Commit 7ed6f778 authored by Li Peng's avatar Li Peng

OCL implementation of DIS optical flow

This patch adds ocl kernels to accelerate Dense Inverse Search
based optical flow algorithm, it acclerates 3 parts in the algorithm,
including 1) Structure tensor elements compute, 2) Patch inverse search,
3) Densification compute.

Perf and accuracy test are also added. The perf test shows it is 30%
faster than the current implementation.
Signed-off-by: 's avatarLi Peng <peng.li@intel.com>
parent 1cb3a11f
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "../perf_precomp.hpp"
#include "opencv2/ts/ocl_perf.hpp"
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::optflow;
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
void MakeArtificialExample(UMat &dst_frame1, UMat &dst_frame2);
typedef tuple<String, Size> DISParams;
typedef TestBaseWithParam<DISParams> DenseOpticalFlow_DIS;
OCL_PERF_TEST_P(DenseOpticalFlow_DIS, perf,
Combine(Values("PRESET_ULTRAFAST", "PRESET_FAST", "PRESET_MEDIUM"), Values(szVGA, sz720p, sz1080p)))
{
DISParams params = GetParam();
// use strings to print preset names in the perf test results:
String preset_string = get<0>(params);
int preset = DISOpticalFlow::PRESET_FAST;
if (preset_string == "PRESET_ULTRAFAST")
preset = DISOpticalFlow::PRESET_ULTRAFAST;
else if (preset_string == "PRESET_FAST")
preset = DISOpticalFlow::PRESET_FAST;
else if (preset_string == "PRESET_MEDIUM")
preset = DISOpticalFlow::PRESET_MEDIUM;
Size sz = get<1>(params);
UMat frame1(sz, CV_8U);
UMat frame2(sz, CV_8U);
UMat flow;
MakeArtificialExample(frame1, frame2);
Ptr<DenseOpticalFlow> algo = createOptFlow_DIS(preset);
OCL_TEST_CYCLE_N(10)
{
algo->calc(frame1, frame2, flow);
}
SANITY_CHECK_NOTHING();
}
void MakeArtificialExample(UMat &dst_frame1, UMat &dst_frame2)
{
int src_scale = 2;
int OF_scale = 6;
double sigma = dst_frame1.cols / 300;
UMat tmp(Size(dst_frame1.cols / (int)pow(2, src_scale), dst_frame1.rows / (int)pow(2, src_scale)), CV_8U);
randu(tmp, 0, 255);
resize(tmp, dst_frame1, dst_frame1.size(), 0.0, 0.0, INTER_LINEAR);
resize(tmp, dst_frame2, dst_frame2.size(), 0.0, 0.0, INTER_LINEAR);
Mat displacement_field(Size(dst_frame1.cols / (int)pow(2, OF_scale), dst_frame1.rows / (int)pow(2, OF_scale)),
CV_32FC2);
randn(displacement_field, 0.0, sigma);
resize(displacement_field, displacement_field, dst_frame2.size(), 0.0, 0.0, INTER_CUBIC);
for (int i = 0; i < displacement_field.rows; i++)
for (int j = 0; j < displacement_field.cols; j++)
displacement_field.at<Vec2f>(i, j) += Vec2f((float)j, (float)i);
remap(dst_frame2, dst_frame2, displacement_field, Mat(), INTER_LINEAR, BORDER_REPLICATE);
}
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL
......@@ -42,6 +42,8 @@
#include "opencv2/core/hal/intrin.hpp"
#include "precomp.hpp"
#include "opencl_kernels_optflow.hpp"
using namespace std;
#define EPS 0.001F
#define INF 1E+10F
......@@ -166,6 +168,50 @@ class DISOpticalFlowImpl : public DISOpticalFlow
Mat &src_Sy, Mat &_I0, Mat &_I1);
void operator()(const Range &range) const;
};
#ifdef HAVE_OPENCL
vector<UMat> u_I0s; //!< Gaussian pyramid for the current frame
vector<UMat> u_I1s; //!< Gaussian pyramid for the next frame
vector<UMat> u_I1s_ext; //!< I1s with borders
vector<UMat> u_I0xs; //!< Gaussian pyramid for the x gradient of the current frame
vector<UMat> u_I0ys; //!< Gaussian pyramid for the y gradient of the current frame
vector<UMat> u_Ux; //!< x component of the flow vectors
vector<UMat> u_Uy; //!< y component of the flow vectors
vector<UMat> u_initial_Ux; //!< x component of the initial flow field, if one was passed as an input
vector<UMat> u_initial_Uy; //!< y component of the initial flow field, if one was passed as an input
UMat u_U; //!< a buffer for the merged flow
UMat u_Sx; //!< intermediate sparse flow representation (x component)
UMat u_Sy; //!< intermediate sparse flow representation (y component)
/* Structure tensor components: */
UMat u_I0xx_buf; //!< sum of squares of x gradient values
UMat u_I0yy_buf; //!< sum of squares of y gradient values
UMat u_I0xy_buf; //!< sum of x and y gradient products
/* Extra buffers that are useful if patch mean-normalization is used: */
UMat u_I0x_buf; //!< sum of x gradient values
UMat u_I0y_buf; //!< sum of y gradient values
/* Auxiliary buffers used in structure tensor computation: */
UMat u_I0xx_buf_aux;
UMat u_I0yy_buf_aux;
UMat u_I0xy_buf_aux;
UMat u_I0x_buf_aux;
UMat u_I0y_buf_aux;
bool ocl_precomputeStructureTensor(UMat &dst_I0xx, UMat &dst_I0yy, UMat &dst_I0xy,
UMat &dst_I0x, UMat &dst_I0y, UMat &I0x, UMat &I0y);
void ocl_prepareBuffers(UMat &I0, UMat &I1, UMat &flow, bool use_flow);
bool ocl_calc(InputArray I0, InputArray I1, InputOutputArray flow);
bool ocl_Densification(UMat &dst_Ux, UMat &dst_Uy, UMat &src_Sx, UMat &src_Sy, UMat &_I0, UMat &_I1);
bool ocl_PatchInverseSearch(UMat &src_Ux, UMat &src_Uy,
UMat &I0, UMat &I1, UMat &I0x, UMat &I0y, int num_iter, int pyr_level);
#endif
};
DISOpticalFlowImpl::DISOpticalFlowImpl()
......@@ -1004,6 +1050,319 @@ void DISOpticalFlowImpl::Densification_ParBody::operator()(const Range &range) c
#undef UPDATE_SPARSE_J_COORDINATES
}
#ifdef HAVE_OPENCL
bool DISOpticalFlowImpl::ocl_PatchInverseSearch(UMat &src_Ux, UMat &src_Uy,
UMat &I0, UMat &I1, UMat &I0x, UMat &I0y, int num_iter, int pyr_level)
{
size_t globalSize[] = {(size_t)ws, (size_t)hs};
size_t localSize[] = {16, 16};
int idx;
int num_inner_iter = (int)floor(grad_descent_iter / (float)num_iter);
for (int iter = 0; iter < num_iter; iter++)
{
if (iter == 0)
{
ocl::Kernel k1("dis_patch_inverse_search_fwd_1", ocl::optflow::dis_flow_oclsrc);
size_t global_sz[] = {(size_t)hs * 8};
size_t local_sz[] = {8};
idx = 0;
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(src_Ux));
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(src_Uy));
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(I0));
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(I1));
idx = k1.set(idx, (int)border_size);
idx = k1.set(idx, (int)patch_size);
idx = k1.set(idx, (int)patch_stride);
idx = k1.set(idx, (int)w);
idx = k1.set(idx, (int)h);
idx = k1.set(idx, (int)ws);
idx = k1.set(idx, (int)hs);
idx = k1.set(idx, (int)pyr_level);
idx = k1.set(idx, ocl::KernelArg::PtrWriteOnly(u_Sx));
idx = k1.set(idx, ocl::KernelArg::PtrWriteOnly(u_Sy));
if (!k1.run(1, global_sz, local_sz, false))
return false;
ocl::Kernel k2("dis_patch_inverse_search_fwd_2", ocl::optflow::dis_flow_oclsrc);
idx = 0;
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(src_Ux));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(src_Uy));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I0));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I1));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I0x));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I0y));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xx_buf));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0yy_buf));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xy_buf));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0x_buf));
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0y_buf));
idx = k2.set(idx, (int)border_size);
idx = k2.set(idx, (int)patch_size);
idx = k2.set(idx, (int)patch_stride);
idx = k2.set(idx, (int)w);
idx = k2.set(idx, (int)h);
idx = k2.set(idx, (int)ws);
idx = k2.set(idx, (int)hs);
idx = k2.set(idx, (int)num_inner_iter);
idx = k2.set(idx, (int)pyr_level);
idx = k2.set(idx, ocl::KernelArg::PtrReadWrite(u_Sx));
idx = k2.set(idx, ocl::KernelArg::PtrReadWrite(u_Sy));
if (!k2.run(2, globalSize, localSize, false))
return false;
}
else
{
ocl::Kernel k3("dis_patch_inverse_search_bwd_1", ocl::optflow::dis_flow_oclsrc);
size_t global_sz[] = {(size_t)hs * 8};
size_t local_sz[] = {8};
idx = 0;
idx = k3.set(idx, ocl::KernelArg::PtrReadOnly(I0));
idx = k3.set(idx, ocl::KernelArg::PtrReadOnly(I1));
idx = k3.set(idx, (int)border_size);
idx = k3.set(idx, (int)patch_size);
idx = k3.set(idx, (int)patch_stride);
idx = k3.set(idx, (int)w);
idx = k3.set(idx, (int)h);
idx = k3.set(idx, (int)ws);
idx = k3.set(idx, (int)hs);
idx = k3.set(idx, (int)pyr_level);
idx = k3.set(idx, ocl::KernelArg::PtrReadWrite(u_Sx));
idx = k3.set(idx, ocl::KernelArg::PtrReadWrite(u_Sy));
if (!k3.run(1, global_sz, local_sz, false))
return false;
ocl::Kernel k4("dis_patch_inverse_search_bwd_2", ocl::optflow::dis_flow_oclsrc);
idx = 0;
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I0));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I1));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I0x));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I0y));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xx_buf));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0yy_buf));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xy_buf));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0x_buf));
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0y_buf));
idx = k4.set(idx, (int)border_size);
idx = k4.set(idx, (int)patch_size);
idx = k4.set(idx, (int)patch_stride);
idx = k4.set(idx, (int)w);
idx = k4.set(idx, (int)h);
idx = k4.set(idx, (int)ws);
idx = k4.set(idx, (int)hs);
idx = k4.set(idx, (int)num_inner_iter);
idx = k4.set(idx, ocl::KernelArg::PtrReadWrite(u_Sx));
idx = k4.set(idx, ocl::KernelArg::PtrReadWrite(u_Sy));
if (!k4.run(2, globalSize, localSize, false))
return false;
}
}
return true;
}
bool DISOpticalFlowImpl::ocl_Densification(UMat &dst_Ux, UMat &dst_Uy, UMat &src_Sx, UMat &src_Sy, UMat &_I0, UMat &_I1)
{
size_t globalSize[] = {(size_t)w, (size_t)h};
size_t localSize[] = {16, 16};
ocl::Kernel kernel("dis_densification", ocl::optflow::dis_flow_oclsrc);
kernel.args(ocl::KernelArg::PtrReadOnly(src_Sx),
ocl::KernelArg::PtrReadOnly(src_Sy),
ocl::KernelArg::PtrReadOnly(_I0),
ocl::KernelArg::PtrReadOnly(_I1),
(int)patch_size, (int)patch_stride,
(int)w, (int)h, (int)ws,
ocl::KernelArg::PtrWriteOnly(dst_Ux),
ocl::KernelArg::PtrWriteOnly(dst_Uy));
return kernel.run(2, globalSize, localSize, false);
}
void DISOpticalFlowImpl::ocl_prepareBuffers(UMat &I0, UMat &I1, UMat &flow, bool use_flow)
{
u_I0s.resize(coarsest_scale + 1);
u_I1s.resize(coarsest_scale + 1);
u_I1s_ext.resize(coarsest_scale + 1);
u_I0xs.resize(coarsest_scale + 1);
u_I0ys.resize(coarsest_scale + 1);
u_Ux.resize(coarsest_scale + 1);
u_Uy.resize(coarsest_scale + 1);
vector<UMat> flow_uv(2);
if (use_flow)
{
split(flow, flow_uv);
u_initial_Ux.resize(coarsest_scale + 1);
u_initial_Uy.resize(coarsest_scale + 1);
}
int fraction = 1;
int cur_rows = 0, cur_cols = 0;
for (int i = 0; i <= coarsest_scale; i++)
{
/* Avoid initializing the pyramid levels above the finest scale, as they won't be used anyway */
if (i == finest_scale)
{
cur_rows = I0.rows / fraction;
cur_cols = I0.cols / fraction;
u_I0s[i].create(cur_rows, cur_cols, CV_8UC1);
resize(I0, u_I0s[i], u_I0s[i].size(), 0.0, 0.0, INTER_AREA);
u_I1s[i].create(cur_rows, cur_cols, CV_8UC1);
resize(I1, u_I1s[i], u_I1s[i].size(), 0.0, 0.0, INTER_AREA);
/* These buffers are reused in each scale so we initialize them once on the finest scale: */
u_Sx.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_Sy.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_I0xx_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_I0yy_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_I0xy_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_I0x_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_I0y_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1);
u_I0xx_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1);
u_I0yy_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1);
u_I0xy_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1);
u_I0x_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1);
u_I0y_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1);
u_U.create(cur_rows, cur_cols, CV_32FC2);
}
else if (i > finest_scale)
{
cur_rows = u_I0s[i - 1].rows / 2;
cur_cols = u_I0s[i - 1].cols / 2;
u_I0s[i].create(cur_rows, cur_cols, CV_8UC1);
resize(u_I0s[i - 1], u_I0s[i], u_I0s[i].size(), 0.0, 0.0, INTER_AREA);
u_I1s[i].create(cur_rows, cur_cols, CV_8UC1);
resize(u_I1s[i - 1], u_I1s[i], u_I1s[i].size(), 0.0, 0.0, INTER_AREA);
}
if (i >= finest_scale)
{
u_I1s_ext[i].create(cur_rows + 2 * border_size, cur_cols + 2 * border_size, CV_8UC1);
copyMakeBorder(u_I1s[i], u_I1s_ext[i], border_size, border_size, border_size, border_size, BORDER_REPLICATE);
u_I0xs[i].create(cur_rows, cur_cols, CV_16SC1);
u_I0ys[i].create(cur_rows, cur_cols, CV_16SC1);
spatialGradient(u_I0s[i], u_I0xs[i], u_I0ys[i]);
u_Ux[i].create(cur_rows, cur_cols, CV_32FC1);
u_Uy[i].create(cur_rows, cur_cols, CV_32FC1);
variational_refinement_processors[i]->setAlpha(variational_refinement_alpha);
variational_refinement_processors[i]->setDelta(variational_refinement_delta);
variational_refinement_processors[i]->setGamma(variational_refinement_gamma);
variational_refinement_processors[i]->setSorIterations(5);
variational_refinement_processors[i]->setFixedPointIterations(variational_refinement_iter);
if (use_flow)
{
resize(flow_uv[0], u_initial_Ux[i], Size(cur_cols, cur_rows));
divide(u_initial_Ux[i], static_cast<float>(fraction), u_initial_Ux[i]);
resize(flow_uv[1], u_initial_Uy[i], Size(cur_cols, cur_rows));
divide(u_initial_Uy[i], static_cast<float>(fraction), u_initial_Uy[i]);
}
}
fraction *= 2;
}
}
bool DISOpticalFlowImpl::ocl_precomputeStructureTensor(UMat &dst_I0xx, UMat &dst_I0yy, UMat &dst_I0xy,
UMat &dst_I0x, UMat &dst_I0y, UMat &I0x, UMat &I0y)
{
size_t globalSizeX[] = {(size_t)h};
size_t localSizeX[] = {16};
ocl::Kernel kernelX("dis_precomputeStructureTensor_hor", ocl::optflow::dis_flow_oclsrc);
kernelX.args(ocl::KernelArg::PtrReadOnly(I0x),
ocl::KernelArg::PtrReadOnly(I0y),
(int)patch_size, (int)patch_stride,
(int)w, (int)h, (int)ws,
ocl::KernelArg::PtrWriteOnly(u_I0xx_buf_aux),
ocl::KernelArg::PtrWriteOnly(u_I0yy_buf_aux),
ocl::KernelArg::PtrWriteOnly(u_I0xy_buf_aux),
ocl::KernelArg::PtrWriteOnly(u_I0x_buf_aux),
ocl::KernelArg::PtrWriteOnly(u_I0y_buf_aux));
if (!kernelX.run(1, globalSizeX, localSizeX, false))
return false;
size_t globalSizeY[] = {(size_t)ws};
size_t localSizeY[] = {16};
ocl::Kernel kernelY("dis_precomputeStructureTensor_ver", ocl::optflow::dis_flow_oclsrc);
kernelY.args(ocl::KernelArg::PtrReadOnly(u_I0xx_buf_aux),
ocl::KernelArg::PtrReadOnly(u_I0yy_buf_aux),
ocl::KernelArg::PtrReadOnly(u_I0xy_buf_aux),
ocl::KernelArg::PtrReadOnly(u_I0x_buf_aux),
ocl::KernelArg::PtrReadOnly(u_I0y_buf_aux),
(int)patch_size, (int)patch_stride,
(int)w, (int)h, (int)ws,
ocl::KernelArg::PtrWriteOnly(dst_I0xx),
ocl::KernelArg::PtrWriteOnly(dst_I0yy),
ocl::KernelArg::PtrWriteOnly(dst_I0xy),
ocl::KernelArg::PtrWriteOnly(dst_I0x),
ocl::KernelArg::PtrWriteOnly(dst_I0y));
return kernelY.run(1, globalSizeY, localSizeY, false);
}
bool DISOpticalFlowImpl::ocl_calc(InputArray I0, InputArray I1, InputOutputArray flow)
{
UMat I0Mat = I0.getUMat();
UMat I1Mat = I1.getUMat();
bool use_input_flow = false;
if (flow.sameSize(I0) && flow.depth() == CV_32F && flow.channels() == 2)
use_input_flow = true;
else
flow.create(I1Mat.size(), CV_32FC2);
UMat &u_flowMat = flow.getUMatRef();
coarsest_scale = (int)(log((2 * I0Mat.cols) / (4.0 * patch_size)) / log(2.0) + 0.5) - 1;
ocl_prepareBuffers(I0Mat, I1Mat, u_flowMat, use_input_flow);
u_Ux[coarsest_scale].setTo(0.0f);
u_Uy[coarsest_scale].setTo(0.0f);
for (int i = coarsest_scale; i >= finest_scale; i--)
{
w = u_I0s[i].cols;
h = u_I0s[i].rows;
ws = 1 + (w - patch_size) / patch_stride;
hs = 1 + (h - patch_size) / patch_stride;
if (!ocl_precomputeStructureTensor(u_I0xx_buf, u_I0yy_buf, u_I0xy_buf,
u_I0x_buf, u_I0y_buf, u_I0xs[i], u_I0ys[i]))
return false;
if (!ocl_PatchInverseSearch(u_Ux[i], u_Uy[i], u_I0s[i], u_I1s_ext[i], u_I0xs[i], u_I0ys[i], 2, i))
return false;
if (!ocl_Densification(u_Ux[i], u_Uy[i], u_Sx, u_Sy, u_I0s[i], u_I1s[i]))
return false;
if (variational_refinement_iter > 0)
variational_refinement_processors[i]->calcUV(u_I0s[i], u_I1s[i],
u_Ux[i].getMat(ACCESS_WRITE), u_Uy[i].getMat(ACCESS_WRITE));
if (i > finest_scale)
{
resize(u_Ux[i], u_Ux[i - 1], u_Ux[i - 1].size());
resize(u_Uy[i], u_Uy[i - 1], u_Uy[i - 1].size());
multiply(u_Ux[i - 1], 2, u_Ux[i - 1]);
multiply(u_Uy[i - 1], 2, u_Uy[i - 1]);
}
}
vector<UMat> uxy(2);
uxy[0] = u_Ux[finest_scale];
uxy[1] = u_Uy[finest_scale];
merge(uxy, u_U);
resize(u_U, u_flowMat, u_flowMat.size());
multiply(u_flowMat, 1 << finest_scale, u_flowMat);
return true;
}
#endif
void DISOpticalFlowImpl::calc(InputArray I0, InputArray I1, InputOutputArray flow)
{
CV_Assert(!I0.empty() && I0.depth() == CV_8U && I0.channels() == 1);
......@@ -1012,6 +1371,10 @@ void DISOpticalFlowImpl::calc(InputArray I0, InputArray I1, InputOutputArray flo
CV_Assert(I0.isContinuous());
CV_Assert(I1.isContinuous());
CV_OCL_RUN(ocl::Device::getDefault().isIntel() && flow.isUMat() &&
(patch_size == 8) && (use_spatial_propagation == true),
ocl_calc(I0, I1, flow));
Mat I0Mat = I0.getMat();
Mat I1Mat = I1.getMat();
bool use_input_flow = false;
......@@ -1019,7 +1382,7 @@ void DISOpticalFlowImpl::calc(InputArray I0, InputArray I1, InputOutputArray flo
use_input_flow = true;
else
flow.create(I1Mat.size(), CV_32FC2);
Mat &flowMat = flow.getMatRef();
Mat flowMat = flow.getMat();
coarsest_scale = (int)(log((2 * I0Mat.cols) / (4.0 * patch_size)) / log(2.0) + 0.5) - 1;
int num_stripes = getNumThreads();
......@@ -1088,6 +1451,25 @@ void DISOpticalFlowImpl::collectGarbage()
I0yy_buf_aux.release();
I0xy_buf_aux.release();
#ifdef HAVE_OPENCL
u_I0s.clear();
u_I1s.clear();
u_I1s_ext.clear();
u_I0xs.clear();
u_I0ys.clear();
u_Ux.clear();
u_Uy.clear();
u_U.release();
u_Sx.release();
u_Sy.release();
u_I0xx_buf.release();
u_I0yy_buf.release();
u_I0xy_buf.release();
u_I0xx_buf_aux.release();
u_I0yy_buf_aux.release();
u_I0xy_buf_aux.release();
#endif
for (int i = finest_scale; i <= coarsest_scale; i++)
variational_refinement_processors[i]->collectGarbage();
variational_refinement_processors.clear();
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#define EPS 0.001f
#define INF 1E+10F
__kernel void dis_precomputeStructureTensor_hor(__global const short *I0x,
__global const short *I0y,
int patch_size, int patch_stride,
int w, int h, int ws,
__global float *I0xx_aux_ptr,
__global float *I0yy_aux_ptr,
__global float *I0xy_aux_ptr,
__global float *I0x_aux_ptr,
__global float *I0y_aux_ptr)
{
int i = get_global_id(0);
if (i >= h) return;
const __global short *x_row = I0x + i * w;
const __global short *y_row = I0y + i * w;
float sum_xx = 0.0f, sum_yy = 0.0f, sum_xy = 0.0f, sum_x = 0.0f, sum_y = 0.0f;
float8 x_vec = convert_float8(vload8(0, x_row));
float8 y_vec = convert_float8(vload8(0, y_row));
sum_xx = dot(x_vec.lo, x_vec.lo) + dot(x_vec.hi, x_vec.hi);
sum_yy = dot(y_vec.lo, y_vec.lo) + dot(y_vec.hi, y_vec.hi);
sum_xy = dot(x_vec.lo, y_vec.lo) + dot(x_vec.hi, y_vec.hi);
sum_x = dot(x_vec.lo, 1.0f) + dot(x_vec.hi, 1.0f);
sum_y = dot(y_vec.lo, 1.0f) + dot(y_vec.hi, 1.0f);
I0xx_aux_ptr[i * ws] = sum_xx;
I0yy_aux_ptr[i * ws] = sum_yy;
I0xy_aux_ptr[i * ws] = sum_xy;
I0x_aux_ptr[i * ws] = sum_x;
I0y_aux_ptr[i * ws] = sum_y;
int js = 1;
for (int j = patch_size; j < w; j++)
{
short x_val1 = x_row[j];
short x_val2 = x_row[j - patch_size];
short y_val1 = y_row[j];
short y_val2 = y_row[j - patch_size];
sum_xx += (x_val1 * x_val1 - x_val2 * x_val2);
sum_yy += (y_val1 * y_val1 - y_val2 * y_val2);
sum_xy += (x_val1 * y_val1 - x_val2 * y_val2);
sum_x += (x_val1 - x_val2);
sum_y += (y_val1 - y_val2);
if ((j - patch_size + 1) % patch_stride == 0)
{
int index = i * ws + js;
I0xx_aux_ptr[index] = sum_xx;
I0yy_aux_ptr[index] = sum_yy;
I0xy_aux_ptr[index] = sum_xy;
I0x_aux_ptr[index] = sum_x;
I0y_aux_ptr[index] = sum_y;
js++;
}
}
}
__kernel void dis_precomputeStructureTensor_ver(__global const float *I0xx_aux_ptr,
__global const float *I0yy_aux_ptr,
__global const float *I0xy_aux_ptr,
__global const float *I0x_aux_ptr,
__global const float *I0y_aux_ptr,
int patch_size, int patch_stride,
int w, int h, int ws,
__global float *I0xx_ptr,
__global float *I0yy_ptr,
__global float *I0xy_ptr,
__global float *I0x_ptr,
__global float *I0y_ptr)
{
int j = get_global_id(0);
if (j >= ws) return;
float sum_xx, sum_yy, sum_xy, sum_x, sum_y;
sum_xx = sum_yy = sum_xy = sum_x = sum_y = 0.0f;
for (int i = 0; i < patch_size; i++)
{
sum_xx += I0xx_aux_ptr[i * ws + j];
sum_yy += I0yy_aux_ptr[i * ws + j];
sum_xy += I0xy_aux_ptr[i * ws + j];
sum_x += I0x_aux_ptr[i * ws + j];
sum_y += I0y_aux_ptr[i * ws + j];
}
I0xx_ptr[j] = sum_xx;
I0yy_ptr[j] = sum_yy;
I0xy_ptr[j] = sum_xy;
I0x_ptr[j] = sum_x;
I0y_ptr[j] = sum_y;
int is = 1;
for (int i = patch_size; i < h; i++)
{
sum_xx += (I0xx_aux_ptr[i * ws + j] - I0xx_aux_ptr[(i - patch_size) * ws + j]);
sum_yy += (I0yy_aux_ptr[i * ws + j] - I0yy_aux_ptr[(i - patch_size) * ws + j]);
sum_xy += (I0xy_aux_ptr[i * ws + j] - I0xy_aux_ptr[(i - patch_size) * ws + j]);
sum_x += (I0x_aux_ptr[i * ws + j] - I0x_aux_ptr[(i - patch_size) * ws + j]);
sum_y += (I0y_aux_ptr[i * ws + j] - I0y_aux_ptr[(i - patch_size) * ws + j]);
if ((i - patch_size + 1) % patch_stride == 0)
{
I0xx_ptr[is * ws + j] = sum_xx;
I0yy_ptr[is * ws + j] = sum_yy;
I0xy_ptr[is * ws + j] = sum_xy;
I0x_ptr[is * ws + j] = sum_x;
I0y_ptr[is * ws + j] = sum_y;
is++;
}
}
}
__kernel void dis_densification(__global const float *sx, __global const float *sy,
__global const uchar *i0, __global const uchar *i1,
int psz, int pstr,
int w, int h, int ws,
__global float *ux, __global float *uy)
{
int x = get_global_id(0);
int y = get_global_id(1);
int i, j;
if (x >= w || y >= h) return;
int start_is, end_is;
int start_js, end_js;
end_is = min(y / pstr, (h - psz) / pstr);
start_is = max(0, y - psz + pstr) / pstr;
start_is = min(start_is, end_is);
end_js = min(x / pstr, (w - psz) / pstr);
start_js = max(0, x - psz + pstr) / pstr;
start_js = min(start_js, end_js);
float coef, sum_coef = 0.0f;
float sum_Ux = 0.0f;
float sum_Uy = 0.0f;
int i_l, i_u;
int j_l, j_u;
float i_m, j_m, diff;
i = y;
j = x;
/* Iterate through all the patches that overlap the current location (i,j) */
for (int is = start_is; is <= end_is; is++)
for (int js = start_js; js <= end_js; js++)
{
float sx_val = sx[is * ws + js];
float sy_val = sy[is * ws + js];
uchar2 i1_vec1, i1_vec2;
j_m = min(max(j + sx_val, 0.0f), w - 1.0f - EPS);
i_m = min(max(i + sy_val, 0.0f), h - 1.0f - EPS);
j_l = (int)j_m;
j_u = j_l + 1;
i_l = (int)i_m;
i_u = i_l + 1;
i1_vec1 = vload2(0, i1 + i_u * w + j_l);
i1_vec2 = vload2(0, i1 + i_l * w + j_l);
diff = (j_m - j_l) * (i_m - i_l) * i1_vec1.y +
(j_u - j_m) * (i_m - i_l) * i1_vec1.x +
(j_m - j_l) * (i_u - i_m) * i1_vec2.y +
(j_u - j_m) * (i_u - i_m) * i1_vec2.x - i0[i * w + j];
coef = 1 / max(1.0f, fabs(diff));
sum_Ux += coef * sx_val;
sum_Uy += coef * sy_val;
sum_coef += coef;
}
ux[i * w + j] = sum_Ux / sum_coef;
uy[i * w + j] = sum_Uy / sum_coef;
}
#define INIT_BILINEAR_WEIGHTS(Ux, Uy) \
i_I1 = min(max(i + Uy + bsz, i_lower_limit), i_upper_limit); \
j_I1 = min(max(j + Ux + bsz, j_lower_limit), j_upper_limit); \
\
w11 = (i_I1 - floor(i_I1)) * (j_I1 - floor(j_I1)); \
w10 = (i_I1 - floor(i_I1)) * (floor(j_I1) + 1 - j_I1); \
w01 = (floor(i_I1) + 1 - i_I1) * (j_I1 - floor(j_I1)); \
w00 = (floor(i_I1) + 1 - i_I1) * (floor(j_I1) + 1 - j_I1);
float computeSSDMeanNorm(const __global uchar *I0_ptr, const __global uchar *I1_ptr,
int I0_stride, int I1_stride,
float w00, float w01, float w10, float w11, int patch_sz, int i)
{
float sum_diff = 0.0f, sum_diff_sq = 0.0f;
int n = patch_sz * patch_sz;
uchar8 I1_vec1, I1_vec2, I0_vec;
uchar I1_val1, I1_val2;
I0_vec = vload8(0, I0_ptr + i * I0_stride);
I1_vec1 = vload8(0, I1_ptr + i * I1_stride);
I1_vec2 = vload8(0, I1_ptr + (i + 1) * I1_stride);
I1_val1 = I1_ptr[i * I1_stride + 8];
I1_val2 = I1_ptr[(i + 1) * I1_stride + 8];
float8 vec = w00 * convert_float8(I1_vec1) + w01 * convert_float8((uchar8)(I1_vec1.s123, I1_vec1.s4567, I1_val1)) +
w10 * convert_float8(I1_vec2) + w11 * convert_float8((uchar8)(I1_vec2.s123, I1_vec2.s4567, I1_val2)) -
convert_float8(I0_vec);
sum_diff = (dot(vec.lo, 1.0) + dot(vec.hi, 1.0));
sum_diff_sq = (dot(vec.lo, vec.lo) + dot(vec.hi, vec.hi));
sum_diff = sub_group_reduce_add(sum_diff);
sum_diff_sq = sub_group_reduce_add(sum_diff_sq);
return sum_diff_sq - sum_diff * sum_diff / n;
}
__kernel void dis_patch_inverse_search_fwd_1(__global const float *Ux_ptr, __global const float *Uy_ptr,
__global const uchar *I0_ptr, __global const uchar *I1_ptr,
int border_size, int patch_size, int patch_stride,
int w, int h, int ws, int hs, int pyr_level,
__global float *Sx_ptr, __global float *Sy_ptr)
{
int id = get_global_id(0);
int is = id / 8;
if (id >= (hs * 8)) return;
int i = is * patch_stride;
int j = 0;
int psz = patch_size;
int psz2 = psz / 2;
int w_ext = w + 2 * border_size;
int bsz = border_size;
float i_lower_limit = bsz - psz + 1.0f;
float i_upper_limit = bsz + h - 1.0f;
float j_lower_limit = bsz - psz + 1.0f;
float j_upper_limit = bsz + w - 1.0f;
float i_I1, j_I1, w00, w01, w10, w11;
float prev_Ux = Ux_ptr[(i + psz2) * w + j + psz2];
float prev_Uy = Uy_ptr[(i + psz2) * w + j + psz2];
Sx_ptr[is * ws] = prev_Ux;
Sy_ptr[is * ws] = prev_Uy;
j += patch_stride;
int sid = get_sub_group_local_id();
for (int js = 1; js < ws; js++, j += patch_stride)
{
float min_SSD, cur_SSD;
float Ux = Ux_ptr[(i + psz2) * w + j + psz2];
float Uy = Uy_ptr[(i + psz2) * w + j + psz2];
INIT_BILINEAR_WEIGHTS(Ux, Uy);
min_SSD = computeSSDMeanNorm(I0_ptr + i * w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1,
w, w_ext, w00, w01, w10, w11, psz, sid);
INIT_BILINEAR_WEIGHTS(prev_Ux, prev_Uy);
cur_SSD = computeSSDMeanNorm(I0_ptr + i * w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1,
w, w_ext, w00, w01, w10, w11, psz, sid);
if (cur_SSD < min_SSD)
{
Ux = prev_Ux;
Uy = prev_Uy;
}
prev_Ux = Ux;
prev_Uy = Uy;
Sx_ptr[is * ws + js] = Ux;
Sy_ptr[is * ws + js] = Uy;
}
}
float3 processPatchMeanNorm(const __global uchar *I0_ptr, const __global uchar *I1_ptr,
const __global short *I0x_ptr, const __global short *I0y_ptr,
int I0_stride, int I1_stride, float w00, float w01, float w10,
float w11, int patch_sz, float x_grad_sum, float y_grad_sum)
{
float sum_diff = 0.0, sum_diff_sq = 0.0;
float sum_I0x_mul = 0.0, sum_I0y_mul = 0.0;
int n = patch_sz * patch_sz;
uchar8 I1_vec1, I1_vec2;
uchar I1_val1, I1_val2;
for (int i = 0; i < 8; i++)
{
uchar8 I0_vec = vload8(0, I0_ptr + i * I0_stride);
I1_vec1 = (i == 0) ? vload8(0, I1_ptr + i * I1_stride) : I1_vec2;
I1_vec2 = vload8(0, I1_ptr + (i + 1) * I1_stride);
I1_val1 = (i == 0) ? I1_ptr[i * I1_stride + patch_sz] : I1_val2;
I1_val2 = I1_ptr[(i + 1) * I1_stride + patch_sz];
float8 vec = w00 * convert_float8(I1_vec1) + w01 * convert_float8((uchar8)(I1_vec1.s123, I1_vec1.s4567, I1_val1)) +
w10 * convert_float8(I1_vec2) + w11 * convert_float8((uchar8)(I1_vec2.s123, I1_vec2.s4567, I1_val2)) -
convert_float8(I0_vec);
sum_diff += (dot(vec.lo, 1.0) + dot(vec.hi, 1.0));
sum_diff_sq += (dot(vec.lo, vec.lo) + dot(vec.hi, vec.hi));
short8 I0x_vec = vload8(0, I0x_ptr + i * I0_stride);
short8 I0y_vec = vload8(0, I0y_ptr + i * I0_stride);
sum_I0x_mul += dot(vec.lo, convert_float4(I0x_vec.lo));
sum_I0x_mul += dot(vec.hi, convert_float4(I0x_vec.hi));
sum_I0y_mul += dot(vec.lo, convert_float4(I0y_vec.lo));
sum_I0y_mul += dot(vec.hi, convert_float4(I0y_vec.hi));
}
float dst_dUx = sum_I0x_mul - sum_diff * x_grad_sum / n;
float dst_dUy = sum_I0y_mul - sum_diff * y_grad_sum / n;
float SSD = sum_diff_sq - sum_diff * sum_diff / n;
return (float3)(SSD, dst_dUx, dst_dUy);
}
__kernel void dis_patch_inverse_search_fwd_2(__global const float *Ux_ptr, __global const float *Uy_ptr,
__global const uchar *I0_ptr, __global const uchar *I1_ptr,
__global const short *I0x_ptr, __global const short *I0y_ptr,
__global const float *xx_ptr, __global const float *yy_ptr,
__global const float *xy_ptr,
__global const float *x_ptr, __global const float *y_ptr,
int border_size, int patch_size, int patch_stride,
int w, int h, int ws, int hs, int num_inner_iter, int pyr_level,
__global float *Sx_ptr, __global float *Sy_ptr)
{
int js = get_global_id(0);
int is = get_global_id(1);
int i = is * patch_stride;
int j = js * patch_stride;
int psz = patch_size;
int psz2 = psz / 2;
int w_ext = w + 2 * border_size;
int bsz = border_size;
int index = is * ws + js;
if (js >= ws || is >= hs) return;
float Ux = Sx_ptr[index];
float Uy = Sy_ptr[index];
float cur_Ux = Ux;
float cur_Uy = Uy;
float cur_xx = xx_ptr[index];
float cur_yy = yy_ptr[index];
float cur_xy = xy_ptr[index];
float detH = cur_xx * cur_yy - cur_xy * cur_xy;
if (fabs(detH) < EPS) detH = EPS;
float invH11 = cur_yy / detH;
float invH12 = -cur_xy / detH;
float invH22 = cur_xx / detH;
float prev_SSD = INF, SSD;
float x_grad_sum = x_ptr[index];
float y_grad_sum = y_ptr[index];
float i_lower_limit = bsz - psz + 1.0f;
float i_upper_limit = bsz + h - 1.0f;
float j_lower_limit = bsz - psz + 1.0f;
float j_upper_limit = bsz + w - 1.0f;
float dUx, dUy, i_I1, j_I1, w00, w01, w10, w11, dx, dy;
float3 res;
for (int t = 0; t < num_inner_iter; t++)
{
INIT_BILINEAR_WEIGHTS(cur_Ux, cur_Uy);
res = processPatchMeanNorm(I0_ptr + i * w + j,
I1_ptr + (int)i_I1 * w_ext + (int)j_I1, I0x_ptr + i * w + j,
I0y_ptr + i * w + j, w, w_ext, w00, w01, w10, w11, psz,
x_grad_sum, y_grad_sum);
SSD = res.x;
dUx = res.y;
dUy = res.z;
dx = invH11 * dUx + invH12 * dUy;
dy = invH12 * dUx + invH22 * dUy;
cur_Ux -= dx;
cur_Uy -= dy;
if (SSD >= prev_SSD)
break;
prev_SSD = SSD;
}
float2 vec = (float2)(cur_Ux - Ux, cur_Uy - Uy);
if (dot(vec, vec) <= (float)(psz * psz))
{
Sx_ptr[index] = cur_Ux;
Sy_ptr[index] = cur_Uy;
}
}
__kernel void dis_patch_inverse_search_bwd_1(__global const uchar *I0_ptr, __global const uchar *I1_ptr,
int border_size, int patch_size, int patch_stride,
int w, int h, int ws, int hs, int pyr_level,
__global float *Sx_ptr, __global float *Sy_ptr)
{
int id = get_global_id(0);
int is = id / 8;
if (id >= (hs * 8)) return;
is = (hs - 1 - is);
int i = is * patch_stride;
int j = (ws - 2) * patch_stride;
int psz = patch_size;
int psz2 = psz / 2;
int w_ext = w + 2 * border_size;
int bsz = border_size;
float i_lower_limit = bsz - psz + 1.0f;
float i_upper_limit = bsz + h - 1.0f;
float j_lower_limit = bsz - psz + 1.0f;
float j_upper_limit = bsz + w - 1.0f;
float i_I1, j_I1, w00, w01, w10, w11;
int sid = get_sub_group_local_id();
for (int js = (ws - 2); js > -1; js--, j -= patch_stride)
{
float min_SSD, cur_SSD;
float2 Ux = vload2(0, Sx_ptr + is * ws + js);
float2 Uy = vload2(0, Sy_ptr + is * ws + js);
INIT_BILINEAR_WEIGHTS(Ux.x, Uy.x);
min_SSD = computeSSDMeanNorm(I0_ptr + i * w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1,
w, w_ext, w00, w01, w10, w11, psz, sid);
INIT_BILINEAR_WEIGHTS(Ux.y, Uy.y);
cur_SSD = computeSSDMeanNorm(I0_ptr + i * w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1,
w, w_ext, w00, w01, w10, w11, psz, sid);
if (cur_SSD < min_SSD)
{
Sx_ptr[is * ws + js] = Ux.y;
Sy_ptr[is * ws + js] = Uy.y;
}
}
}
__kernel void dis_patch_inverse_search_bwd_2(__global const uchar *I0_ptr, __global const uchar *I1_ptr,
__global const short *I0x_ptr, __global const short *I0y_ptr,
__global const float *xx_ptr, __global const float *yy_ptr,
__global const float *xy_ptr,
__global const float *x_ptr, __global const float *y_ptr,
int border_size, int patch_size, int patch_stride,
int w, int h, int ws, int hs, int num_inner_iter,
__global float *Sx_ptr, __global float *Sy_ptr)
{
int js = get_global_id(0);
int is = get_global_id(1);
if (js >= ws || is >= hs) return;
js = (ws - 1 - js);
is = (hs - 1 - is);
int j = js * patch_stride;
int i = is * patch_stride;
int psz = patch_size;
int psz2 = psz / 2;
int w_ext = w + 2 * border_size;
int bsz = border_size;
int index = is * ws + js;
float Ux = Sx_ptr[index];
float Uy = Sy_ptr[index];
float cur_Ux = Ux;
float cur_Uy = Uy;
float cur_xx = xx_ptr[index];
float cur_yy = yy_ptr[index];
float cur_xy = xy_ptr[index];
float detH = cur_xx * cur_yy - cur_xy * cur_xy;
if (fabs(detH) < EPS) detH = EPS;
float invH11 = cur_yy / detH;
float invH12 = -cur_xy / detH;
float invH22 = cur_xx / detH;
float prev_SSD = INF, SSD;
float x_grad_sum = x_ptr[index];
float y_grad_sum = y_ptr[index];
float i_lower_limit = bsz - psz + 1.0f;
float i_upper_limit = bsz + h - 1.0f;
float j_lower_limit = bsz - psz + 1.0f;
float j_upper_limit = bsz + w - 1.0f;
float dUx, dUy, i_I1, j_I1, w00, w01, w10, w11, dx, dy;
float3 res;
for (int t = 0; t < num_inner_iter; t++)
{
INIT_BILINEAR_WEIGHTS(cur_Ux, cur_Uy);
res = processPatchMeanNorm(I0_ptr + i * w + j,
I1_ptr + (int)i_I1 * w_ext + (int)j_I1, I0x_ptr + i * w + j,
I0y_ptr + i * w + j, w, w_ext, w00, w01, w10, w11, psz,
x_grad_sum, y_grad_sum);
SSD = res.x;
dUx = res.y;
dUy = res.z;
dx = invH11 * dUx + invH12 * dUy;
dy = invH12 * dUx + invH22 * dUy;
cur_Ux -= dx;
cur_Uy -= dy;
if (SSD >= prev_SSD)
break;
prev_SSD = SSD;
}
float2 vec = (float2)(cur_Ux - Ux, cur_Uy - Uy);
if ((dot(vec, vec)) <= (float)(psz * psz))
{
Sx_ptr[index] = cur_Ux;
Sy_ptr[index] = cur_Uy;
}
}
......@@ -45,6 +45,8 @@ the use of this software, even if advised of the possibility of such damage.
#include <opencv2/optflow.hpp>
#include <opencv2/video.hpp>
#include <opencv2/imgproc.hpp>
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/ocl.hpp"
#include <algorithm>
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
using namespace cv;
using namespace optflow;
namespace cvtest {
namespace ocl {
PARAM_TEST_CASE(OCL_DenseOpticalFlow_DIS, int)
{
int preset;
virtual void SetUp()
{
preset = GET_PARAM(0);
}
};
OCL_TEST_P(OCL_DenseOpticalFlow_DIS, Mat)
{
Mat frame1, frame2, GT;
frame1 = imread(TS::ptr()->get_data_path() + "optflow/RubberWhale1.png");
frame2 = imread(TS::ptr()->get_data_path() + "optflow/RubberWhale2.png");
CV_Assert(!frame1.empty() && !frame2.empty());
cvtColor(frame1, frame1, COLOR_BGR2GRAY);
cvtColor(frame2, frame2, COLOR_BGR2GRAY);
Ptr<DenseOpticalFlow> algo;
// iterate over presets:
for (int i = 0; i < test_loop_times; i++)
{
Mat flow;
UMat ocl_flow;
algo = createOptFlow_DIS(preset);
OCL_OFF(algo->calc(frame1, frame2, flow));
OCL_ON(algo->calc(frame1, frame2, ocl_flow));
ASSERT_EQ(flow.rows, ocl_flow.rows);
ASSERT_EQ(flow.cols, ocl_flow.cols);
EXPECT_MAT_SIMILAR(flow, ocl_flow, 6e-3);
}
}
OCL_INSTANTIATE_TEST_CASE_P(Contrib, OCL_DenseOpticalFlow_DIS,
Values(DISOpticalFlow::PRESET_ULTRAFAST,
DISOpticalFlow::PRESET_FAST,
DISOpticalFlow::PRESET_MEDIUM));
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment