Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
7f0260c1
Commit
7f0260c1
authored
Aug 01, 2016
by
Vitaliy Lyudvichenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Adding of OCL versions of Concat, Split, Slice layers
Moving more Caffe loaders to sparate file
parent
d0a9683f
Show whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
399 additions
and
224 deletions
+399
-224
all_layers.hpp
modules/dnn/include/opencv2/dnn/all_layers.hpp
+34
-6
blob.hpp
modules/dnn/include/opencv2/dnn/blob.hpp
+2
-0
blob.inl.hpp
modules/dnn/include/opencv2/dnn/blob.inl.hpp
+9
-0
layer_loaders.cpp
modules/dnn/src/caffe/layer_loaders.cpp
+125
-2
init.cpp
modules/dnn/src/init.cpp
+10
-19
concat_layer.cpp
modules/dnn/src/layers/concat_layer.cpp
+47
-27
concat_layer.hpp
modules/dnn/src/layers/concat_layer.hpp
+15
-6
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+2
-32
layers_common.cpp
modules/dnn/src/layers/layers_common.cpp
+0
-40
layers_common.hpp
modules/dnn/src/layers/layers_common.hpp
+2
-2
slice_layer.cpp
modules/dnn/src/layers/slice_layer.cpp
+54
-37
slice_layer.hpp
modules/dnn/src/layers/slice_layer.hpp
+10
-6
split_layer.cpp
modules/dnn/src/layers/split_layer.cpp
+21
-16
split_layer.hpp
modules/dnn/src/layers/split_layer.hpp
+5
-5
activations.cl
modules/dnn/src/opencl/activations.cl
+1
-1
test_layers.cpp
modules/dnn/test/test_layers.cpp
+62
-25
No files found.
modules/dnn/include/opencv2/dnn/all_layers.hpp
View file @
7f0260c1
...
...
@@ -275,9 +275,37 @@ namespace dnn
static
Ptr
<
InnerProductLayer
>
create
(
int
axis
=
1
);
};
/* Reshaping */
class
CV_EXPORTS_W
ConcatLayer
:
public
Layer
{
public
:
int
axis
;
static
Ptr
<
ConcatLayer
>
create
(
int
axis
=
1
);
};
class
CV_EXPORTS_W
SplitLayer
:
public
Layer
{
public
:
int
outputsCount
;
//!< Number of copies that will be produced (is ignored when negative).
static
Ptr
<
SplitLayer
>
create
(
int
outputsCount
=
-
1
);
};
class
CV_EXPORTS_W
SliceLayer
:
public
Layer
{
public
:
int
axis
;
std
::
vector
<
int
>
sliceIndices
;
static
Ptr
<
SliceLayer
>
create
(
int
axis
);
static
Ptr
<
SliceLayer
>
create
(
int
axis
,
const
std
::
vector
<
int
>
&
sliceIndices
);
};
/* Activations */
class
ReLULayer
:
public
Layer
class
CV_EXPORTS_W
ReLULayer
:
public
Layer
{
public
:
double
negativeSlope
;
...
...
@@ -285,31 +313,31 @@ namespace dnn
static
Ptr
<
ReLULayer
>
create
(
double
negativeSlope
=
0
);
};
class
TanHLayer
:
public
Layer
class
CV_EXPORTS_W
TanHLayer
:
public
Layer
{
public
:
static
Ptr
<
TanHLayer
>
create
();
};
class
SigmoidLayer
:
public
Layer
class
CV_EXPORTS_W
SigmoidLayer
:
public
Layer
{
public
:
static
Ptr
<
SigmoidLayer
>
create
();
};
class
BNLLLayer
:
public
Layer
class
CV_EXPORTS_W
BNLLLayer
:
public
Layer
{
public
:
static
Ptr
<
BNLLLayer
>
create
();
};
class
AbsLayer
:
public
Layer
class
CV_EXPORTS_W
AbsLayer
:
public
Layer
{
public
:
static
Ptr
<
AbsLayer
>
create
();
};
class
PowerLayer
:
public
Layer
class
CV_EXPORTS_W
PowerLayer
:
public
Layer
{
public
:
double
power
,
scale
,
shift
;
...
...
modules/dnn/include/opencv2/dnn/blob.hpp
View file @
7f0260c1
...
...
@@ -262,6 +262,7 @@ namespace dnn
/** @brief Returns slice of first two dimensions.
* @details The behaviour is similar to the following numpy code: blob[n, cn, ...]
* @todo Method will be removed. Use slice() from shape_utils.hpp.
*/
Mat
getPlane
(
int
n
,
int
cn
);
...
...
@@ -282,6 +283,7 @@ namespace dnn
int
type
()
const
;
//!< Returns type of the blob.
int
elemSize
()
const
;
//!< Returns size of single element in bytes.
int
getState
()
const
;
//!< Returns current state of the blob, @see DataState.
private
:
const
int
*
sizes
()
const
;
...
...
modules/dnn/include/opencv2/dnn/blob.inl.hpp
View file @
7f0260c1
...
...
@@ -507,6 +507,15 @@ inline int Blob::elemSize() const
return
CV_ELEM_SIZE
(
type
());
}
inline
int
Blob
::
getState
()
const
{
#ifdef CV_DNN_UMAT
return
this
->
state
;
#else
return
m
.
empty
()
?
UNINITIALIZED
:
HEAD_AT_MAT
;
#endif
}
}
}
...
...
modules/dnn/src/caffe/layer_loaders.cpp
View file @
7f0260c1
#include "../precomp.hpp"
#include "layer_loaders.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "../layers/layers_common.hpp"
namespace
cv
{
namespace
dnn
{
//Utils
//Extracts params used into Conv, Deconv and Pooling layers
static
void
getCaffeConvParams
(
LayerParams
&
params
,
Size
&
kernel
,
Size
&
pad
,
Size
&
stride
)
{
if
(
params
.
has
(
"kernel_h"
)
&&
params
.
has
(
"kernel_w"
))
{
kernel
.
height
=
params
.
get
<
int
>
(
"kernel_h"
);
kernel
.
width
=
params
.
get
<
int
>
(
"kernel_w"
);
}
else
if
(
params
.
has
(
"kernel_size"
))
{
kernel
.
height
=
kernel
.
width
=
params
.
get
<
int
>
(
"kernel_size"
);
}
else
{
CV_Error
(
Error
::
StsBadArg
,
"kernel_size (or kernel_h and kernel_w) not specified"
);
}
CV_Assert
(
kernel
.
height
>
0
&&
kernel
.
width
>
0
);
if
(
params
.
has
(
"pad_h"
)
&&
params
.
has
(
"pad_w"
))
{
pad
.
height
=
params
.
get
<
int
>
(
"pad_h"
);
pad
.
width
=
params
.
get
<
int
>
(
"pad_w"
);
}
else
{
pad
.
height
=
pad
.
width
=
params
.
get
<
int
>
(
"pad"
,
0
);
}
CV_Assert
(
pad
.
height
>=
0
&&
pad
.
width
>=
0
);
if
(
params
.
has
(
"stride_h"
)
&&
params
.
has
(
"stride_w"
))
{
stride
.
height
=
params
.
get
<
int
>
(
"stride_h"
);
stride
.
width
=
params
.
get
<
int
>
(
"stride_w"
);
}
else
{
stride
.
height
=
stride
.
width
=
params
.
get
<
int
>
(
"stride"
,
1
);
}
CV_Assert
(
stride
.
height
>
0
&&
stride
.
width
>
0
);
}
//Layers
//Convolution and Deconvolution
static
void
initConvDeconvLayerFromCaffe
(
Ptr
<
BaseConvolutionLayer
>
l
,
LayerParams
&
params
)
{
l
->
setParamsFrom
(
params
);
getCaffeConvParams
(
params
,
l
->
kernel
,
l
->
pad
,
l
->
stride
);
bool
bias
=
params
.
get
<
bool
>
(
"bias_term"
,
true
);
int
numOutput
=
params
.
get
<
int
>
(
"num_output"
);
int
group
=
params
.
get
<
int
>
(
"group"
,
1
);
CV_Assert
(
numOutput
%
group
==
0
);
CV_Assert
((
bias
&&
l
->
blobs
.
size
()
==
2
)
||
(
!
bias
&&
l
->
blobs
.
size
()
==
1
));
}
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
ConvolutionLayer
>
(
LayerParams
&
params
)
{
Ptr
<
BaseConvolutionLayer
>
l
=
ConvolutionLayer
::
create
();
initConvDeconvLayerFromCaffe
(
l
,
params
);
return
Ptr
<
Layer
>
(
l
);
}
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
DeconvolutionLayer
>
(
LayerParams
&
params
)
{
Ptr
<
BaseConvolutionLayer
>
l
=
DeconvolutionLayer
::
create
();
initConvDeconvLayerFromCaffe
(
l
,
params
);
return
Ptr
<
Layer
>
(
l
);
}
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
PoolingLayer
>
(
LayerParams
&
params
)
{
...
...
@@ -88,7 +162,54 @@ Ptr<Layer> createLayerFromCaffe<LRNLayer>(LayerParams& params)
return
Ptr
<
Layer
>
(
LRNLayer
::
create
(
type
,
size
,
alpha
,
beta
));
}
//Activation layers
/* Reshape layers */
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
ConcatLayer
>
(
LayerParams
&
params
)
{
return
Ptr
<
Layer
>
(
ConcatLayer
::
create
(
params
.
get
<
int
>
(
"axis"
,
1
)));
}
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
SplitLayer
>
(
LayerParams
&
params
)
{
int
outputsCount
;
//TODO: maybe "top_count" param is useless because it can be determined by output connections number
if
(
params
.
has
(
"top_count"
))
{
outputsCount
=
params
.
get
<
int
>
(
"top_count"
);
CV_Assert
(
outputsCount
>=
0
);
}
else
{
outputsCount
=
-
1
;
}
return
Ptr
<
Layer
>
(
SplitLayer
::
create
(
outputsCount
));
}
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
SliceLayer
>
(
LayerParams
&
params
)
{
int
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
if
(
!
params
.
has
(
"slice_point"
))
{
return
Ptr
<
Layer
>
(
SliceLayer
::
create
(
axis
));
}
else
{
const
DictValue
&
indicesValue
=
params
.
get
(
"slice_point"
);
std
::
vector
<
int
>
sliceIndices
(
indicesValue
.
size
());
for
(
int
i
=
0
;
i
<
indicesValue
.
size
();
i
++
)
sliceIndices
[
i
]
=
indicesValue
.
get
<
int
>
(
i
);
return
Ptr
<
Layer
>
(
SliceLayer
::
create
(
axis
,
sliceIndices
));
}
}
/* Activation layers */
template
<
typename
ActivationLayer
>
//Intended for parameters-free activations
Ptr
<
Layer
>
createLayerFromCaffe
(
LayerParams
&
)
...
...
@@ -113,6 +234,8 @@ Ptr<Layer> createLayerFromCaffe<PowerLayer>(LayerParams& params)
}
//Explicit instantiation
template
Ptr
<
Layer
>
createLayerFromCaffe
<
ConvolutionLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
DeconvolutionLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
SoftmaxLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
InnerProductLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
LRNLayer
>
(
LayerParams
&
);
...
...
modules/dnn/src/init.cpp
View file @
7f0260c1
...
...
@@ -40,21 +40,12 @@
//M*/
#include "precomp.hpp"
#include "caffe/layer_loaders.hpp"
#include "layers/concat_layer.hpp"
#include "layers/convolution_layer.hpp"
#include "layers/blank_layer.hpp"
#include "layers/elementwise_layers.hpp"
#include "layers/fully_connected_layer.hpp"
#include "layers/lrn_layer.hpp"
#include "layers/mvn_layer.hpp"
#include "layers/pooling_layer.hpp"
#include "layers/reshape_layer.hpp"
#include "layers/slice_layer.hpp"
#include "layers/softmax_layer.hpp"
#include "layers/split_layer.hpp"
#include "caffe/layer_loaders.hpp"
namespace
cv
{
...
...
@@ -78,15 +69,20 @@ void initModule()
if
(
init
.
status
)
return
;
REG_RUNTIME_LAYER_CLASS
(
Slice
,
SliceLayer
)
REG_RUNTIME_LAYER_CLASS
(
Split
,
SplitLayer
)
REG_RUNTIME_LAYER_FUNC
(
Slice
,
createLayerFromCaffe
<
SliceLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Split
,
createLayerFromCaffe
<
SplitLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Concat
,
createLayerFromCaffe
<
ConcatLayer
>
);
REG_RUNTIME_LAYER_CLASS
(
Reshape
,
ReshapeLayer
)
REG_RUNTIME_LAYER_CLASS
(
MVN
,
MVNLayer
)
REG_RUNTIME_LAYER_FUNC
(
Flatten
,
createFlattenLayer
);
REG_RUNTIME_LAYER_CLASS
(
Dropout
,
BlankLayer
)
REG_RUNTIME_LAYER_CLASS
(
MVN
,
MVNLayer
)
REG_RUNTIME_LAYER_FUNC
(
Convolution
,
createLayerFromCaffe
<
ConvolutionLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Deconvolution
,
createLayerFromCaffe
<
DeconvolutionLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Pooling
,
createLayerFromCaffe
<
PoolingLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
LRN
,
createLayerFromCaffe
<
LRNLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
InnerProduct
,
createLayerFromCaffe
<
InnerProductLayer
>
);
REG_
STATIC_LAYER_FUNC
(
Softmax
,
createLayerFromCaffe
<
SoftmaxLayer
>
);
REG_
RUNTIME_LAYER_FUNC
(
Softmax
,
createLayerFromCaffe
<
SoftmaxLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
ReLU
,
createLayerFromCaffe
<
ReLULayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Sigmoid
,
createLayerFromCaffe
<
SigmoidLayer
>
);
...
...
@@ -94,11 +90,6 @@ void initModule()
REG_RUNTIME_LAYER_FUNC
(
BNLL
,
createLayerFromCaffe
<
BNLLLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
AbsVal
,
createLayerFromCaffe
<
AbsLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Power
,
createLayerFromCaffe
<
PowerLayer
>
);
REG_RUNTIME_LAYER_CLASS
(
Dropout
,
BlankLayer
)
REG_RUNTIME_LAYER_FUNC
(
Convolution
,
createConvolutionLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
Deconvolution
,
createDeconvolutionLayerFromCaffe
)
REG_RUNTIME_LAYER_CLASS
(
Concat
,
ConcatLayer
)
init
.
status
=
true
;
}
...
...
modules/dnn/src/layers/concat_layer.cpp
View file @
7f0260c1
...
...
@@ -42,60 +42,80 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "concat_layer.hpp"
#include <opencv2/core/ocl.hpp>
namespace
cv
{
namespace
dnn
{
ConcatLayer
::
ConcatLayer
(
LayerParams
&
params
)
:
Layer
(
params
)
{
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
CV_Assert
(
axis
>=
0
);
}
void
ConcatLayer
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
ConcatLayerImpl
::
ConcatLayerImpl
(
int
axis_
/*= 1*/
)
{
axis
=
axis_
;
}
void
ConcatLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
>
0
);
int
refType
=
inputs
[
0
]
->
type
();
BlobShape
refShape
=
inputs
[
0
]
->
shape
();
CV_Assert
(
axis
<
refShape
.
dims
()
);
axisIdx
=
inputs
[
0
]
->
canonicalAxis
(
axis
);
int
axisSum
=
0
;
useOpenCL
=
false
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
BlobShape
curShape
=
inputs
[
i
]
->
shape
();
CV_Assert
(
curShape
.
dims
()
==
refShape
.
dims
()
&&
inputs
[
i
]
->
type
()
==
refType
);
for
(
int
axisId
=
0
;
axisId
<
refShape
.
dims
();
axisId
++
)
CV_Assert
(
curShape
.
dims
()
==
refShape
.
dims
()
&&
inputs
[
i
]
->
type
()
==
inputs
[
0
]
->
type
()
);
for
(
int
curAxis
=
0
;
curAxis
<
refShape
.
dims
();
curAxis
++
)
{
if
(
axisId
!=
axis
&&
refShape
[
axisId
]
!=
curShape
[
axisId
])
if
(
curAxis
!=
axisIdx
&&
refShape
[
curAxis
]
!=
curShape
[
curAxis
])
CV_Error
(
Error
::
StsBadSize
,
"Inconsitent shape for ConcatLayer"
);
}
axisSum
+=
curShape
[
axis
];
axisSum
+=
curShape
[
axisIdx
];
useOpenCL
|=
inputs
[
i
]
->
getState
()
==
Blob
::
HEAD_AT_MAT
;
}
refShape
[
axis
]
=
axisSum
;
refShape
[
axisIdx
]
=
axisSum
;
useOpenCL
&=
ocl
::
useOpenCL
();
int
allocFlags
=
(
useOpenCL
)
?
Blob
::
ALLOC_UMAT
:
Blob
::
ALLOC_UMAT
;
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
refShape
);
}
outputs
[
0
].
create
(
refShape
,
inputs
[
0
]
->
type
(),
allocFlags
);
}
void
ConcatLayer
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
const
Mat
&
outMat
=
outputs
[
0
].
matRef
();
void
ConcatLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
#ifdef HAVE_OPENCL
if
(
useOpenCL
)
forward_
<
UMat
>
(
inputs
,
outputs
);
else
#endif
forward_
<
Mat
>
(
inputs
,
outputs
);
}
template
<
typename
XMat
>
void
ConcatLayerImpl
::
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
XMat
&
outMat
=
outputs
[
0
].
getRef
<
XMat
>
();
std
::
vector
<
Range
>
ranges
(
outputs
[
0
].
dims
(),
Range
::
all
());
int
sizeStart
=
0
;
ranges
[
axisIdx
].
start
=
0
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
int
sizeEnd
=
sizeStart
+
inputs
[
i
]
->
size
(
axis
);
ranges
[
axis
]
=
Range
(
sizeStart
,
sizeEnd
);
ranges
[
axisIdx
].
end
=
ranges
[
axisIdx
].
start
+
inputs
[
i
]
->
size
(
axisIdx
);
inputs
[
i
]
->
getRefConst
<
XMat
>
().
copyTo
(
outMat
(
&
ranges
[
0
]));
ranges
[
axisIdx
].
start
=
ranges
[
axisIdx
].
end
;
}
}
Mat
outSubMat
=
outMat
(
&
ranges
[
0
]);
inputs
[
i
]
->
matRef
().
copyTo
(
outSubMat
);
Ptr
<
ConcatLayer
>
ConcatLayer
::
create
(
int
axis
)
{
return
Ptr
<
ConcatLayer
>
(
new
ConcatLayerImpl
(
axis
));
}
sizeStart
=
sizeEnd
;
}
}
}
}
modules/dnn/src/layers/concat_layer.hpp
View file @
7f0260c1
...
...
@@ -42,20 +42,29 @@
#ifndef __OPENCV_DNN_LAYERS_CONCAT_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_CONCAT_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
ConcatLayer
:
public
Layer
{
int
axis
;
public
:
ConcatLayer
(
LayerParams
&
params
);
class
ConcatLayerImpl
:
public
ConcatLayer
{
bool
useOpenCL
;
int
axisIdx
;
template
<
typename
XMat
>
void
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
public
:
ConcatLayerImpl
(
int
axis_
=
1
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
};
}
}
#endif
modules/dnn/src/layers/convolution_layer.cpp
View file @
7f0260c1
...
...
@@ -82,6 +82,8 @@ void ConvolutionLayerImpl::init()
void
ConvolutionLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
init
();
CV_Assert
(
inputs
.
size
()
>
0
);
const
Blob
&
input
=
*
inputs
[
0
];
CV_Assert
(
input
.
dims
()
==
4
&&
(
input
.
type
()
==
CV_32F
||
input
.
type
()
==
CV_64F
));
...
...
@@ -331,37 +333,5 @@ Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(Size kernel, Size stride, S
return
Ptr
<
BaseConvolutionLayer
>
(
l
);
}
//Importers
template
<
typename
CLayer
>
static
void
initConvDeconvLayerFromCaffe
(
CLayer
*
l
,
LayerParams
&
params
)
{
l
->
setParamsFrom
(
params
);
getCaffeConvParams
(
params
,
l
->
kernel
,
l
->
pad
,
l
->
stride
);
bool
bias
=
params
.
get
<
bool
>
(
"bias_term"
,
true
);
int
numOutput
=
params
.
get
<
int
>
(
"num_output"
);
int
group
=
params
.
get
<
int
>
(
"group"
,
1
);
CV_Assert
(
numOutput
%
group
==
0
);
CV_Assert
((
bias
&&
l
->
blobs
.
size
()
==
2
)
||
(
!
bias
&&
l
->
blobs
.
size
()
==
1
));
}
Ptr
<
Layer
>
createConvolutionLayerFromCaffe
(
LayerParams
&
params
)
{
ConvolutionLayerImpl
*
l
=
new
ConvolutionLayerImpl
();
initConvDeconvLayerFromCaffe
(
l
,
params
);
l
->
init
();
return
Ptr
<
Layer
>
(
l
);
}
Ptr
<
Layer
>
createDeconvolutionLayerFromCaffe
(
LayerParams
&
params
)
{
ConvolutionLayerImpl
*
l
=
new
DeConvolutionLayerImpl
();
initConvDeconvLayerFromCaffe
(
l
,
params
);
l
->
init
();
return
Ptr
<
Layer
>
(
l
);
}
}
}
modules/dnn/src/layers/layers_common.cpp
View file @
7f0260c1
...
...
@@ -46,45 +46,5 @@ namespace cv
namespace
dnn
{
void
getCaffeConvParams
(
LayerParams
&
params
,
Size
&
kernel
,
Size
&
pad
,
Size
&
stride
)
{
if
(
params
.
has
(
"kernel_h"
)
&&
params
.
has
(
"kernel_w"
))
{
kernel
.
height
=
params
.
get
<
int
>
(
"kernel_h"
);
kernel
.
width
=
params
.
get
<
int
>
(
"kernel_w"
);
}
else
if
(
params
.
has
(
"kernel_size"
))
{
kernel
.
height
=
kernel
.
width
=
params
.
get
<
int
>
(
"kernel_size"
);
}
else
{
CV_Error
(
Error
::
StsBadArg
,
"kernel_size (or kernel_h and kernel_w) not specified"
);
}
CV_Assert
(
kernel
.
height
>
0
&&
kernel
.
width
>
0
);
if
(
params
.
has
(
"pad_h"
)
&&
params
.
has
(
"pad_w"
))
{
pad
.
height
=
params
.
get
<
int
>
(
"pad_h"
);
pad
.
width
=
params
.
get
<
int
>
(
"pad_w"
);
}
else
{
pad
.
height
=
pad
.
width
=
params
.
get
<
int
>
(
"pad"
,
0
);
}
CV_Assert
(
pad
.
height
>=
0
&&
pad
.
width
>=
0
);
if
(
params
.
has
(
"stride_h"
)
&&
params
.
has
(
"stride_w"
))
{
stride
.
height
=
params
.
get
<
int
>
(
"stride_h"
);
stride
.
width
=
params
.
get
<
int
>
(
"stride_w"
);
}
else
{
stride
.
height
=
stride
.
width
=
params
.
get
<
int
>
(
"stride"
,
1
);
}
CV_Assert
(
stride
.
height
>
0
&&
stride
.
width
>
0
);
}
}
}
modules/dnn/src/layers/layers_common.hpp
View file @
7f0260c1
...
...
@@ -42,14 +42,14 @@
#ifndef __OPENCV_DNN_LAYERS_LAYERS_COMMON_HPP__
#define __OPENCV_DNN_LAYERS_LAYERS_COMMON_HPP__
#include <opencv2/dnn.hpp>
#include "op_blas.hpp"
#include "op_im2col.hpp"
namespace
cv
{
namespace
dnn
{
void
getCaffeConvParams
(
LayerParams
&
params
,
Size
&
kernel
,
Size
&
pad
,
Size
&
stride
);
}
}
...
...
modules/dnn/src/layers/slice_layer.cpp
View file @
7f0260c1
...
...
@@ -42,55 +42,57 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "slice_layer.hpp"
#include <opencv2/core/ocl.hpp>
#include <opencv2/dnn/shape_utils.hpp>
namespace
cv
{
namespace
dnn
{
SliceLayer
::
SliceLayer
(
LayerParams
&
params
)
:
Layer
(
params
)
SliceLayer
Impl
::
SliceLayerImpl
(
int
axis_
/*= 1*/
)
{
inAxis
=
params
.
get
<
int
>
(
"axis"
,
1
);
if
(
!
params
.
has
(
"slice_point"
))
return
;
axis
=
axis_
;
}
const
DictValue
&
_slicePoints
=
params
.
get
(
"slice_point"
);
slicePoints
.
resize
(
_slicePoints
.
size
());
for
(
int
i
=
0
;
i
<
_slicePoints
.
size
();
i
++
)
{
slicePoints
[
i
]
=
_slicePoints
.
get
<
int
>
(
i
);
CV_Assert
(
slicePoints
[
i
]
>
0
&&
(
i
==
0
||
slicePoints
[
i
-
1
]
<
slicePoints
[
i
]));
}
SliceLayerImpl
::
SliceLayerImpl
(
int
axis_
,
const
std
::
vector
<
int
>
&
sliceIndices_
)
{
axis
=
axis_
;
sliceIndices
=
sliceIndices_
;
}
void
SliceLayer
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
void
SliceLayer
Impl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
==
1
);
const
Blob
inpBlob
=
*
inputs
[
0
];
int
axis
=
inpBlob
.
canonicalAxis
(
inAxis
);
int
axisSize
=
inpBlob
.
size
(
axis
);
const
Blob
&
inpBlob
=
*
inputs
[
0
];
useOpenCL
=
ocl
::
useOpenCL
()
&&
inpBlob
.
getState
()
==
Blob
::
HEAD_AT_UMAT
;
axisIdx
=
inpBlob
.
canonicalAxis
(
axis
);
int
axisSize
=
inpBlob
.
size
(
axisIdx
);
BlobShape
inpShape
=
inpBlob
.
shape
();
int
allocFlags
=
useOpenCL
?
Blob
::
ALLOC_UMAT
:
Blob
::
ALLOC_MAT
;
if
(
slice
Point
s
.
size
())
//divide blob with respect to passed parameters
if
(
slice
Indice
s
.
size
())
//divide blob with respect to passed parameters
{
std
::
vector
<
int
>
outAxisSize
;
int
prevSlice
=
0
;
for
(
size_t
i
=
0
;
i
<
slice
Point
s
.
size
();
i
++
)
for
(
size_t
i
=
0
;
i
<
slice
Indice
s
.
size
();
i
++
)
{
CV_Assert
(
prevSlice
<
slicePoints
[
i
]
&&
slicePoints
[
i
]
<
axisSize
);
outAxisSize
.
push_back
(
slicePoints
[
i
]
-
prevSlice
);
prevSlice
=
slicePoints
[
i
];
if
(
!
(
prevSlice
<
sliceIndices
[
i
]
&&
sliceIndices
[
i
]
<
axisSize
))
CV_Error
(
Error
::
StsBadArg
,
"Slice indices should be positive, increased and don't exceed size of sliced dimension"
);
outAxisSize
.
push_back
(
sliceIndices
[
i
]
-
prevSlice
);
prevSlice
=
sliceIndices
[
i
];
}
outAxisSize
.
push_back
(
axisSize
-
prevSlice
);
outputs
.
resize
(
outAxisSize
.
size
());
for
(
size_t
i
=
0
;
i
<
outAxisSize
.
size
();
i
++
)
{
inpShape
[
axis
]
=
outAxisSize
[
i
];
outputs
[
i
].
create
(
inpShape
,
inpBlob
.
type
());
inpShape
[
axis
Idx
]
=
outAxisSize
[
i
];
outputs
[
i
].
create
(
inpShape
,
inpBlob
.
type
()
,
allocFlags
);
}
}
else
//divide blob with respect to count of output blobs
...
...
@@ -100,30 +102,45 @@ void SliceLayer::allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &o
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
inpShape
[
axis
]
=
outAxisSize
;
outputs
[
i
].
create
(
inpShape
,
inpBlob
.
type
());
inpShape
[
axis
Idx
]
=
outAxisSize
;
outputs
[
i
].
create
(
inpShape
,
inpBlob
.
type
()
,
allocFlags
);
}
}
}
void
SliceLayer
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
void
SliceLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
#ifdef HAVE_OPENCL
if
(
useOpenCL
)
forward_
<
UMat
>
(
inputs
,
outputs
);
else
#endif
forward_
<
Mat
>
(
inputs
,
outputs
);
}
template
<
typename
XMat
>
void
SliceLayerImpl
::
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
Blob
&
inpBlob
=
*
inputs
[
0
];
const
int
axis
=
inpBlob
.
canonicalAxis
(
inAxis
);
const
Mat
&
inpMat
=
inpBlob
.
matRef
();
const
XMat
&
inpMat
=
inputs
[
0
]
->
getRefConst
<
XMat
>
();
std
::
vector
<
Range
>
ranges
(
inputs
[
0
]
->
dims
(),
Range
::
all
());
std
::
vector
<
Range
>
ranges
(
inpBlob
.
dims
(),
Range
::
all
());
int
sizeStart
=
0
;
ranges
[
axisIdx
].
start
=
0
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
int
sizeEnd
=
sizeStart
+
outputs
[
i
].
size
(
axis
);
ranges
[
axis
]
=
Range
(
sizeStart
,
sizeEnd
);
ranges
[
axisIdx
].
end
=
ranges
[
axisIdx
].
start
+
outputs
[
i
].
size
(
axisIdx
);
inpMat
(
&
ranges
[
0
]).
copyTo
(
outputs
[
i
].
getRef
<
XMat
>
());
ranges
[
axisIdx
].
start
=
ranges
[
axisIdx
].
end
;
}
}
Mat
inpSubMat
=
inpMat
(
&
ranges
[
0
]);
inpSubMat
.
copyTo
(
outputs
[
i
].
matRef
());
Ptr
<
SliceLayer
>
SliceLayer
::
create
(
int
axis
)
{
return
Ptr
<
SliceLayer
>
(
new
SliceLayerImpl
(
axis
));
}
sizeStart
=
sizeEnd
;
}
Ptr
<
SliceLayer
>
SliceLayer
::
create
(
int
axis
,
const
std
::
vector
<
int
>
&
sliceIndices
)
{
return
Ptr
<
SliceLayer
>
(
new
SliceLayerImpl
(
axis
,
sliceIndices
));
}
}
...
...
modules/dnn/src/layers/slice_layer.hpp
View file @
7f0260c1
...
...
@@ -42,24 +42,28 @@
#ifndef __OPENCV_DNN_LAYERS_SLICE_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_SLICE_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
SliceLayer
:
public
Layer
class
SliceLayer
Impl
:
public
Slice
Layer
{
bool
useOpenCL
;
int
axisIdx
;
template
<
typename
XMat
>
void
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
public
:
SliceLayer
(
LayerParams
&
params
);
SliceLayerImpl
(
int
axis_
=
1
);
SliceLayerImpl
(
int
axis_
,
const
std
::
vector
<
int
>
&
sliceIndices_
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
private
:
int
inAxis
;
std
::
vector
<
int
>
slicePoints
;
};
}
...
...
modules/dnn/src/layers/split_layer.cpp
View file @
7f0260c1
...
...
@@ -42,41 +42,46 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "split_layer.hpp"
#include <opencv2/core/ocl.hpp>
namespace
cv
{
namespace
dnn
{
//TODO: maybe "top_count" param is useless because it can be determined by output connections number?
SplitLayer
::
SplitLayer
(
LayerParams
&
params
)
:
Layer
(
params
)
SplitLayerImpl
::
SplitLayerImpl
(
int
outputsCount_
/*= -1*/
)
{
if
(
params
.
has
(
"top_count"
))
{
outputsNum
=
params
.
get
<
int
>
(
"top_count"
);
CV_Assert
(
outputsNum
>=
0
);
}
else
{
outputsNum
=
-
1
;
}
outputsCount
=
outputsCount_
;
}
void
SplitLayer
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
void
SplitLayer
Impl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
==
1
);
useOpenCL
=
ocl
::
useOpenCL
()
&&
inputs
[
0
]
->
getState
()
==
Blob
::
HEAD_AT_UMAT
;
int
allocFlags
=
useOpenCL
?
Blob
::
ALLOC_UMAT
:
Blob
::
ALLOC_UMAT
;
if
(
outputs
Num
>=
0
)
outputs
.
resize
(
outputs
Num
);
if
(
outputs
Count
>=
0
)
outputs
.
resize
(
outputs
Count
);
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
outputs
[
i
].
create
(
inputs
[
0
]
->
shape
(),
inputs
[
0
]
->
type
());
outputs
[
i
].
create
(
inputs
[
0
]
->
shape
(),
inputs
[
0
]
->
type
()
,
allocFlags
);
}
void
SplitLayer
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
void
SplitLayer
Impl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
if
(
useOpenCL
)
inputs
[
0
]
->
umatRefConst
().
copyTo
(
outputs
[
i
].
umatRef
());
else
inputs
[
0
]
->
matRefConst
().
copyTo
(
outputs
[
i
].
matRef
());
}
}
Ptr
<
SplitLayer
>
SplitLayer
::
create
(
int
outputsCount
)
{
return
Ptr
<
SplitLayer
>
(
new
SplitLayerImpl
(
outputsCount
));
}
}
...
...
modules/dnn/src/layers/split_layer.hpp
View file @
7f0260c1
...
...
@@ -42,23 +42,23 @@
#ifndef __OPENCV_DNN_LAYERS_SPLIT_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_SPLIT_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
SplitLayer
:
public
Layer
class
SplitLayer
Impl
:
public
Split
Layer
{
bool
useOpenCL
;
public
:
SplitLayer
(
LayerParams
&
params
);
SplitLayer
Impl
(
int
outputsCount_
=
-
1
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
private
:
int
outputsNum
;
};
}
...
...
modules/dnn/src/opencl/activations.cl
View file @
7f0260c1
...
...
@@ -34,7 +34,7 @@ __kernel void BNLLForward(const int n, __global const T* in, __global T* out) {
__kernel
void
AbsValForward
(
const
int
n,
__global
const
T*
in,
__global
T*
out
)
{
int
index
=
get_global_id
(
0
)
;
if
(
index
<
n
)
out[index]
=
abs
(
in[index]
)
;
out[index]
=
f
abs
(
in[index]
)
;
}
__kernel
void
PowForward
(
const
int
n,
__global
const
T*
in,
__global
T*
out,
const
T
power,
const
T
scale,
const
T
shift
)
{
...
...
modules/dnn/test/test_layers.cpp
View file @
7f0260c1
...
...
@@ -58,6 +58,31 @@ static String _tf(TString filename)
return
(
getOpenCVExtraDir
()
+
"/dnn/layers/"
)
+
filename
;
}
enum
RunLayerMode
{
ALLOC_ONLY
=
1
,
FORWARD_ONLY
=
2
,
ALLOC_AND_FORWARD
=
ALLOC_ONLY
|
FORWARD_ONLY
};
typedef
Ptr
<
std
::
vector
<
Blob
*>
>
PtrToVecPtrBlob
;
PtrToVecPtrBlob
runLayer
(
Ptr
<
Layer
>
layer
,
std
::
vector
<
Blob
>
&
inpBlobs
,
std
::
vector
<
Blob
>
&
outBlobs
,
int
mode
=
ALLOC_AND_FORWARD
)
{
PtrToVecPtrBlob
inpPtrs
(
new
std
::
vector
<
Blob
*>
());
inpPtrs
->
reserve
(
inpBlobs
.
size
());
for
(
size_t
i
=
0
;
i
<
inpBlobs
.
size
();
i
++
)
inpPtrs
->
push_back
(
&
inpBlobs
[
i
]);
if
(
mode
&
ALLOC_ONLY
)
layer
->
allocate
(
*
inpPtrs
,
outBlobs
);
if
(
mode
&
FORWARD_ONLY
)
layer
->
forward
(
*
inpPtrs
,
outBlobs
);
return
inpPtrs
;
}
void
testLayerUsingCaffeModels
(
String
basename
,
bool
useCaffeModel
=
false
,
bool
useCommonInputBlob
=
true
)
{
String
prototxt
=
_tf
(
basename
+
".prototxt"
);
...
...
@@ -137,7 +162,12 @@ OCL_TEST(Layer_Test_DeConvolution, Accuracy)
TEST
(
Layer_Test_InnerProduct
,
Accuracy
)
{
testLayerUsingCaffeModels
(
"layer_inner_product"
,
true
);
OCL_OFF
(
testLayerUsingCaffeModels
(
"layer_inner_product"
,
true
));
}
OCL_TEST
(
Layer_Test_InnerProduct
,
Accuracy
)
{
OCL_ON
(
testLayerUsingCaffeModels
(
"layer_inner_product"
,
true
));
OCL_OFF
();
}
TEST
(
Layer_Test_Pooling_max
,
Accuracy
)
...
...
@@ -164,7 +194,7 @@ OCL_TEST(Layer_Test_Pooling_ave, Accuracy)
TEST
(
Layer_Test_MVN
,
Accuracy
)
{
testLayerUsingCaffeModels
(
"layer_mvn"
);
OCL_OFF
(
testLayerUsingCaffeModels
(
"layer_mvn"
)
);
}
TEST
(
Layer_Test_Reshape
,
squeeze
)
...
...
@@ -184,7 +214,28 @@ TEST(Layer_Test_Reshape, squeeze)
EXPECT_EQ
(
outVec
[
0
].
shape
(),
BlobShape
(
4
,
3
,
2
));
}
TEST
(
Layer_Test_Reshape_Split_Slice
,
Accuracy
)
template
<
typename
XMat
>
static
void
test_Layer_Concat
()
{
Matx21f
a
(
1.
f
,
1.
f
),
b
(
2.
f
,
2.
f
),
c
(
3.
f
,
3.
f
);
std
::
vector
<
Blob
>
res
(
1
),
src
=
{
Blob
(
XMat
(
a
)),
Blob
(
XMat
(
b
)),
Blob
(
XMat
(
c
))
};
Blob
ref
(
XMat
(
Matx23f
(
1.
f
,
2.
f
,
3.
f
,
1.
f
,
2.
f
,
3.
f
)));
runLayer
(
ConcatLayer
::
create
(
1
),
src
,
res
);
normAssert
(
ref
,
res
[
0
]);
}
TEST
(
Layer_Concat
,
Accuracy
)
{
OCL_OFF
(
test_Layer_Concat
<
Mat
>
());
}
OCL_TEST
(
Layer_Concat
,
Accuracy
)
{
OCL_ON
(
test_Layer_Concat
<
Mat
>
());
OCL_OFF
();
}
template
<
typename
XMat
>
void
test_Reshape_Split_Slice_layers
()
{
Net
net
;
{
...
...
@@ -193,9 +244,9 @@ TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
importer
->
populateNet
(
net
);
}
Blob
input
(
BlobShape
(
Vec2i
(
6
,
12
)
));
Blob
input
(
BlobShape
(
6
,
12
));
RNG
rng
(
0
);
rng
.
fill
(
input
.
matRef
(),
RNG
::
UNIFORM
,
-
1
,
1
);
rng
.
fill
(
input
.
getRef
<
XMat
>
(),
RNG
::
UNIFORM
,
-
1
,
1
);
net
.
setBlob
(
".input"
,
input
);
net
.
forward
();
...
...
@@ -203,28 +254,14 @@ TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
normAssert
(
input
,
output
);
}
enum
RunLayerMode
TEST
(
Layer_Test_Reshape_Split_Slice
,
Accuracy
)
{
ALLOC_ONLY
=
1
,
FORWARD_ONLY
=
2
,
ALLOC_AND_FORWARD
=
ALLOC_ONLY
|
FORWARD_ONLY
};
typedef
Ptr
<
std
::
vector
<
Blob
*>
>
PtrToVecPtrBlob
;
PtrToVecPtrBlob
runLayer
(
Ptr
<
Layer
>
layer
,
std
::
vector
<
Blob
>
&
inpBlobs
,
std
::
vector
<
Blob
>
&
outBlobs
,
int
mode
=
ALLOC_AND_FORWARD
)
OCL_OFF
(
test_Reshape_Split_Slice_layers
<
Mat
>
());
}
OCL_TEST
(
Layer_Test_Reshape_Split_Slice
,
Accuracy
)
{
PtrToVecPtrBlob
inpPtrs
(
new
std
::
vector
<
Blob
*>
()
);
inpPtrs
->
reserve
(
inpBlobs
.
size
());
for
(
size_t
i
=
0
;
i
<
inpBlobs
.
size
();
i
++
)
inpPtrs
->
push_back
(
&
inpBlobs
[
i
]);
if
(
mode
&
ALLOC_ONLY
)
layer
->
allocate
(
*
inpPtrs
,
outBlobs
);
if
(
mode
&
FORWARD_ONLY
)
layer
->
forward
(
*
inpPtrs
,
outBlobs
);
return
inpPtrs
;
OCL_ON
(
test_Reshape_Split_Slice_layers
<
UMat
>
());
OCL_OFF
();
}
class
Layer_LSTM_Test
:
public
::
testing
::
Test
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment