Commit 7e9c5323 authored by Alexander Alekhin's avatar Alexander Alekhin

whitespace

parent e85a802a
......@@ -44,114 +44,114 @@ namespace face {
//! @addtogroup face
//! @{
class CV_EXPORTS_W FacemarkAAM : public Facemark
class CV_EXPORTS_W FacemarkAAM : public Facemark
{
public:
struct CV_EXPORTS Params
{
public:
struct CV_EXPORTS Params
{
/**
* \brief Constructor
*/
Params();
/**
* \brief Read parameters from file, currently unused
*/
void read(const FileNode& /*fn*/);
/**
* \brief Read parameters from file, currently unused
*/
void write(FileStorage& /*fs*/) const;
std::string model_filename;
int m;
int n;
int n_iter;
bool verbose;
bool save_model;
int max_m, max_n, texture_max_m;
std::vector<float>scales;
};
/**
* \brief Optional parameter for fitting process.
* \brief Constructor
*/
struct CV_EXPORTS Config
{
Config( Mat rot = Mat::eye(2,2,CV_32F),
Point2f trans = Point2f(0.0,0.0),
float scaling = 1.0,
int scale_id=0
);
Mat R;
Point2f t;
float scale;
int model_scale_idx;
};
Params();
/**
* \brief Data container for the facemark::getData function
* \brief Read parameters from file, currently unused
*/
struct CV_EXPORTS Data
{
std::vector<Point2f> s0;
};
void read(const FileNode& /*fn*/);
/**
* \brief The model of AAM Algorithm
* \brief Read parameters from file, currently unused
*/
struct CV_EXPORTS Model
{
int npts; //!< unused delete
int max_n; //!< unused delete
std::vector<float>scales;
//!< defines the scales considered to build the model
/*warping*/
std::vector<Vec3i> triangles;
//!< each element contains 3 values, represent index of facemarks that construct one triangle (obtained using delaunay triangulation)
struct Texture{
int max_m; //!< unused delete
Rect resolution;
//!< resolution of the current scale
Mat A;
//!< gray values from all face region in the dataset, projected in PCA space
Mat A0;
//!< average of gray values from all face region in the dataset
Mat AA;
//!< gray values from all erorded face region in the dataset, projected in PCA space
Mat AA0;
//!< average of gray values from all erorded face region in the dataset
std::vector<std::vector<Point> > textureIdx;
//!< index for warping of each delaunay triangle region constructed by 3 facemarks
std::vector<Point2f> base_shape;
//!< basic shape, normalized to be fit in an image with current detection resolution
std::vector<int> ind1;
//!< index of pixels for mapping process to obtains the grays values of face region
std::vector<int> ind2;
//!< index of pixels for mapping process to obtains the grays values of eroded face region
};
std::vector<Texture> textures;
//!< a container to holds the texture data for each scale of fitting
/*shape*/
std::vector<Point2f> s0;
//!< the basic shape obtained from training dataset
Mat S,Q;
//!< the encoded shapes from training data
void write(FileStorage& /*fs*/) const;
std::string model_filename;
int m;
int n;
int n_iter;
bool verbose;
bool save_model;
int max_m, max_n, texture_max_m;
std::vector<float>scales;
};
/**
* \brief Optional parameter for fitting process.
*/
struct CV_EXPORTS Config
{
Config( Mat rot = Mat::eye(2,2,CV_32F),
Point2f trans = Point2f(0.0,0.0),
float scaling = 1.0,
int scale_id=0
);
Mat R;
Point2f t;
float scale;
int model_scale_idx;
};
/**
* \brief Data container for the facemark::getData function
*/
struct CV_EXPORTS Data
{
std::vector<Point2f> s0;
};
/**
* \brief The model of AAM Algorithm
*/
struct CV_EXPORTS Model
{
int npts; //!< unused delete
int max_n; //!< unused delete
std::vector<float>scales;
//!< defines the scales considered to build the model
/*warping*/
std::vector<Vec3i> triangles;
//!< each element contains 3 values, represent index of facemarks that construct one triangle (obtained using delaunay triangulation)
struct Texture{
int max_m; //!< unused delete
Rect resolution;
//!< resolution of the current scale
Mat A;
//!< gray values from all face region in the dataset, projected in PCA space
Mat A0;
//!< average of gray values from all face region in the dataset
Mat AA;
//!< gray values from all erorded face region in the dataset, projected in PCA space
Mat AA0;
//!< average of gray values from all erorded face region in the dataset
std::vector<std::vector<Point> > textureIdx;
//!< index for warping of each delaunay triangle region constructed by 3 facemarks
std::vector<Point2f> base_shape;
//!< basic shape, normalized to be fit in an image with current detection resolution
std::vector<int> ind1;
//!< index of pixels for mapping process to obtains the grays values of face region
std::vector<int> ind2;
//!< index of pixels for mapping process to obtains the grays values of eroded face region
};
std::vector<Texture> textures;
//!< a container to holds the texture data for each scale of fitting
/*shape*/
std::vector<Point2f> s0;
//!< the basic shape obtained from training dataset
Mat S,Q;
//!< the encoded shapes from training data
};
//!< initializer
static Ptr<FacemarkAAM> create(const FacemarkAAM::Params &parameters = FacemarkAAM::Params() );
virtual ~FacemarkAAM() {}
//!< initializer
static Ptr<FacemarkAAM> create(const FacemarkAAM::Params &parameters = FacemarkAAM::Params() );
virtual ~FacemarkAAM() {}
}; /* AAM */
}; /* AAM */
//! @}
......
......@@ -45,72 +45,72 @@ namespace face {
//! @addtogroup face
//! @{
class CV_EXPORTS_W FacemarkLBF : public Facemark
class CV_EXPORTS_W FacemarkLBF : public Facemark
{
public:
struct CV_EXPORTS Params
{
/**
* \brief Constructor
*/
Params();
double shape_offset;
//!< offset for the loaded face landmark points
String cascade_face;
//!< filename of the face detector model
bool verbose;
//!< show the training print-out
int n_landmarks;
//!< number of landmark points
int initShape_n;
//!< multiplier for augment the training data
int stages_n;
//!< number of refinement stages
int tree_n;
//!< number of tree in the model for each landmark point refinement
int tree_depth;
//!< the depth of decision tree, defines the size of feature
double bagging_overlap;
//!< overlap ratio for training the LBF feature
std::string model_filename;
//!< filename where the trained model will be saved
bool save_model; //!< flag to save the trained model or not
unsigned int seed; //!< seed for shuffling the training data
std::vector<int> feats_m;
std::vector<double> radius_m;
std::vector<int> pupils[2];
//!< index of facemark points on pupils of left and right eye
Rect detectROI;
void read(const FileNode& /*fn*/);
void write(FileStorage& /*fs*/) const;
};
class BBox {
public:
struct CV_EXPORTS Params
{
/**
* \brief Constructor
*/
Params();
double shape_offset;
//!< offset for the loaded face landmark points
String cascade_face;
//!< filename of the face detector model
bool verbose;
//!< show the training print-out
int n_landmarks;
//!< number of landmark points
int initShape_n;
//!< multiplier for augment the training data
int stages_n;
//!< number of refinement stages
int tree_n;
//!< number of tree in the model for each landmark point refinement
int tree_depth;
//!< the depth of decision tree, defines the size of feature
double bagging_overlap;
//!< overlap ratio for training the LBF feature
std::string model_filename;
//!< filename where the trained model will be saved
bool save_model; //!< flag to save the trained model or not
unsigned int seed; //!< seed for shuffling the training data
std::vector<int> feats_m;
std::vector<double> radius_m;
std::vector<int> pupils[2];
//!< index of facemark points on pupils of left and right eye
Rect detectROI;
void read(const FileNode& /*fn*/);
void write(FileStorage& /*fs*/) const;
};
class BBox {
public:
BBox();
~BBox();
BBox(double x, double y, double w, double h);
cv::Mat project(const cv::Mat &shape) const;
cv::Mat reproject(const cv::Mat &shape) const;
double x, y;
double x_center, y_center;
double x_scale, y_scale;
double width, height;
};
static Ptr<FacemarkLBF> create(const FacemarkLBF::Params &parameters = FacemarkLBF::Params() );
virtual ~FacemarkLBF(){};
}; /* LBF */
BBox();
~BBox();
BBox(double x, double y, double w, double h);
cv::Mat project(const cv::Mat &shape) const;
cv::Mat reproject(const cv::Mat &shape) const;
double x, y;
double x_center, y_center;
double x_scale, y_scale;
double width, height;
};
static Ptr<FacemarkLBF> create(const FacemarkLBF::Params &parameters = FacemarkLBF::Params() );
virtual ~FacemarkLBF(){};
}; /* LBF */
//! @}
......
This diff is collapsed.
This diff is collapsed.
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
This file was part of GSoC Project: Facemark API for OpenCV
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
Student: Laksono Kurnianggoro
......@@ -47,7 +18,7 @@ Mentor: Delia Passalacqua
#include <stdio.h>
#include <ctime>
#include <iostream>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
......@@ -169,34 +140,34 @@ bool parseArguments(int argc, char** argv, CommandLineParser & parser,
String & model,
String & video
){
const String keys =
"{ @c cascade | | (required) path to the cascade model file for the face detector }"
"{ @m model | | (required) path to the trained model }"
"{ @v video | | (required) path input video}"
"{ help h usage ? | | facemark_lbf_fitting -cascade -model -video [-t]\n"
" example: facemark_lbf_fitting ../face_cascade.xml ../LBF.model ../video.mp4}"
;
parser = CommandLineParser(argc, argv,keys);
parser.about("hello");
if (parser.has("help")){
parser.printMessage();
return false;
}
cascade = String(parser.get<String>("cascade"));
model = String(parser.get<string>("model"));
video = String(parser.get<string>("video"));
if(cascade.empty() || model.empty() || video.empty() ){
std::cerr << "one or more required arguments are not found" << '\n';
cout<<"cascade : "<<cascade.c_str()<<endl;
cout<<"model : "<<model.c_str()<<endl;
cout<<"video : "<<video.c_str()<<endl;
parser.printMessage();
return false;
}
return true;
const String keys =
"{ @c cascade | | (required) path to the cascade model file for the face detector }"
"{ @m model | | (required) path to the trained model }"
"{ @v video | | (required) path input video}"
"{ help h usage ? | | facemark_lbf_fitting -cascade -model -video [-t]\n"
" example: facemark_lbf_fitting ../face_cascade.xml ../LBF.model ../video.mp4}"
;
parser = CommandLineParser(argc, argv,keys);
parser.about("hello");
if (parser.has("help")){
parser.printMessage();
return false;
}
cascade = String(parser.get<String>("cascade"));
model = String(parser.get<string>("model"));
video = String(parser.get<string>("video"));
if(cascade.empty() || model.empty() || video.empty() ){
std::cerr << "one or more required arguments are not found" << '\n';
cout<<"cascade : "<<cascade.c_str()<<endl;
cout<<"model : "<<model.c_str()<<endl;
cout<<"video : "<<video.c_str()<<endl;
parser.printMessage();
return false;
}
return true;
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment