Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
7e569cec
Commit
7e569cec
authored
Feb 19, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge moved code from opencv
parents
796853e0
71f588bd
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
66 additions
and
222 deletions
+66
-222
NCVHaarObjectDetection.cu
modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu
+3
-90
NPP_staging.cu
modules/cudalegacy/src/cuda/NPP_staging.cu
+5
-111
stereobm.cu
modules/cudastereo/src/cuda/stereobm.cu
+57
-20
scan.hpp
modules/cudev/include/opencv2/cudev/warp/scan.hpp
+1
-1
No files found.
modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu
View file @
7e569cec
...
...
@@ -59,8 +59,7 @@
#include <algorithm>
#include <cstdio>
#include "opencv2/core/cuda/warp.hpp"
#include "opencv2/core/cuda/warp_shuffle.hpp"
#include "opencv2/cudev.hpp"
#include "opencv2/opencv_modules.hpp"
...
...
@@ -77,92 +76,6 @@
#include "NCVAlg.hpp"
//==============================================================================
//
// BlockScan file
//
//==============================================================================
NCV_CT_ASSERT(K_WARP_SIZE == 32); //this is required for the manual unroll of the loop in warpScanInclusive
//Almost the same as naive scan1Inclusive, but doesn't need __syncthreads()
//assuming size <= WARP_SIZE and size is power of 2
__device__ Ncv32u warpScanInclusive(Ncv32u idata, volatile Ncv32u *s_Data)
{
#if __CUDA_ARCH__ >= 300
const unsigned int laneId = cv::cuda::device::Warp::laneId();
// scan on shuffl functions
#pragma unroll
for (int i = 1; i <= (K_WARP_SIZE / 2); i *= 2)
{
const Ncv32u n = cv::cuda::device::shfl_up(idata, i);
if (laneId >= i)
idata += n;
}
return idata;
#else
Ncv32u pos = 2 * threadIdx.x - (threadIdx.x & (K_WARP_SIZE - 1));
s_Data[pos] = 0;
pos += K_WARP_SIZE;
s_Data[pos] = idata;
s_Data[pos] += s_Data[pos - 1];
s_Data[pos] += s_Data[pos - 2];
s_Data[pos] += s_Data[pos - 4];
s_Data[pos] += s_Data[pos - 8];
s_Data[pos] += s_Data[pos - 16];
return s_Data[pos];
#endif
}
__device__ __forceinline__ Ncv32u warpScanExclusive(Ncv32u idata, volatile Ncv32u *s_Data)
{
return warpScanInclusive(idata, s_Data) - idata;
}
template <Ncv32u tiNumScanThreads>
__device__ Ncv32u scan1Inclusive(Ncv32u idata, volatile Ncv32u *s_Data)
{
if (tiNumScanThreads > K_WARP_SIZE)
{
//Bottom-level inclusive warp scan
Ncv32u warpResult = warpScanInclusive(idata, s_Data);
//Save top elements of each warp for exclusive warp scan
//sync to wait for warp scans to complete (because s_Data is being overwritten)
__syncthreads();
if( (threadIdx.x & (K_WARP_SIZE - 1)) == (K_WARP_SIZE - 1) )
{
s_Data[threadIdx.x >> K_LOG2_WARP_SIZE] = warpResult;
}
//wait for warp scans to complete
__syncthreads();
if( threadIdx.x < (tiNumScanThreads / K_WARP_SIZE) )
{
//grab top warp elements
Ncv32u val = s_Data[threadIdx.x];
//calculate exclusive scan and write back to shared memory
s_Data[threadIdx.x] = warpScanExclusive(val, s_Data);
}
//return updated warp scans with exclusive scan results
__syncthreads();
return warpResult + s_Data[threadIdx.x >> K_LOG2_WARP_SIZE];
}
else
{
return warpScanInclusive(idata, s_Data);
}
}
//==============================================================================
//
// HaarClassifierCascade file
...
...
@@ -260,11 +173,11 @@ __device__ void compactBlockWriteOutAnchorParallel(Ncv32u threadPassFlag, Ncv32u
{
#if __CUDA_ARCH__ && __CUDA_ARCH__ >= 110
__shared__ Ncv32u shmem[NUM_THREADS_ANCHORSPARALLEL
* 2
];
__shared__ Ncv32u shmem[NUM_THREADS_ANCHORSPARALLEL];
__shared__ Ncv32u numPassed;
__shared__ Ncv32u outMaskOffset;
Ncv32u incScan =
scan1Inclusive<NUM_THREADS_ANCHORSPARALLEL>(threadPassFlag, shmem
);
Ncv32u incScan =
cv::cudev::blockScanInclusive<NUM_THREADS_ANCHORSPARALLEL>(threadPassFlag, shmem, threadIdx.x
);
__syncthreads();
if (threadIdx.x == NUM_THREADS_ANCHORSPARALLEL-1)
...
...
modules/cudalegacy/src/cuda/NPP_staging.cu
View file @
7e569cec
...
...
@@ -45,8 +45,7 @@
#include <vector>
#include <cuda_runtime.h>
#include "opencv2/core/cuda/warp.hpp"
#include "opencv2/core/cuda/warp_shuffle.hpp"
#include "opencv2/cudev.hpp"
#include "opencv2/cudalegacy/NPP_staging.hpp"
...
...
@@ -81,111 +80,6 @@ cudaStream_t nppStSetActiveCUDAstream(cudaStream_t cudaStream)
}
//==============================================================================
//
// BlockScan.cuh
//
//==============================================================================
NCV_CT_ASSERT(K_WARP_SIZE == 32); //this is required for the manual unroll of the loop in warpScanInclusive
//Almost the same as naive scan1Inclusive, but doesn't need __syncthreads()
//assuming size <= WARP_SIZE and size is power of 2
template <class T>
inline __device__ T warpScanInclusive(T idata, volatile T *s_Data)
{
#if __CUDA_ARCH__ >= 300
const unsigned int laneId = cv::cuda::device::Warp::laneId();
// scan on shuffl functions
#pragma unroll
for (int i = 1; i <= (K_WARP_SIZE / 2); i *= 2)
{
const T n = cv::cuda::device::shfl_up(idata, i);
if (laneId >= i)
idata += n;
}
return idata;
#else
Ncv32u pos = 2 * threadIdx.x - (threadIdx.x & (K_WARP_SIZE - 1));
s_Data[pos] = 0;
pos += K_WARP_SIZE;
s_Data[pos] = idata;
s_Data[pos] += s_Data[pos - 1];
s_Data[pos] += s_Data[pos - 2];
s_Data[pos] += s_Data[pos - 4];
s_Data[pos] += s_Data[pos - 8];
s_Data[pos] += s_Data[pos - 16];
return s_Data[pos];
#endif
}
inline __device__ Ncv64u warpScanInclusive(Ncv64u idata, volatile Ncv64u *s_Data)
{
Ncv32u pos = 2 * threadIdx.x - (threadIdx.x & (K_WARP_SIZE - 1));
s_Data[pos] = 0;
pos += K_WARP_SIZE;
s_Data[pos] = idata;
s_Data[pos] += s_Data[pos - 1];
s_Data[pos] += s_Data[pos - 2];
s_Data[pos] += s_Data[pos - 4];
s_Data[pos] += s_Data[pos - 8];
s_Data[pos] += s_Data[pos - 16];
return s_Data[pos];
}
template <class T>
inline __device__ T warpScanExclusive(T idata, volatile T *s_Data)
{
return warpScanInclusive(idata, s_Data) - idata;
}
template <class T, Ncv32u tiNumScanThreads>
inline __device__ T blockScanInclusive(T idata, volatile T *s_Data)
{
if (tiNumScanThreads > K_WARP_SIZE)
{
//Bottom-level inclusive warp scan
T warpResult = warpScanInclusive(idata, s_Data);
//Save top elements of each warp for exclusive warp scan
//sync to wait for warp scans to complete (because s_Data is being overwritten)
__syncthreads();
if( (threadIdx.x & (K_WARP_SIZE - 1)) == (K_WARP_SIZE - 1) )
{
s_Data[threadIdx.x >> K_LOG2_WARP_SIZE] = warpResult;
}
//wait for warp scans to complete
__syncthreads();
if( threadIdx.x < (tiNumScanThreads / K_WARP_SIZE) )
{
//grab top warp elements
T val = s_Data[threadIdx.x];
//calculate exclusive scan and write back to shared memory
s_Data[threadIdx.x] = warpScanExclusive(val, s_Data);
}
//return updated warp scans with exclusive scan results
__syncthreads();
return warpResult + s_Data[threadIdx.x >> K_LOG2_WARP_SIZE];
}
else
{
return warpScanInclusive(idata, s_Data);
}
}
//==============================================================================
//
// IntegralImage.cu
...
...
@@ -280,7 +174,7 @@ __global__ void scanRows(T_in *d_src, Ncv32u texOffs, Ncv32u srcWidth, Ncv32u sr
Ncv32u numBuckets = (srcWidth + NUM_SCAN_THREADS - 1) >> LOG2_NUM_SCAN_THREADS;
Ncv32u offsetX = 0;
__shared__ T_out shmem[NUM_SCAN_THREADS
* 2
];
__shared__ T_out shmem[NUM_SCAN_THREADS];
__shared__ T_out carryElem;
carryElem = 0;
__syncthreads();
...
...
@@ -301,7 +195,7 @@ __global__ void scanRows(T_in *d_src, Ncv32u texOffs, Ncv32u srcWidth, Ncv32u sr
curElemMod = _scanElemOp<T_in, T_out>::scanElemOp<tbDoSqr>(curElem);
//inclusive scan
curScanElem =
blockScanInclusive<T_out, NUM_SCAN_THREADS>(curElemMod, shmem
);
curScanElem =
cv::cudev::blockScanInclusive<NUM_SCAN_THREADS>(curElemMod, shmem, threadIdx.x
);
if (curElemOffs <= srcWidth)
{
...
...
@@ -1290,7 +1184,7 @@ __global__ void removePass1Scan(Ncv32u *d_src, Ncv32u srcLen,
return;
}
__shared__ Ncv32u shmem[NUM_REMOVE_THREADS
* 2
];
__shared__ Ncv32u shmem[NUM_REMOVE_THREADS];
Ncv32u scanElem = 0;
if (elemAddrIn < srcLen)
...
...
@@ -1305,7 +1199,7 @@ __global__ void removePass1Scan(Ncv32u *d_src, Ncv32u srcLen,
}
}
Ncv32u localScanInc =
blockScanInclusive<Ncv32u, NUM_REMOVE_THREADS>(scanElem, shmem
);
Ncv32u localScanInc =
cv::cudev::blockScanInclusive<NUM_REMOVE_THREADS>(scanElem, shmem, threadIdx.x
);
__syncthreads();
if (elemAddrIn < srcLen)
...
...
modules/cudastereo/src/cuda/stereobm.cu
View file @
7e569cec
...
...
@@ -71,48 +71,54 @@ namespace cv { namespace cuda { namespace device
}
template<int RADIUS>
__device__ unsigned int CalcSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
__device__ unsigned int CalcSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd
, const int X
)
{
unsigned int cache = 0;
unsigned int cache2 = 0;
if (X < cwidth - RADIUS)
{
for(int i = 1; i <= RADIUS; i++)
cache += col_ssd[i];
col_ssd_cache[0] = cache;
}
__syncthreads();
if (X < cwidth - RADIUS)
{
if (threadIdx.x < BLOCK_W - RADIUS)
cache2 = col_ssd_cache[RADIUS];
else
for(int i = RADIUS + 1; i < (2 * RADIUS + 1); i++)
cache2 += col_ssd[i];
}
return col_ssd[0] + cache + cache2;
}
template<int RADIUS>
__device__ uint2 MinSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
__device__ uint2 MinSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd
, const int X
)
{
unsigned int ssd[N_DISPARITIES];
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
ssd[0] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 0 * (BLOCK_W + 2 * RADIUS));
ssd[0] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 0 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[1] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 1 * (BLOCK_W + 2 * RADIUS));
ssd[1] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 1 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[2] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 2 * (BLOCK_W + 2 * RADIUS));
ssd[2] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 2 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[3] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 3 * (BLOCK_W + 2 * RADIUS));
ssd[3] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 3 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[4] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 4 * (BLOCK_W + 2 * RADIUS));
ssd[4] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 4 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[5] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 5 * (BLOCK_W + 2 * RADIUS));
ssd[5] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 5 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[6] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 6 * (BLOCK_W + 2 * RADIUS));
ssd[6] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 6 * (BLOCK_W + 2 * RADIUS)
, X
);
__syncthreads();
ssd[7] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * RADIUS));
ssd[7] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * RADIUS)
, X
);
int mssd = ::min(::min(::min(ssd[0], ssd[1]), ::min(ssd[4], ssd[5])), ::min(::min(ssd[2], ssd[3]), ::min(ssd[6], ssd[7])));
...
...
@@ -243,12 +249,12 @@ namespace cv { namespace cuda { namespace device
unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step;
unsigned char* disparImage = disp.data + X + Y * disp.step;
/*
if (X < cwidth)
{
unsigned int *minSSDImage_end = minSSDImage + min(ROWSperTHREAD, cheight - Y) * minssd_step;
for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step )
*ptr = 0xFFFFFFFF;
}*/
//
if (X < cwidth)
//
{
//
unsigned int *minSSDImage_end = minSSDImage + min(ROWSperTHREAD, cheight - Y) * minssd_step;
//
for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step )
//
*ptr = 0xFFFFFFFF;
//}
int end_row = ::min(ROWSperTHREAD, cheight - Y - RADIUS);
int y_tex;
int x_tex = X - RADIUS;
...
...
@@ -268,15 +274,29 @@ namespace cv { namespace cuda { namespace device
__syncthreads(); //before MinSSD function
if (X < cwidth - RADIUS && Y < cheight - RADIUS)
if (Y < cheight - RADIUS)
{
uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd, X);
// For threads that do not satisfy the if condition below("X < cwidth - RADIUS"), previously
// computed "minSSD" value, which is the result of "MinSSD" function call, is not used at all.
//
// However, since the "MinSSD" function has "__syncthreads" call in its body, those threads
// must also call "MinSSD" to avoid deadlock. (#13850)
//
// From CUDA 9, using "__syncwarp" with proper mask value instead of using "__syncthreads"
// could be an option, but the shared memory access pattern does not allow this option,
// resulting in race condition. (Checked via "cuda-memcheck --tool racecheck")
if (X < cwidth - RADIUS)
{
uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
if (minSSD.x < minSSDImage[0])
{
disparImage[0] = (unsigned char)(d + minSSD.y);
minSSDImage[0] = minSSD.x;
}
}
}
for(int row = 1; row < end_row; row++)
{
...
...
@@ -295,17 +315,34 @@ namespace cv { namespace cuda { namespace device
__syncthreads(); //before MinSSD function
if (X < cwidth - RADIUS && row < cheight - RADIUS - Y)
if (row < cheight - RADIUS - Y)
{
uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd, X);
// For threads that do not satisfy the if condition below("X < cwidth - RADIUS"), previously
// computed "minSSD" value, which is the result of "MinSSD" function call, is not used at all.
//
// However, since the "MinSSD" function has "__syncthreads" call in its body, those threads
// must also call "MinSSD" to avoid deadlock. (#13850)
//
// From CUDA 9, using "__syncwarp" with proper mask value instead of using "__syncthreads"
// could be an option, but the shared memory access pattern does not allow this option,
// resulting in race condition. (Checked via "cuda-memcheck --tool racecheck")
if (X < cwidth - RADIUS)
{
int idx = row * cminSSD_step;
uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
if (minSSD.x < minSSDImage[idx])
{
disparImage[disp.step * row] = (unsigned char)(d + minSSD.y);
minSSDImage[idx] = minSSD.x;
}
}
}
} // for row loop
__syncthreads(); // before initializing shared memory at the beginning of next loop
} // for d loop
}
...
...
modules/cudev/include/opencv2/cudev/warp/scan.hpp
View file @
7e569cec
...
...
@@ -98,7 +98,7 @@ __device__ T warpScanInclusive(T data, volatile T* smem, uint tid)
#pragma unroll
for
(
int
i
=
1
;
i
<=
(
WARP_SIZE
/
2
);
i
*=
2
)
{
const
T
val
=
shfl_up
(
data
,
i
);
const
T
val
=
__shfl_up
(
data
,
i
,
WARP_SIZE
);
if
(
laneId
>=
i
)
data
+=
val
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment