Commit 7d7312a9 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents 3e9ebc4b 94d1b9bc
......@@ -555,8 +555,8 @@ private:
plane = Ptr<PlaneBase>(new PlaneABC(plane_grid.m_(y, x), n, (int)index_plane,
(float)sensor_error_a_, (float)sensor_error_b_, (float)sensor_error_c_));
Mat_<unsigned char> plane_mask = Mat_<unsigned char>::zeros(points3d.rows / block_size_,
points3d.cols / block_size_);
Mat_<unsigned char> plane_mask = Mat_<unsigned char>::zeros(divUp(points3d.rows, block_size_),
divUp(points3d.cols, block_size_));
std::set<TileQueue::PlaneTile> neighboring_tiles;
neighboring_tiles.insert(front_tile);
plane_queue.remove(front_tile.y_, front_tile.x_);
......
......@@ -441,4 +441,15 @@ TEST(Rgbd_Plane, compute)
test.safe_run();
}
TEST(Rgbd_Plane, regression_2309_valgrind_check)
{
Mat points(640, 480, CV_32FC3, Scalar::all(0));
rgbd::RgbdPlane plane_detector;
plane_detector.setBlockSize(9); // Note, 640%9 is 1 and 480%9 is 3
Mat mask;
std::vector<cv::Vec4f> planes;
plane_detector(points, mask, planes); // Will corrupt memory; valgrind gets triggered
}
}} // namespace
......@@ -29,26 +29,29 @@ protected:
{
for(int k = 0; k < nbrTextBoxes; k++)
{
float x_min = buffer[k*nCol + 3]*inputShape.width;
float y_min = buffer[k*nCol + 4]*inputShape.height;
float confidence_ = buffer[k*nCol + 2];
if (confidence_ <= FLT_EPSILON) continue;
float x_max = buffer[k*nCol + 5]*inputShape.width;
float y_max = buffer[k*nCol + 6]*inputShape.height;
float x_min_f = buffer[k*nCol + 3]*inputShape.width;
float y_min_f = buffer[k*nCol + 4]*inputShape.height;
CV_CheckLT(x_min, x_max, "");
CV_CheckLT(y_min, y_max, "");
float x_max_f = buffer[k*nCol + 5]*inputShape.width;
float y_max_f = buffer[k*nCol + 6]*inputShape.height;
x_min = std::max(0.f, x_min);
y_min = std::max(0.f, y_min);
int x_min = cvRound(std::max(0.f, x_min_f));
int y_min = cvRound(std::max(0.f, y_min_f));
x_max = std::min(inputShape.width - 1.f, x_max);
y_max = std::min(inputShape.height - 1.f, y_max);
int x_max = std::min(inputShape.width - 1, cvRound(x_max_f));
int y_max = std::min(inputShape.height - 1, cvRound(y_max_f));
int wd = cvRound(x_max - x_min);
int ht = cvRound(y_max - y_min);
if (x_min >= x_max) continue;
if (y_min >= y_max) continue;
Bbox.push_back(Rect(cvRound(x_min), cvRound(y_min), wd, ht));
confidence.push_back(buffer[k*nCol + 2]);
int wd = x_max - x_min;
int ht = y_max - y_min;
Bbox.push_back(Rect(x_min, y_min, wd, ht));
confidence.push_back(confidence_);
}
}
......
......@@ -107,6 +107,8 @@
#include <stdarg.h>
#include <opencv2/core/hal/hal.hpp>
#include <opencv2/core/utils/tls.hpp>
namespace cv
{
namespace xfeatures2d
......@@ -709,7 +711,7 @@ void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const
const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
keypoints.clear();
TLSData<std::vector<KeyPoint> > tls_kpts_struct;
TLSDataAccumulator<std::vector<KeyPoint> > tls_kpts_struct;
for( int o = 0; o < nOctaves; o++ )
for( int i = 1; i <= nOctaveLayers; i++ )
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment