Commit 831523ce authored by sbokov's avatar sbokov

Sparse-to-dense OF algorithm is added

* Sparse match interpolator interface and EdgeAwareInterpolator were
added to the ximgproc module
* New optical flow algorithm, based on PyrLK sparse OF and sparse match
interpolation, is added to the optflow module
parent 6a0545e6
set(the_description "Optical Flow Algorithms")
ocv_define_module(optflow opencv_core opencv_imgproc opencv_video opencv_highgui WRAP python)
ocv_define_module(optflow opencv_core opencv_imgproc opencv_video opencv_highgui opencv_ximgproc WRAP python)
......@@ -111,6 +111,29 @@ CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray
int upscale_averaging_radius, double upscale_sigma_dist,
double upscale_sigma_color, double speed_up_thr );
/** @brief Fast dense optical flow based on PyrLK sparse matches interpolation.
@param from first 8-bit 3-channel or 1-channel image.
@param to second 8-bit 3-channel or 1-channel image of the same size as from
@param flow computed flow image that has the same size as from and CV_32FC2 type
@param grid_step stride used in sparse match computation. Lower values usually
result in higher quality but slow down the algorithm.
@param k number of nearest-neighbor matches considered, when fitting a locally affine
model. Lower values can make the algorithm noticeably faster at the cost of
some quality degradation.
@param sigma parameter defining how fast the weights decrease in the locally-weighted affine
fitting. Higher values can help preserve fine details, lower values can help to get rid
of the noise in the output flow.
@param use_post_proc defines whether the ximgproc::fastGlobalSmootherFilter() is used
for post-processing after interpolation
@param fgs_lambda see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
@param fgs_sigma see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
*/
CV_EXPORTS_W void calcOpticalFlowSparseToDense ( InputArray from, InputArray to, OutputArray flow,
int grid_step = 8, int k = 128, float sigma = 0.05f,
bool use_post_proc = true, float fgs_lambda = 500.0f,
float fgs_sigma = 1.5f );
/** @brief Read a .flo file
@param path Path to the file to be loaded
......@@ -165,6 +188,9 @@ CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SimpleFlow();
//! Additional interface to the Farneback's algorithm - calcOpticalFlowFarneback()
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_Farneback();
//! Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense()
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SparseToDense();
//! @}
} //optflow
......
......@@ -10,7 +10,7 @@ using namespace optflow;
const String keys = "{help h usage ? | | print this message }"
"{@image1 | | image1 }"
"{@image2 | | image2 }"
"{@algorithm | | [farneback, simpleflow, tvl1 or deepflow] }"
"{@algorithm | | [farneback, simpleflow, tvl1, deepflow or sparsetodenseflow] }"
"{@groundtruth | | path to the .flo file (optional), Middlebury format }"
"{m measure |endpoint| error measure - [endpoint or angular] }"
"{r region |all | region to compute stats about [all, discontinuities, untextured] }"
......@@ -249,6 +249,8 @@ int main( int argc, char** argv )
algorithm = createOptFlow_DualTVL1();
else if ( method == "deepflow" )
algorithm = createOptFlow_DeepFlow();
else if ( method == "sparsetodenseflow" )
algorithm = createOptFlow_SparseToDense();
else
{
printf("Wrong method!\n");
......
......@@ -177,5 +177,42 @@ Ptr<DenseOpticalFlow> createOptFlow_Farneback()
{
return makePtr<OpticalFlowFarneback>();
}
class OpticalFlowSparseToDense : public DenseOpticalFlow
{
public:
OpticalFlowSparseToDense(int _grid_step, int _k, float _sigma, bool _use_post_proc, float _fgs_lambda, float _fgs_sigma);
void calc(InputArray I0, InputArray I1, InputOutputArray flow);
void collectGarbage();
protected:
int grid_step;
int k;
float sigma;
bool use_post_proc;
float fgs_lambda;
float fgs_sigma;
};
OpticalFlowSparseToDense::OpticalFlowSparseToDense(int _grid_step, int _k, float _sigma, bool _use_post_proc, float _fgs_lambda, float _fgs_sigma)
{
grid_step = _grid_step;
k = _k;
sigma = _sigma;
use_post_proc = _use_post_proc;
fgs_lambda = _fgs_lambda;
fgs_sigma = _fgs_sigma;
}
void OpticalFlowSparseToDense::calc(InputArray I0, InputArray I1, InputOutputArray flow)
{
calcOpticalFlowSparseToDense(I0,I1,flow,grid_step,k,sigma,use_post_proc,fgs_lambda,fgs_sigma);
}
void OpticalFlowSparseToDense::collectGarbage() {}
Ptr<DenseOpticalFlow> createOptFlow_SparseToDense()
{
return makePtr<OpticalFlowSparseToDense>(8,128,0.05f,true,500.0f,1.5f);
}
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"
using namespace std;
namespace cv {
namespace optflow {
CV_EXPORTS_W void calcOpticalFlowSparseToDense(InputArray from, InputArray to, OutputArray flow,
int grid_step, int k,
float sigma, bool use_post_proc,
float fgs_lambda, float fgs_sigma)
{
CV_Assert( grid_step>1 && k>3 && sigma>0.0001f && fgs_lambda>1.0f && fgs_sigma>0.01f );
CV_Assert( !from.empty() && from.depth() == CV_8U && (from.channels() == 3 || from.channels() == 1) );
CV_Assert( !to .empty() && to .depth() == CV_8U && (to .channels() == 3 || to .channels() == 1) );
CV_Assert( from.sameSize(to) );
Mat prev = from.getMat();
Mat cur = to.getMat();
Mat prev_grayscale, cur_grayscale;
while( (prev.cols/grid_step)*(prev.rows/grid_step) > SHRT_MAX ) //ensure that the number matches is not too big
grid_step*=2;
if(prev.channels()==3)
{
cvtColor(prev,prev_grayscale,COLOR_BGR2GRAY);
cvtColor(cur, cur_grayscale, COLOR_BGR2GRAY);
}
else
{
prev.copyTo(prev_grayscale);
cur .copyTo(cur_grayscale);
}
vector<Point2f> points;
vector<Point2f> dst_points;
vector<unsigned char> status;
vector<float> err;
vector<Point2f> points_filtered, dst_points_filtered;
for(int i=0;i<prev.rows;i+=grid_step)
for(int j=0;j<prev.cols;j+=grid_step)
points.push_back(Point2f((float)j,(float)i));
calcOpticalFlowPyrLK(prev_grayscale,cur_grayscale,points,dst_points,status,err,Size(21,21));
for(unsigned int i=0;i<points.size();i++)
{
if(status[i]!=0)
{
points_filtered.push_back(points[i]);
dst_points_filtered.push_back(dst_points[i]);
}
}
flow.create(from.size(),CV_32FC2);
Mat dense_flow = flow.getMat();
Ptr<ximgproc::EdgeAwareInterpolator> gd = ximgproc::createEdgeAwareInterpolator();
gd->setK(k);
gd->setSigma(sigma);
gd->setUsePostProcessing(use_post_proc);
gd->setFGSLambda(fgs_lambda);
gd->setFGSSigma (fgs_sigma);
gd->interpolate(prev,points_filtered,cur,dst_points_filtered,dense_flow);
}
}
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
using namespace std;
using namespace cv;
/* ///////////////////// sparsetodenseflow_test ///////////////////////// */
class CV_SparseToDenseFlowTest : public cvtest::BaseTest
{
protected:
void run(int);
};
static bool isFlowCorrect(float u) {
return !cvIsNaN(u) && (fabs(u) < 1e9);
}
static float calc_rmse(Mat flow1, Mat flow2) {
float sum = 0;
int counter = 0;
const int rows = flow1.rows;
const int cols = flow1.cols;
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
Vec2f flow1_at_point = flow1.at<Vec2f>(y, x);
Vec2f flow2_at_point = flow2.at<Vec2f>(y, x);
float u1 = flow1_at_point[0];
float v1 = flow1_at_point[1];
float u2 = flow2_at_point[0];
float v2 = flow2_at_point[1];
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) {
sum += (u1-u2)*(u1-u2) + (v1-v2)*(v1-v2);
counter++;
}
}
}
return (float)sqrt(sum / (1e-9 + counter));
}
void CV_SparseToDenseFlowTest::run(int) {
const float MAX_RMSE = 0.6f;
const string frame1_path = ts->get_data_path() + "optflow/RubberWhale1.png";
const string frame2_path = ts->get_data_path() + "optflow/RubberWhale2.png";
const string gt_flow_path = ts->get_data_path() + "optflow/RubberWhale.flo";
Mat frame1 = imread(frame1_path);
Mat frame2 = imread(frame2_path);
if (frame1.empty()) {
ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if (frame2.empty()) {
ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if (frame1.rows != frame2.rows && frame1.cols != frame2.cols) {
ts->printf(cvtest::TS::LOG, "images should be of equal sizes (%s and %s)",
frame1_path.c_str(), frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if (frame1.type() != 16 || frame2.type() != 16) {
ts->printf(cvtest::TS::LOG, "images should be of equal type CV_8UC3 (%s and %s)",
frame1_path.c_str(), frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
Mat flow_gt = optflow::readOpticalFlow(gt_flow_path);
if(flow_gt.empty()) {
ts->printf(cvtest::TS::LOG, "error while reading flow data from file %s",
gt_flow_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
Mat flow;
optflow::calcOpticalFlowSparseToDense(frame1, frame2, flow);
float rmse = calc_rmse(flow_gt, flow);
ts->printf(cvtest::TS::LOG, "Optical flow estimation RMSE for SparseToDenseFlow algorithm : %lf\n",
rmse);
if (rmse > MAX_RMSE) {
ts->printf( cvtest::TS::LOG,
"Too big rmse error : %lf ( >= %lf )\n", rmse, MAX_RMSE);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
TEST(Video_OpticalFlowSparseToDenseFlow, accuracy) { CV_SparseToDenseFlowTest test; test.safe_run(); }
......@@ -77,3 +77,11 @@
year={2008},
organization={ACM}
}
@inproceedings{Revaud2015,
title={EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow},
author={Revaud, Jerome and Weinzaepfel, Philippe and Harchaoui, Zaid and Schmid, Cordelia},
booktitle={Computer Vision and Pattern Recognition (CVPR), IEEE Conference on},
pages={1164--1172},
year={2015}
}
......@@ -39,6 +39,7 @@
#include "ximgproc/edge_filter.hpp"
#include "ximgproc/disparity_filter.hpp"
#include "ximgproc/sparse_match_interpolator.hpp"
#include "ximgproc/structured_edge_detection.hpp"
#include "ximgproc/seeds.hpp"
......
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_SPARSEMATCHINTERPOLATOR_HPP__
#define __OPENCV_SPARSEMATCHINTERPOLATOR_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
namespace cv {
namespace ximgproc {
//! @addtogroup ximgproc_filters
//! @{
/** @brief Main interface for all filters, that take sparse matches as an
input and produce a dense per-pixel matching (optical flow) as an output.
*/
class CV_EXPORTS_W SparseMatchInterpolator : public Algorithm
{
public:
/** @brief Interpolate input sparse matches.
@param from_image first of the two matched images, 8-bit single-channel or three-channel.
@param from_points points of the from_image for which there are correspondences in the
to_image (Point2f vector, size shouldn't exceed 32767)
@param to_image second of the two matched images, 8-bit single-channel or three-channel.
@param to_points points in the to_image corresponding to from_points
(Point2f vector, size shouldn't exceed 32767)
@param dense_flow output dense matching (two-channel CV_32F image)
*/
CV_WRAP virtual void interpolate(InputArray from_image, InputArray from_points,
InputArray to_image , InputArray to_points,
OutputArray dense_flow) = 0;
};
/** @brief Sparse match interpolation algorithm based on modified locally-weighted affine
estimator from @cite Revaud2015 and Fast Global Smoother as post-processing filter.
*/
class CV_EXPORTS_W EdgeAwareInterpolator : public SparseMatchInterpolator
{
public:
/** @brief K is a number of nearest-neighbor matches considered, when fitting a locally affine
model. Usually it should be around 128. However, lower values would make the interpolation
noticeably faster.
*/
CV_WRAP virtual void setK(int _k) = 0;
/** @see setK */
CV_WRAP virtual int getK() = 0;
/** @brief Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
output flow.
*/
CV_WRAP virtual void setSigma(float _sigma) = 0;
/** @see setSigma */
CV_WRAP virtual float getSigma() = 0;
/** @brief Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
should be in the range of 0 to 1000.
*/
CV_WRAP virtual void setLambda(float _lambda) = 0;
/** @see setLambda */
CV_WRAP virtual float getLambda() = 0;
/** @brief Sets whether the fastGlobalSmootherFilter() post-processing is employed. It is turned on by
default.
*/
CV_WRAP virtual void setUsePostProcessing(bool _use_post_proc) = 0;
/** @see setUsePostProcessing */
CV_WRAP virtual bool getUsePostProcessing() = 0;
/** @brief Sets the respective fastGlobalSmootherFilter() parameter.
*/
CV_WRAP virtual void setFGSLambda(float _lambda) = 0;
/** @see setFGSLambda */
CV_WRAP virtual float getFGSLambda() = 0;
/** @see setFGSLambda */
CV_WRAP virtual void setFGSSigma(float _sigma) = 0;
/** @see setFGSLambda */
CV_WRAP virtual float getFGSSigma() = 0;
};
/** @brief Factory method that creates an instance of the
EdgeAwareInterpolator.
*/
CV_EXPORTS_W
Ptr<EdgeAwareInterpolator> createEdgeAwareInterpolator();
//! @}
}
}
#endif
#endif
This diff is collapsed.
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"
#include <fstream>
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
static string getDataDir()
{
return cvtest::TS::ptr()->get_data_path();
}
const float FLOW_TAG_FLOAT = 202021.25f;
Mat readOpticalFlow( const String& path )
{
// CV_Assert(sizeof(float) == 4);
//FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()
Mat_<Point2f> flow;
ifstream file(path.c_str(), std::ios_base::binary);
if ( !file.good() )
return flow; // no file - return empty matrix
float tag;
file.read((char*) &tag, sizeof(float));
if ( tag != FLOW_TAG_FLOAT )
return flow;
int width, height;
file.read((char*) &width, 4);
file.read((char*) &height, 4);
flow.create(height, width);
for ( int i = 0; i < flow.rows; ++i )
{
for ( int j = 0; j < flow.cols; ++j )
{
Point2f u;
file.read((char*) &u.x, sizeof(float));
file.read((char*) &u.y, sizeof(float));
if ( !file.good() )
{
flow.release();
return flow;
}
flow(i, j) = u;
}
}
file.close();
return flow;
}
CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
typedef tuple<Size, GuideTypes> InterpolatorParams;
typedef TestWithParam<InterpolatorParams> InterpolatorTest;
TEST(InterpolatorTest, ReferenceAccuracy)
{
double MAX_DIF = 1.0;
double MAX_MEAN_DIF = 1.0 / 256.0;
string dir = getDataDir() + "cv/sparse_match_interpolator";
Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR);
ASSERT_FALSE(src.empty());
Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
ASSERT_FALSE(ref_flow.empty());
ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
float from_x,from_y,to_x,to_y;
vector<Point2f> from_points;
vector<Point2f> to_points;
while(file >> from_x >> from_y >> to_x >> to_y)
{
from_points.push_back(Point2f(from_x,from_y));
to_points.push_back(Point2f(to_x,to_y));
}
cv::setNumThreads(cv::getNumberOfCPUs());
Mat res_flow;
Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
interpolator->setK(128);
interpolator->setSigma(0.05f);
interpolator->setUsePostProcessing(true);
interpolator->setFGSLambda(500.0f);
interpolator->setFGSSigma(1.5f);
interpolator->interpolate(src,from_points,Mat(),to_points,res_flow);
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
}
TEST_P(InterpolatorTest, MultiThreadReproducibility)
{
if (cv::getNumberOfCPUs() == 1)
return;
double MAX_DIF = 1.0;
double MAX_MEAN_DIF = 1.0 / 256.0;
int loopsCount = 2;
RNG rng(0);
InterpolatorParams params = GetParam();
Size size = get<0>(params);
int guideType = get<1>(params);
Mat from(size, guideType);
randu(from, 0, 255);
int num_matches = rng.uniform(5,SHRT_MAX-1);
vector<Point2f> from_points;
vector<Point2f> to_points;
for(int i=0;i<num_matches;i++)
{
from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
}
for (int iter = 0; iter <= loopsCount; iter++)
{
int K = rng.uniform(4,512);
float sigma = rng.uniform(0.01f,0.5f);
float FGSlambda = rng.uniform(100.0f, 10000.0f);
float FGSsigma = rng.uniform(0.5f, 100.0f);
Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
interpolator->setK(K);
interpolator->setSigma(sigma);
interpolator->setUsePostProcessing(true);
interpolator->setFGSLambda(FGSlambda);
interpolator->setFGSSigma(FGSsigma);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat resMultiThread;
interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread);
cv::setNumThreads(1);
Mat resSingleThread;
interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total());
}
}
INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all()));
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment