Commit 7d443669 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #1146 from saskatchewancatch:i1138

parents b74c25da 3ec8e0ac
......@@ -222,3 +222,40 @@
pages={191--196},
year={1997}
}
@book{Niblack1985,
title={An introduction to digital image processing},
author={Niblack, Wayne},
year={1985},
publisher={Strandberg Publishing Company}
}
@inproceedings{Sauvola1997,
title={Adaptive document binarization},
author={Sauvola, Jaakko and Seppanen, Tapio and Haapakoski, Sami and Pietikainen, Matti},
booktitle={Document Analysis and Recognition, 1997., Proceedings of the Fourth International Conference on},
volume={1},
pages={147--152},
year={1997},
organization={IEEE}
}
@article{Wolf2004,
title={Extraction and recognition of artificial text in multimedia documents},
author={Wolf, Christian and Jolion, J-M},
journal={Pattern Analysis \& Applications},
volume={6},
number={4},
pages={309--326},
year={2004},
publisher={Springer}
}
@inproceedings{Khurshid2009,
title={Comparison of Niblack inspired Binarization methods for ancient documents},
author={Khurshid, Khurram and Siddiqi, Imran and Faure, Claudie and Vincent, Nicole},
booktitle={IS\&T/SPIE Electronic Imaging},
pages={72470U--72470U},
year={2009},
organization={International Society for Optics and Photonics}
}
......@@ -79,10 +79,21 @@ enum ThinningTypes{
THINNING_GUOHALL = 1 // Thinning technique of Guo-Hall
};
/**
* @brief Specifies the binarization method to use in cv::ximgproc::niBlackThreshold
*/
enum LocalBinarizationMethods{
BINARIZATION_NIBLACK = 0, //!< Classic Niblack binarization. See @cite Niblack1985 .
BINARIZATION_SAUVOLA = 1, //!< Sauvola's technique. See @cite Sauvola1997 .
BINARIZATION_WOLF = 2, //!< Wolf's technique. See @cite Wolf2004 .
BINARIZATION_NICK = 3 //!< NICK technique. See @cite Khurshid2009 .
};
//! @addtogroup ximgproc
//! @{
/** @brief Applies Niblack thresholding to input image.
/** @brief Performs thresholding on input images using Niblack's technique or some of the
popular variations it inspired.
The function transforms a grayscale image to a binary image according to the formulae:
- **THRESH_BINARY**
......@@ -91,8 +102,9 @@ The function transforms a grayscale image to a binary image according to the for
\f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel.
The threshold value \f$T(x, y)\f$ is the mean minus \f$ delta \f$ times standard deviation
of \f$\texttt{blockSize} \times\texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$.
The threshold value \f$T(x, y)\f$ is determined based on the binarization method chosen. For
classic Niblack, it is the mean minus \f$ k \f$ times standard deviation of
\f$\texttt{blockSize} \times\texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$.
The function can't process the image in-place.
......@@ -103,14 +115,17 @@ used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
@param type Thresholding type, see cv::ThresholdTypes.
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
for the pixel: 3, 5, 7, and so on.
@param delta Constant multiplied with the standard deviation and subtracted from the mean.
Normally, it is taken to be a real number between 0 and 1.
@param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
the mean.
@param binarizationMethod Binarization method to use. By default, Niblack's technique is used.
Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
@sa threshold, adaptiveThreshold
*/
CV_EXPORTS_W void niBlackThreshold( InputArray _src, OutputArray _dst,
double maxValue, int type,
int blockSize, double delta );
int blockSize, double k, int binarizationMethod = BINARIZATION_NIBLACK );
/** @brief Applies a binary blob thinning operation, to achieve a skeletization of the input image.
......
......@@ -16,6 +16,7 @@ Mat_<uchar> src;
int k_ = 8;
int blockSize_ = 11;
int type_ = THRESH_BINARY;
int method_ = BINARIZATION_NIBLACK;
void on_trackbar(int, void*);
......@@ -34,6 +35,7 @@ int main(int argc, char** argv)
namedWindow("Niblack", WINDOW_AUTOSIZE);
createTrackbar("k", "Niblack", &k_, 20, on_trackbar);
createTrackbar("blockSize", "Niblack", &blockSize_, 30, on_trackbar);
createTrackbar("method", "Niblack", &method_, 3, on_trackbar);
createTrackbar("threshType", "Niblack", &type_, 4, on_trackbar);
on_trackbar(0, 0);
waitKey(0);
......@@ -47,7 +49,8 @@ void on_trackbar(int, void*)
int blockSize = 2*(blockSize_ >= 1 ? blockSize_ : 1) + 1; // 3,5,7,...,61
int type = type_; // THRESH_BINARY, THRESH_BINARY_INV,
// THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV
int method = method_; //BINARIZATION_NIBLACK, BINARIZATION_SAUVOLA, BINARIZATION_WOLF, BINARIZATION_NICK
Mat dst;
niBlackThreshold(src, dst, 255, type, blockSize, k);
niBlackThreshold(src, dst, 255, type, blockSize, k, method);
imshow("Niblack", dst);
}
......@@ -47,12 +47,15 @@ namespace cv {
namespace ximgproc {
void niBlackThreshold( InputArray _src, OutputArray _dst, double maxValue,
int type, int blockSize, double delta )
int type, int blockSize, double k, int binarizationMethod )
{
// Input grayscale image
Mat src = _src.getMat();
CV_Assert(src.channels() == 1);
CV_Assert(blockSize % 2 == 1 && blockSize > 1);
if (binarizationMethod == BINARIZATION_SAUVOLA) {
CV_Assert(src.depth() == CV_8U);
}
type &= THRESH_MASK;
// Compute local threshold (T = mean + k * stddev)
......@@ -61,13 +64,35 @@ void niBlackThreshold( InputArray _src, OutputArray _dst, double maxValue,
Mat thresh;
{
// note that: Var[X] = E[X^2] - E[X]^2
Mat mean, sqmean, stddev;
Mat mean, sqmean, variance, stddev, sqrtVarianceMeanSum;
double srcMin, stddevMax;
boxFilter(src, mean, CV_32F, Size(blockSize, blockSize),
Point(-1,-1), true, BORDER_REPLICATE);
sqrBoxFilter(src, sqmean, CV_32F, Size(blockSize, blockSize),
Point(-1,-1), true, BORDER_REPLICATE);
sqrt(sqmean - mean.mul(mean), stddev);
thresh = mean + stddev * static_cast<float>(delta);
variance = sqmean - mean.mul(mean);
sqrt(variance, stddev);
switch (binarizationMethod)
{
case BINARIZATION_NIBLACK:
thresh = mean + stddev * static_cast<float>(k);
break;
case BINARIZATION_SAUVOLA:
thresh = mean.mul(1. + static_cast<float>(k) * (stddev / 128.0 - 1.));
break;
case BINARIZATION_WOLF:
minMaxIdx(src, &srcMin);
minMaxIdx(stddev, NULL, &stddevMax);
thresh = mean - static_cast<float>(k) * (mean - srcMin - stddev.mul(mean - srcMin) / stddevMax);
break;
case BINARIZATION_NICK:
sqrt(variance + sqmean, sqrtVarianceMeanSum);
thresh = mean + static_cast<float>(k) * sqrtVarianceMeanSum;
break;
default:
CV_Error( CV_StsBadArg, "Unknown binarization method" );
break;
}
thresh.convertTo(thresh, src.depth());
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment