1[0] + a2 * c1[-1] + b1*g1[j - 1] + b2*g1[j - 2];
c1 = img.ptr<T>(0);
c1 += i*cols + cols - 1;
j = cols - 1;
g2[j] = (a3 + a4)* *c1;
j--;
g2[j] = (a3 + a4) * c1[1] + b1 * g2[j + 1];
j--;
c1--;
for (j = cols - 3; j >= 0; j--, c1--)
g2[j] = a3*c1[1] + a4*c1[2] + b1*g2[j + 1] + b2*g2[j + 2];
for (j = 0; j<cols; j++, f1++)
*f1 = (float)(g1[j] + g2[j]);
}
}
class ParallelGradientDericheYCols : public ParallelLoopBody
{
private:
Mat &img;
Mat &dst;
double alphaDerive;
bool verbose;
public:
ParallelGradientDericheYCols(Mat &imgSrc, Mat &d, double ald) :
img(imgSrc),
dst(d),
alphaDerive(ald),
verbose(false)
{}
void Verbose(bool b) { verbose = b; }
virtual void operator()(const Range& range) const
{
CV_Assert(img.depth()==CV_8UC1 || img.depth()==CV_8SC1 || img.depth()==CV_16SC1 || img.depth()==CV_16UC1);
CV_Assert(dst.depth()==CV_32FC1);
if (verbose)
std::cout << getThreadNum() << "# :Start from row " << range.start << " to " << range.end - 1 << " (" << range.end - range.start << " loops)" << std::endl;
switch (img.depth()) {
case CV_8U:
VerticalIIRFilter<uchar>(img,dst,range, alphaDerive);
break;
case CV_8S:
VerticalIIRFilter<char>(img, dst, range, alphaDerive);
break;
case CV_16U:
VerticalIIRFilter<ushort>(img, dst, range, alphaDerive);
break;
case CV_16S:
VerticalIIRFilter<short>(img, dst, range, alphaDerive);
break;
default:
return;
}
};
ParallelGradientDericheYCols& operator=(const ParallelGradientDericheYCols &) {
return *this;
};
};
class ParallelGradientDericheYRows : public ParallelLoopBody
{
private:
Mat &img;
Mat &dst;
double alphaMoyenne;
bool verbose;
public:
ParallelGradientDericheYRows(Mat& imgSrc, Mat &d, double alm) :
img(imgSrc),
dst(d),
alphaMoyenne(alm),
verbose(false)
{}
void Verbose(bool b) { verbose = b; }
virtual void operator()(const Range& range) const
{
CV_Assert(img.depth()==CV_32FC1);
CV_Assert(dst.depth()==CV_32FC1);
if (verbose)
std::cout << getThreadNum() << "# :Start from row " << range.start << " to " << range.end - 1 << " (" << range.end - range.start << " loops)" << std::endl;
float *f1, *f2;
int tailleSequence = (img.rows>img.cols) ? img.rows : img.cols;
Mat matG1(1,tailleSequence,CV_64FC1), matG2(1,tailleSequence,CV_64FC1);
double *g1 = matG1.ptr<double>(0), *g2 = matG2.ptr<double>(0);
double k, a5, a6, a7, a8;
double b3, b4;
int cols = img.cols;
k = pow(1 - exp(-alphaMoyenne), 2.0) / (1 + 2 * alphaMoyenne*exp(-alphaMoyenne) - exp(-2 * alphaMoyenne));
a5 = k;
a6 = k*exp(-alphaMoyenne)*(alphaMoyenne - 1);
a7 = k*exp(-alphaMoyenne)*(alphaMoyenne + 1);
a8 = -k*exp(-2 * alphaMoyenne);
b3 = 2 * exp(-alphaMoyenne);
b4 = -exp(-2 * alphaMoyenne);
for (int i = range.start; i<range.end; i++)
{
f2 = dst.ptr<float>(i);
f1 = img.ptr<float>(i);
int j = 0;
g1[j] = (a5 + a6)* *f1;
j++;
f1++;
g1[j] = a5 * f1[0] + a6*f1[j - 1] + (b3)* g1[j - 1];
j++;
f1++;
for (j = 2; j<cols; j++, f1++)
g1[j] = a5 * f1[0] + a6 * f1[-1] + b3*g1[j - 1] + b4*g1[j - 2];
f1 = ((float*)img.ptr(0));
f1 += i*cols + cols - 1;
j = cols - 1;
g2[j] = (a7 + a8)* *f1;
j--;
f1--;
g2[j] = (a7 + a8) * f1[1] + (b3)* g2[j + 1];
j--;
f1--;
for (j = cols - 3; j >= 0; j--, f1--)
g2[j] = a7*f1[1] + a8*f1[2] + b3*g2[j + 1] + b4*g2[j + 2];
for (j = 0; j<cols; j++, f2++)
*f2 = (float)(g1[j] + g2[j]);
}
};
ParallelGradientDericheYRows& operator=(const ParallelGradientDericheYRows &) {
return *this;
};
};
class ParallelGradientDericheXCols : public ParallelLoopBody
{
private:
Mat &img;
Mat &dst;
double alphaMoyenne;
bool verbose;
public:
ParallelGradientDericheXCols(Mat& imgSrc, Mat &d, double alm) :
img(imgSrc),
dst(d),
alphaMoyenne(alm),
verbose(false)
{}
void Verbose(bool b) { verbose = b; }
virtual void operator()(const Range& range) const
{
CV_Assert(img.depth()==CV_32FC1);
CV_Assert(dst.depth()==CV_32FC1);
if (verbose)
std::cout << getThreadNum() << "# :Start from row " << range.start << " to " << range.end - 1 << " (" << range.end - range.start << " loops)" << std::endl;
float *f1, *f2;
int rows = img.rows, cols = img.cols;
int tailleSequence = (rows>cols) ? rows : cols;
Mat matG1(1,tailleSequence,CV_64FC1), matG2(1,tailleSequence,CV_64FC1);
double *g1 = (double*)matG1.ptr(0), *g2 = (double*)matG2.ptr(0);
double k, a5, a6, a7, a8 = 0;
double b3, b4;
k = pow(1 - exp(-alphaMoyenne), 2.0) / (1 + 2 * alphaMoyenne*exp(-alphaMoyenne) - exp(-2 * alphaMoyenne));
a5 = k, a6 = k*exp(-alphaMoyenne)*(alphaMoyenne - 1);
a7 = k*exp(-alphaMoyenne)*(alphaMoyenne + 1), a8 = -k*exp(-2 * alphaMoyenne);
b3 = 2 * exp(-alphaMoyenne);
b4 = -exp(-2 * alphaMoyenne);
for (int j = range.start; j<range.end; j++)
{
f1 = img.ptr<float>(0);
f1 += j;
int i = 0;
g1[i] = (a5 + a6)* *f1;
i++;
f1 += cols;
g1[i] = a5 * *f1 + a6 * f1[-cols] + (b3)* g1[i - 1];
i++;
f1 += cols;
for (i = 2; i<rows; i++, f1 += cols)
g1[i] = a5 * *f1 + a6 * f1[-cols] + b3*g1[i - 1] + b4 *g1[i - 2];
f1 = img.ptr<float>(0);
f1 += (rows - 1)*cols + j;
i = rows - 1;
g2[i] = (a7 + a8)* *f1;
i--;
f1 -= cols;
g2[i] = (a7 + a8)* f1[cols] + (b3)*g2[i + 1];
i--;
f1 -= cols;
for (i = rows - 3; i >= 0; i--, f1 -= cols)
g2[i] = a7*f1[cols] + a8* f1[2 * cols] +
b3*g2[i + 1] + b4*g2[i + 2];
for (i = 0; i<rows; i++, f2 += cols)
{
f2 = (dst.ptr<float>(i)) + (j*img.channels());
*f2 = (float)(g1[i] + g2[i]);
}
}
};
ParallelGradientDericheXCols& operator=(const ParallelGradientDericheXCols &) {
return *this;
};
};
class ParallelGradientDericheXRows : public ParallelLoopBody
{
private:
Mat &img;
Mat &dst;
double alphaDerive;
bool verbose;
public:
ParallelGradientDericheXRows(Mat& imgSrc, Mat &d, double ald) :
img(imgSrc),
dst(d),
alphaDerive(ald),
verbose(false)
{}
void Verbose(bool b) { verbose = b; }
virtual void operator()(const Range& range) const
{
CV_Assert(img.depth()==CV_8UC1 || img.depth()==CV_8SC1 || img.depth()==CV_16SC1 || img.depth()==CV_16UC1);
CV_Assert(dst.depth()==CV_32FC1);
if (verbose)
std::cout << getThreadNum() << "# :Start from row " << range.start << " to " << range.end - 1 << " (" << range.end - range.start << " loops)" << std::endl;
switch (img.depth()) {
case CV_8U:
HorizontalIIRFilter<uchar>(img,dst,range,alphaDerive);
break;
case CV_8S:
HorizontalIIRFilter<char>(img, dst, range, alphaDerive);
break;
case CV_16U:
HorizontalIIRFilter<ushort>(img, dst, range, alphaDerive);
break;
case CV_16S:
HorizontalIIRFilter<short>(img, dst, range, alphaDerive);
break;
default:
return;
}
};
ParallelGradientDericheXRows& operator=(const ParallelGradientDericheXRows &) {
return *this;
};
};
void GradientDericheY(InputArray _op, OutputArray _dst,double alphaDerive, double alphaMean)
{
std::vector<Mat> planSrc;
split(_op, planSrc);
std::vector<Mat> planTmp;
std::vector<Mat> planDst;
for (size_t i = 0; i < planSrc.size(); i++)
{
planTmp.push_back(Mat(_op.size(), CV_32FC1));
planDst.push_back(Mat(_op.size(), CV_32FC1));
CV_Assert(planSrc[i].isContinuous() && planTmp[i].isContinuous() && planDst[i].isContinuous());
ParallelGradientDericheYCols x(planSrc[i], planTmp[i], alphaDerive);
parallel_for_(Range(0, planSrc[i].cols), x, getNumThreads());
ParallelGradientDericheYRows xr(planTmp[i], planDst[i], alphaMean);
parallel_for_(Range(0, planTmp[i].rows), xr, getNumThreads());
}
merge(planDst, _dst);
}
void GradientDericheX(InputArray _op, OutputArray _dst, double alphaDerive, double alphaMean)
{
std::vector<Mat> planSrc;
split(_op, planSrc);
std::vector<Mat> planTmp;
std::vector<Mat> planDst;
for (size_t i = 0; i < planSrc.size(); i++)
{
planTmp.push_back(Mat(_op.size(), CV_32FC1));
planDst.push_back(Mat(_op.size(), CV_32FC1));
CV_Assert(planSrc[i].isContinuous() && planTmp[i].isContinuous() && planDst[i].isContinuous());
ParallelGradientDericheXRows x(planSrc[i], planTmp[i], alphaDerive);
parallel_for_(Range(0, planSrc[i].rows), x, getNumThreads());
ParallelGradientDericheXCols xr(planTmp[i], planDst[i], alphaMean);
parallel_for_(Range(0, planTmp[i].cols), xr, getNumThreads());
}
merge(planDst, _dst);
}
} //end of cv::ximgproc
} //end of cv
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment