Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
7f93d951
Commit
7f93d951
authored
Jul 24, 2016
by
Vladislav Samsonov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added training part of the Global Patch Collider
parent
3dbbad12
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
537 additions
and
0 deletions
+537
-0
optflow.hpp
modules/optflow/include/opencv2/optflow.hpp
+1
-0
sparse_matching_gpc.hpp
...s/optflow/include/opencv2/optflow/sparse_matching_gpc.hpp
+169
-0
gpc_train.cpp
modules/optflow/samples/gpc_train.cpp
+35
-0
sparse_matching_gpc.cpp
modules/optflow/src/sparse_matching_gpc.cpp
+332
-0
No files found.
modules/optflow/include/opencv2/optflow.hpp
View file @
7f93d951
...
...
@@ -44,6 +44,7 @@ the use of this software, even if advised of the possibility of such damage.
#include "opencv2/video.hpp"
#include "opencv2/optflow/pcaflow.hpp"
#include "opencv2/optflow/sparse_matching_gpc.hpp"
/**
@defgroup optflow Optical Flow Algorithms
...
...
modules/optflow/include/opencv2/optflow/sparse_matching_gpc.hpp
0 → 100644
View file @
7f93d951
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2016, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
/*
Implementation of the Global Patch Collider algorithm from the following paper:
http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf
@InProceedings{Wang_2016_CVPR,
author = {Wang, Shenlong and Ryan Fanello, Sean and Rhemann, Christoph and Izadi, Shahram and Kohli, Pushmeet},
title = {The Global Patch Collider},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
*/
#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
#include "opencv2/core.hpp"
namespace
cv
{
namespace
optflow
{
struct
CV_EXPORTS_W
GPCPatchDescriptor
{
static
const
unsigned
nFeatures
=
18
;
// number of features in a patch descriptor
Vec
<
double
,
nFeatures
>
feature
;
GPCPatchDescriptor
(
const
Mat
*
imgCh
,
int
i
,
int
j
);
};
typedef
std
::
pair
<
GPCPatchDescriptor
,
GPCPatchDescriptor
>
GPCPatchSample
;
typedef
std
::
vector
<
GPCPatchSample
>
GPCSamplesVector
;
class
CV_EXPORTS_W
GPCTree
:
public
Algorithm
{
public
:
struct
Node
{
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
coef
;
// hyperplane coefficients
double
rhs
;
unsigned
left
;
unsigned
right
;
bool
operator
==
(
const
Node
&
n
)
const
{
return
coef
==
n
.
coef
&&
rhs
==
n
.
rhs
&&
left
==
n
.
left
&&
right
==
n
.
right
;
}
};
private
:
typedef
GPCSamplesVector
::
iterator
SIter
;
std
::
vector
<
Node
>
nodes
;
bool
trainNode
(
size_t
nodeId
,
SIter
begin
,
SIter
end
,
unsigned
depth
);
public
:
void
train
(
GPCSamplesVector
&
samples
);
void
write
(
FileStorage
&
fs
)
const
;
void
read
(
const
FileNode
&
fn
);
static
Ptr
<
GPCTree
>
create
()
{
return
makePtr
<
GPCTree
>
();
}
bool
operator
==
(
const
GPCTree
&
t
)
const
{
return
nodes
==
t
.
nodes
;
}
};
template
<
int
T
>
class
CV_EXPORTS_W
GPCForest
:
public
Algorithm
{
private
:
GPCTree
tree
[
T
];
public
:
void
train
(
GPCSamplesVector
&
samples
)
{
for
(
int
i
=
0
;
i
<
T
;
++
i
)
tree
[
i
].
train
(
samples
);
}
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"ntrees"
<<
T
<<
"trees"
<<
"["
;
for
(
int
i
=
0
;
i
<
T
;
++
i
)
{
fs
<<
"{"
;
tree
[
i
].
write
(
fs
);
fs
<<
"}"
;
}
fs
<<
"]"
;
}
void
read
(
const
FileNode
&
fn
)
{
CV_Assert
(
T
==
(
int
)
fn
[
"ntrees"
]
);
FileNodeIterator
it
=
fn
[
"trees"
].
begin
();
for
(
int
i
=
0
;
i
<
T
;
++
i
,
++
it
)
tree
[
i
].
read
(
*
it
);
}
static
Ptr
<
GPCForest
>
create
()
{
return
makePtr
<
GPCForest
>
();
}
};
/** @brief Class encapsulating training samples.
*/
class
CV_EXPORTS_W
GPCTrainingSamples
{
private
:
GPCSamplesVector
samples
;
public
:
/** @brief This function can be used to extract samples from a pair of images and a ground truth flow.
* Sizes of all the provided vectors must be equal.
*/
static
Ptr
<
GPCTrainingSamples
>
create
(
const
std
::
vector
<
String
>
&
imagesFrom
,
const
std
::
vector
<
String
>
&
imagesTo
,
const
std
::
vector
<
String
>
&
gt
);
size_t
size
()
const
{
return
samples
.
size
();
}
operator
GPCSamplesVector
()
const
{
return
samples
;
}
operator
GPCSamplesVector
&
()
{
return
samples
;
}
};
}
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
optflow
::
GPCTree
::
Node
&
node
);
CV_EXPORTS
void
read
(
const
FileNode
&
fn
,
optflow
::
GPCTree
::
Node
&
node
,
optflow
::
GPCTree
::
Node
);
}
#endif
modules/optflow/samples/gpc_train.cpp
0 → 100644
View file @
7f93d951
#include "opencv2/optflow.hpp"
#include <iostream>
const
int
nTrees
=
5
;
int
main
(
int
argc
,
const
char
**
argv
)
{
int
nSequences
=
argc
-
1
;
if
(
nSequences
<=
0
||
nSequences
%
3
!=
0
)
{
std
::
cerr
<<
"Usage: "
<<
argv
[
0
]
<<
" ImageFrom1 ImageTo1 GroundTruth1 ... ImageFromN ImageToN GroundTruthN"
<<
std
::
endl
;
return
1
;
}
nSequences
/=
3
;
std
::
vector
<
cv
::
String
>
img1
,
img2
,
gt
;
for
(
int
i
=
0
;
i
<
nSequences
;
++
i
)
{
img1
.
push_back
(
argv
[
1
+
i
*
3
]
);
img2
.
push_back
(
argv
[
1
+
i
*
3
+
1
]
);
gt
.
push_back
(
argv
[
1
+
i
*
3
+
2
]
);
}
cv
::
Ptr
<
cv
::
optflow
::
GPCTrainingSamples
>
ts
=
cv
::
optflow
::
GPCTrainingSamples
::
create
(
img1
,
img2
,
gt
);
std
::
cout
<<
"Got "
<<
ts
->
size
()
<<
" samples."
<<
std
::
endl
;
cv
::
Ptr
<
cv
::
optflow
::
GPCForest
<
nTrees
>
>
forest
=
cv
::
optflow
::
GPCForest
<
nTrees
>::
create
();
forest
->
train
(
*
ts
);
forest
->
save
(
"forest.dump"
);
return
0
;
}
modules/optflow/src/sparse_matching_gpc.cpp
0 → 100644
View file @
7f93d951
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/core_c.h"
#include "opencv2/highgui.hpp"
#include "precomp.hpp"
namespace
cv
{
namespace
optflow
{
namespace
{
const
int
patchRadius
=
10
;
const
double
thresholdMagnitudeFrac
=
0.6666666666
;
const
int
globalIters
=
3
;
const
int
localIters
=
500
;
const
unsigned
minNumberOfSamples
=
2
;
const
bool
debugOutput
=
true
;
struct
Magnitude
{
float
val
;
int
i
;
int
j
;
Magnitude
(
float
_val
,
int
_i
,
int
_j
)
:
val
(
_val
),
i
(
_i
),
j
(
_j
)
{}
Magnitude
()
{}
bool
operator
<
(
const
Magnitude
&
m
)
{
return
val
>
m
.
val
;
}
};
struct
PartitionPredicate1
{
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
coef
;
double
rhs
;
PartitionPredicate1
(
const
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
&
_coef
,
double
_rhs
)
:
coef
(
_coef
),
rhs
(
_rhs
)
{}
bool
operator
()(
const
GPCPatchSample
&
sample
)
const
{
const
bool
direction1
=
(
coef
.
dot
(
sample
.
first
.
feature
)
<
rhs
);
const
bool
direction2
=
(
coef
.
dot
(
sample
.
second
.
feature
)
<
rhs
);
return
direction1
==
false
&&
direction1
==
direction2
;
}
};
struct
PartitionPredicate2
{
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
coef
;
double
rhs
;
PartitionPredicate2
(
const
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
&
_coef
,
double
_rhs
)
:
coef
(
_coef
),
rhs
(
_rhs
)
{}
bool
operator
()(
const
GPCPatchSample
&
sample
)
const
{
const
bool
direction1
=
(
coef
.
dot
(
sample
.
first
.
feature
)
<
rhs
);
const
bool
direction2
=
(
coef
.
dot
(
sample
.
second
.
feature
)
<
rhs
);
return
direction1
!=
direction2
;
}
};
float
normL2Sqr
(
const
Vec2f
&
v
)
{
return
v
[
0
]
*
v
[
0
]
+
v
[
1
]
*
v
[
1
];
}
bool
checkBounds
(
int
i
,
int
j
,
Size
sz
)
{
return
i
>=
patchRadius
&&
j
>=
patchRadius
&&
i
+
patchRadius
<
sz
.
height
&&
j
+
patchRadius
<
sz
.
width
;
}
void
getTrainingSamples
(
const
Mat
&
from
,
const
Mat
&
to
,
const
Mat
&
gt
,
GPCSamplesVector
&
samples
)
{
const
Size
sz
=
gt
.
size
();
std
::
vector
<
Magnitude
>
mag
;
for
(
int
i
=
patchRadius
;
i
+
patchRadius
<
sz
.
height
;
++
i
)
for
(
int
j
=
patchRadius
;
j
+
patchRadius
<
sz
.
width
;
++
j
)
mag
.
push_back
(
Magnitude
(
normL2Sqr
(
gt
.
at
<
Vec2f
>
(
i
,
j
)
),
i
,
j
)
);
size_t
n
=
mag
.
size
()
*
thresholdMagnitudeFrac
;
std
::
nth_element
(
mag
.
begin
(),
mag
.
begin
()
+
n
,
mag
.
end
()
);
mag
.
resize
(
n
);
std
::
random_shuffle
(
mag
.
begin
(),
mag
.
end
()
);
n
/=
patchRadius
;
mag
.
resize
(
n
);
Mat
fromCh
[
3
],
toCh
[
3
];
split
(
from
,
fromCh
);
split
(
to
,
toCh
);
for
(
size_t
k
=
0
;
k
<
n
;
++
k
)
{
int
i0
=
mag
[
k
].
i
;
int
j0
=
mag
[
k
].
j
;
int
i1
=
i0
+
cvRound
(
gt
.
at
<
Vec2f
>
(
i0
,
j0
)[
1
]
);
int
j1
=
j0
+
cvRound
(
gt
.
at
<
Vec2f
>
(
i0
,
j0
)[
0
]
);
if
(
checkBounds
(
i1
,
j1
,
sz
)
)
samples
.
push_back
(
std
::
make_pair
(
GPCPatchDescriptor
(
fromCh
,
i0
,
j0
),
GPCPatchDescriptor
(
toCh
,
i1
,
j1
)
)
);
}
}
/* Sample random number from Cauchy distribution. */
double
getRandomCauchyScalar
()
{
static
RNG
rng
;
return
tan
(
rng
.
uniform
(
-
1.54
,
1.54
)
);
// I intentionally used the value slightly less than PI/2 to enforce strictly
// zero probability for large numbers. Resulting PDF for Cauchy has
// truncated "tails".
}
/* Sample random vector from Cauchy distribution (pointwise, i.e. vector whose components are independent random
* variables from Cauchy distribution) */
void
getRandomCauchyVector
(
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
&
v
)
{
for
(
unsigned
i
=
0
;
i
<
GPCPatchDescriptor
::
nFeatures
;
++
i
)
v
[
i
]
=
getRandomCauchyScalar
();
}
}
GPCPatchDescriptor
::
GPCPatchDescriptor
(
const
Mat
*
imgCh
,
int
i
,
int
j
)
{
Rect
roi
(
j
-
patchRadius
,
i
-
patchRadius
,
2
*
patchRadius
,
2
*
patchRadius
);
Mat
freqDomain
;
dct
(
imgCh
[
0
](
roi
),
freqDomain
);
feature
[
0
]
=
freqDomain
.
at
<
float
>
(
0
,
0
);
feature
[
1
]
=
freqDomain
.
at
<
float
>
(
0
,
1
);
feature
[
2
]
=
freqDomain
.
at
<
float
>
(
0
,
2
);
feature
[
3
]
=
freqDomain
.
at
<
float
>
(
0
,
3
);
feature
[
4
]
=
freqDomain
.
at
<
float
>
(
1
,
0
);
feature
[
5
]
=
freqDomain
.
at
<
float
>
(
1
,
1
);
feature
[
6
]
=
freqDomain
.
at
<
float
>
(
1
,
2
);
feature
[
7
]
=
freqDomain
.
at
<
float
>
(
1
,
3
);
feature
[
8
]
=
freqDomain
.
at
<
float
>
(
2
,
0
);
feature
[
9
]
=
freqDomain
.
at
<
float
>
(
2
,
1
);
feature
[
10
]
=
freqDomain
.
at
<
float
>
(
2
,
2
);
feature
[
11
]
=
freqDomain
.
at
<
float
>
(
2
,
3
);
feature
[
12
]
=
freqDomain
.
at
<
float
>
(
3
,
0
);
feature
[
13
]
=
freqDomain
.
at
<
float
>
(
3
,
1
);
feature
[
14
]
=
freqDomain
.
at
<
float
>
(
3
,
2
);
feature
[
15
]
=
freqDomain
.
at
<
float
>
(
3
,
3
);
feature
[
16
]
=
cv
::
sum
(
imgCh
[
1
](
roi
)
)[
0
]
/
(
2
*
patchRadius
);
feature
[
17
]
=
cv
::
sum
(
imgCh
[
2
](
roi
)
)[
0
]
/
(
2
*
patchRadius
);
}
bool
GPCTree
::
trainNode
(
size_t
nodeId
,
SIter
begin
,
SIter
end
,
unsigned
depth
)
{
if
(
std
::
distance
(
begin
,
end
)
<
minNumberOfSamples
)
return
false
;
if
(
nodeId
>=
nodes
.
size
()
)
nodes
.
resize
(
nodeId
+
1
);
Node
&
node
=
nodes
[
nodeId
];
// Select the best hyperplane
unsigned
globalBestScore
=
0
;
std
::
vector
<
double
>
values
;
for
(
int
j
=
0
;
j
<
globalIters
;
++
j
)
{
// Global search step
Vec
<
double
,
GPCPatchDescriptor
::
nFeatures
>
coef
;
unsigned
localBestScore
=
0
;
getRandomCauchyVector
(
coef
);
for
(
int
i
=
0
;
i
<
localIters
;
++
i
)
{
// Local search step
double
randomModification
=
getRandomCauchyScalar
();
const
int
pos
=
i
%
GPCPatchDescriptor
::
nFeatures
;
std
::
swap
(
coef
[
pos
],
randomModification
);
values
.
clear
();
for
(
SIter
iter
=
begin
;
iter
!=
end
;
++
iter
)
{
values
.
push_back
(
coef
.
dot
(
iter
->
first
.
feature
)
);
values
.
push_back
(
coef
.
dot
(
iter
->
second
.
feature
)
);
}
std
::
nth_element
(
values
.
begin
(),
values
.
begin
()
+
values
.
size
()
/
2
,
values
.
end
()
);
const
double
median
=
values
[
values
.
size
()
/
2
];
unsigned
correct
=
0
;
for
(
SIter
iter
=
begin
;
iter
!=
end
;
++
iter
)
{
const
bool
direction
=
(
coef
.
dot
(
iter
->
first
.
feature
)
<
median
);
if
(
direction
==
(
coef
.
dot
(
iter
->
second
.
feature
)
<
median
)
)
++
correct
;
}
if
(
correct
>
localBestScore
)
localBestScore
=
correct
;
else
coef
[
pos
]
=
randomModification
;
if
(
correct
>
globalBestScore
)
{
globalBestScore
=
correct
;
node
.
coef
=
coef
;
node
.
rhs
=
median
;
if
(
debugOutput
)
{
printf
(
"[%u] Updating weights: correct %.2f (%u/%ld)
\n
"
,
depth
,
double
(
correct
)
/
std
::
distance
(
begin
,
end
),
correct
,
std
::
distance
(
begin
,
end
)
);
for
(
unsigned
k
=
0
;
k
<
GPCPatchDescriptor
::
nFeatures
;
++
k
)
printf
(
"%.3f "
,
coef
[
k
]
);
printf
(
"
\n
"
);
}
}
}
}
// Partition vector with samples according to the hyperplane in QuickSort-like manner.
// Unlike QuickSort, we need to partition it into 3 parts (left subtree samples; undefined samples; right subtree
// samples), so we call it two times.
SIter
leftEnd
=
std
::
partition
(
begin
,
end
,
PartitionPredicate1
(
node
.
coef
,
node
.
rhs
)
);
// Separate left subtree samples from others.
SIter
rightBegin
=
std
::
partition
(
leftEnd
,
end
,
PartitionPredicate2
(
node
.
coef
,
node
.
rhs
)
);
// Separate undefined samples from right subtree samples.
node
.
left
=
(
trainNode
(
nodeId
*
2
+
1
,
begin
,
leftEnd
,
depth
+
1
)
)
?
nodeId
*
2
+
1
:
0
;
node
.
right
=
(
trainNode
(
nodeId
*
2
+
2
,
rightBegin
,
end
,
depth
+
1
)
)
?
nodeId
*
2
+
2
:
0
;
return
true
;
}
void
GPCTree
::
train
(
GPCSamplesVector
&
samples
)
{
nodes
.
reserve
(
samples
.
size
()
*
2
-
1
);
// set upper bound for the possible number of nodes so all subsequent resize() will be no-op
trainNode
(
0
,
samples
.
begin
(),
samples
.
end
(),
0
);
}
void
GPCTree
::
write
(
FileStorage
&
fs
)
const
{
if
(
nodes
.
empty
()
)
CV_Error
(
CV_StsBadArg
,
"Tree have not been trained"
);
fs
<<
"nodes"
<<
nodes
;
}
void
GPCTree
::
read
(
const
FileNode
&
fn
)
{
fn
[
"nodes"
]
>>
nodes
;
}
Ptr
<
GPCTrainingSamples
>
GPCTrainingSamples
::
create
(
const
std
::
vector
<
String
>
&
imagesFrom
,
const
std
::
vector
<
String
>
&
imagesTo
,
const
std
::
vector
<
String
>
&
gt
)
{
CV_Assert
(
imagesFrom
.
size
()
==
imagesTo
.
size
()
);
CV_Assert
(
imagesFrom
.
size
()
==
gt
.
size
()
);
Ptr
<
GPCTrainingSamples
>
ts
=
makePtr
<
GPCTrainingSamples
>
();
for
(
size_t
i
=
0
;
i
<
imagesFrom
.
size
();
++
i
)
{
Mat
from
=
imread
(
imagesFrom
[
i
]
);
Mat
to
=
imread
(
imagesTo
[
i
]
);
Mat
gtFlow
=
readOpticalFlow
(
gt
[
i
]
);
CV_Assert
(
from
.
size
==
to
.
size
);
CV_Assert
(
from
.
size
==
gtFlow
.
size
);
CV_Assert
(
from
.
channels
()
==
3
);
CV_Assert
(
to
.
channels
()
==
3
);
from
.
convertTo
(
from
,
CV_32FC3
);
to
.
convertTo
(
to
,
CV_32FC3
);
cvtColor
(
from
,
from
,
COLOR_BGR2YCrCb
);
cvtColor
(
to
,
to
,
COLOR_BGR2YCrCb
);
getTrainingSamples
(
from
,
to
,
gtFlow
,
ts
->
samples
);
}
return
ts
;
}
}
// namespace optflow
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
optflow
::
GPCTree
::
Node
&
node
)
{
cv
::
internal
::
WriteStructContext
ws
(
fs
,
name
,
CV_NODE_SEQ
+
CV_NODE_FLOW
);
for
(
unsigned
i
=
0
;
i
<
optflow
::
GPCPatchDescriptor
::
nFeatures
;
++
i
)
write
(
fs
,
node
.
coef
[
i
]
);
write
(
fs
,
node
.
rhs
);
write
(
fs
,
(
int
)
node
.
left
);
write
(
fs
,
(
int
)
node
.
right
);
}
void
read
(
const
FileNode
&
fn
,
optflow
::
GPCTree
::
Node
&
node
,
optflow
::
GPCTree
::
Node
)
{
FileNodeIterator
it
=
fn
.
begin
();
for
(
unsigned
i
=
0
;
i
<
optflow
::
GPCPatchDescriptor
::
nFeatures
;
++
i
)
it
>>
node
.
coef
[
i
];
it
>>
node
.
rhs
>>
(
int
&
)
node
.
left
>>
(
int
&
)
node
.
right
;
}
}
// namespace cv
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment