Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
7a18e788
Commit
7a18e788
authored
Jun 12, 2016
by
Vladislav Samsonov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Post-review fixes
parent
54e746be
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
104 additions
and
206 deletions
+104
-206
optflow.hpp
modules/optflow/include/opencv2/optflow.hpp
+0
-2
pcaflow.hpp
modules/optflow/include/opencv2/optflow/pcaflow.hpp
+23
-8
optical_flow_evaluation.cpp
modules/optflow/samples/optical_flow_evaluation.cpp
+1
-3
block_matching.cpp
modules/optflow/src/block_matching.cpp
+0
-143
learn_prior.py
modules/optflow/src/learn_prior.py
+76
-33
pcaflow.cpp
modules/optflow/src/pcaflow.cpp
+4
-17
No files found.
modules/optflow/include/opencv2/optflow.hpp
View file @
7a18e788
...
@@ -193,8 +193,6 @@ CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_Farneback();
...
@@ -193,8 +193,6 @@ CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_Farneback();
//! Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense()
//! Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense()
CV_EXPORTS_W
Ptr
<
DenseOpticalFlow
>
createOptFlow_SparseToDense
();
CV_EXPORTS_W
Ptr
<
DenseOpticalFlow
>
createOptFlow_SparseToDense
();
CV_EXPORTS_W
Ptr
<
DenseOpticalFlow
>
createOptFlow_BlockMatching
();
//! @}
//! @}
}
//optflow
}
//optflow
...
...
modules/optflow/include/opencv2/optflow/pcaflow.hpp
View file @
7a18e788
...
@@ -8,7 +8,7 @@ copy or use the software.
...
@@ -8,7 +8,7 @@ copy or use the software.
For Open Source Computer Vision Library
For Open Source Computer Vision Library
(3-clause BSD License)
(3-clause BSD License)
Copyright (C) 201
3
, OpenCV Foundation, all rights reserved.
Copyright (C) 201
6
, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
Redistribution and use in source and binary forms, with or without modification,
...
@@ -37,6 +37,19 @@ or tort (including negligence or otherwise) arising in any way out of
...
@@ -37,6 +37,19 @@ or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
the use of this software, even if advised of the possibility of such damage.
*/
*/
/*
Implementation of the PCAFlow algorithm from the following paper:
http://files.is.tue.mpg.de/black/papers/cvpr2015_pcaflow.pdf
@inproceedings{Wulff:CVPR:2015,
title = {Efficient Sparse-to-Dense Optical Flow Estimation using a Learned Basis and Layers},
author = {Wulff, Jonas and Black, Michael J.},
booktitle = { IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015},
month = jun,
year = {2015}
}
*/
#ifndef __OPENCV_OPTFLOW_PCAFLOW_HPP__
#ifndef __OPENCV_OPTFLOW_PCAFLOW_HPP__
#define __OPENCV_OPTFLOW_PCAFLOW_HPP__
#define __OPENCV_OPTFLOW_PCAFLOW_HPP__
...
@@ -47,10 +60,13 @@ namespace cv
...
@@ -47,10 +60,13 @@ namespace cv
{
{
namespace
optflow
namespace
optflow
{
{
namespace
pcaflow
{
class
Prior
/*
* This class can be used for imposing a learned prior on the resulting optical flow.
* Solution will be regularized according to this prior.
* You need to generate appropriate prior file with "learn_prior.py" script beforehand.
*/
class
PCAPrior
{
{
private
:
private
:
Mat
L1
;
Mat
L1
;
...
@@ -59,7 +75,7 @@ private:
...
@@ -59,7 +75,7 @@ private:
Mat
c2
;
Mat
c2
;
public
:
public
:
Prior
(
const
char
*
pathToPrior
);
P
CAP
rior
(
const
char
*
pathToPrior
);
int
getPadding
()
const
{
return
L1
.
size
().
height
;
}
int
getPadding
()
const
{
return
L1
.
size
().
height
;
}
...
@@ -67,12 +83,11 @@ public:
...
@@ -67,12 +83,11 @@ public:
void
fillConstraints
(
float
*
A1
,
float
*
A2
,
float
*
b1
,
float
*
b2
)
const
;
void
fillConstraints
(
float
*
A1
,
float
*
A2
,
float
*
b1
,
float
*
b2
)
const
;
};
};
}
class
OpticalFlowPCAFlow
:
public
DenseOpticalFlow
class
OpticalFlowPCAFlow
:
public
DenseOpticalFlow
{
{
protected
:
protected
:
const
pcaflow
::
Prior
*
prior
;
const
PCA
Prior
*
prior
;
const
Size
basisSize
;
const
Size
basisSize
;
const
float
sparseRate
;
// (0 .. 0.1)
const
float
sparseRate
;
// (0 .. 0.1)
const
float
retainedCornersFraction
;
// [0 .. 1]
const
float
retainedCornersFraction
;
// [0 .. 1]
...
@@ -80,7 +95,7 @@ protected:
...
@@ -80,7 +95,7 @@ protected:
const
float
dampingFactor
;
const
float
dampingFactor
;
public
:
public
:
OpticalFlowPCAFlow
(
const
pcaflow
::
Prior
*
_prior
=
0
,
const
Size
_basisSize
=
Size
(
18
,
14
),
OpticalFlowPCAFlow
(
const
PCA
Prior
*
_prior
=
0
,
const
Size
_basisSize
=
Size
(
18
,
14
),
float
_sparseRate
=
0.02
,
float
_retainedCornersFraction
=
0.7
,
float
_sparseRate
=
0.02
,
float
_retainedCornersFraction
=
0.7
,
float
_occlusionsThreshold
=
0.0003
,
float
_dampingFactor
=
0.00002
);
float
_occlusionsThreshold
=
0.0003
,
float
_dampingFactor
=
0.00002
);
...
...
modules/optflow/samples/optical_flow_evaluation.cpp
View file @
7a18e788
...
@@ -12,7 +12,7 @@ using namespace optflow;
...
@@ -12,7 +12,7 @@ using namespace optflow;
const
String
keys
=
"{help h usage ? | | print this message }"
const
String
keys
=
"{help h usage ? | | print this message }"
"{@image1 | | image1 }"
"{@image1 | | image1 }"
"{@image2 | | image2 }"
"{@image2 | | image2 }"
"{@algorithm | | [farneback, simpleflow, tvl1, deepflow, pcaflow
, blockmatching
or sparsetodenseflow] }"
"{@algorithm | | [farneback, simpleflow, tvl1, deepflow, pcaflow or sparsetodenseflow] }"
"{@groundtruth | | path to the .flo file (optional), Middlebury format }"
"{@groundtruth | | path to the .flo file (optional), Middlebury format }"
"{m measure |endpoint| error measure - [endpoint or angular] }"
"{m measure |endpoint| error measure - [endpoint or angular] }"
"{r region |all | region to compute stats about [all, discontinuities, untextured] }"
"{r region |all | region to compute stats about [all, discontinuities, untextured] }"
...
@@ -258,8 +258,6 @@ int main( int argc, char** argv )
...
@@ -258,8 +258,6 @@ int main( int argc, char** argv )
algorithm
=
createOptFlow_DeepFlow
();
algorithm
=
createOptFlow_DeepFlow
();
else
if
(
method
==
"sparsetodenseflow"
)
else
if
(
method
==
"sparsetodenseflow"
)
algorithm
=
createOptFlow_SparseToDense
();
algorithm
=
createOptFlow_SparseToDense
();
else
if
(
method
==
"blockmatching"
)
algorithm
=
createOptFlow_BlockMatching
();
else
if
(
method
==
"pcaflow"
)
else
if
(
method
==
"pcaflow"
)
algorithm
=
createOptFlow_PCAFlow
();
algorithm
=
createOptFlow_PCAFlow
();
else
else
...
...
modules/optflow/src/block_matching.cpp
deleted
100644 → 0
View file @
54e746be
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace
cv
{
namespace
optflow
{
class
OpticalFlowBlockMatching
:
public
DenseOpticalFlow
{
protected
:
int
windowSize
;
int
blockSize
;
inline
float
submatrixAbsDiff
(
int
x0
,
int
y0
,
const
Mat
&
I0
,
int
x1
,
int
y1
,
const
Mat
&
I1
)
const
;
public
:
OpticalFlowBlockMatching
()
:
windowSize
(
3
),
blockSize
(
8
){};
void
calc
(
InputArray
I0
,
InputArray
I1
,
InputOutputArray
flow
);
void
collectGarbage
();
};
inline
float
OpticalFlowBlockMatching
::
submatrixAbsDiff
(
int
x0
,
int
y0
,
const
Mat
&
I0
,
int
x1
,
int
y1
,
const
Mat
&
I1
)
const
{
float
error
=
0
;
const
Size
size
=
I0
.
size
();
for
(
int
i
=
-
windowSize
;
i
<=
windowSize
;
++
i
)
{
if
(
i
+
y0
<
0
||
i
+
y0
>=
size
.
height
||
i
+
y1
<
0
||
i
+
y1
>=
size
.
height
)
{
error
+=
1
;
continue
;
}
const
Vec3f
*
I0X
=
I0
.
ptr
<
Vec3f
>
(
i
+
y0
);
const
Vec3f
*
I1X
=
I1
.
ptr
<
Vec3f
>
(
i
+
y1
);
for
(
int
j
=
-
windowSize
;
j
<=
windowSize
;
++
j
)
{
if
(
j
+
x0
<
0
||
j
+
x0
>=
size
.
width
||
j
+
x1
<
0
||
j
+
x1
>=
size
.
width
)
{
error
+=
1
;
continue
;
}
const
Vec3f
diff
=
I0X
[
j
+
x0
]
-
I1X
[
j
+
x1
];
error
+=
abs
(
diff
[
0
]
);
error
+=
abs
(
diff
[
1
]
);
error
+=
abs
(
diff
[
2
]
);
}
}
return
error
;
}
void
OpticalFlowBlockMatching
::
calc
(
InputArray
I0
,
InputArray
I1
,
InputOutputArray
flow_out
)
{
CV_Assert
(
I0
.
channels
()
==
3
);
CV_Assert
(
I1
.
channels
()
==
3
);
Size
size
=
I0
.
size
();
CV_Assert
(
size
==
I1
.
size
()
);
flow_out
.
create
(
size
,
CV_32FC2
);
Mat
flow
=
flow_out
.
getMat
();
Mat
from
=
I0
.
getMat
();
Mat
to
=
I1
.
getMat
();
from
.
convertTo
(
from
,
CV_32FC3
,
1.0
/
255.0
);
to
.
convertTo
(
to
,
CV_32FC3
,
1.0
/
255.0
);
const
float
distNormalize
=
blockSize
*
sqrt
(
2
);
for
(
int
y0
=
0
;
y0
<
size
.
height
;
++
y0
)
{
Vec2f
*
flowX
=
flow
.
ptr
<
Vec2f
>
(
y0
);
const
int
yEnd
=
std
::
min
(
size
.
height
-
1
,
y0
+
blockSize
);
for
(
int
x0
=
0
;
x0
<
size
.
width
;
++
x0
)
{
float
minDiff
=
1e10
;
Vec2f
du
(
0
,
0
);
const
int
xEnd
=
std
::
min
(
size
.
width
-
1
,
x0
+
blockSize
);
for
(
int
y1
=
std
::
max
(
0
,
y0
-
blockSize
);
y1
<=
yEnd
;
++
y1
)
for
(
int
x1
=
std
::
max
(
0
,
x0
-
blockSize
);
x1
<=
xEnd
;
++
x1
)
{
const
float
distance
=
sqrt
(
(
x0
-
x1
)
*
(
x0
-
x1
)
+
(
y0
-
y1
)
*
(
y0
-
y1
)
)
/
distNormalize
;
const
float
kernel
=
1.0
+
0.5
*
distance
;
const
float
diff
=
kernel
*
submatrixAbsDiff
(
x0
,
y0
,
from
,
x1
,
y1
,
to
);
if
(
diff
<
minDiff
)
{
minDiff
=
diff
;
du
=
Vec2f
(
(
x1
-
x0
),
(
y1
-
y0
)
);
}
}
flowX
[
x0
]
=
du
;
}
}
}
void
OpticalFlowBlockMatching
::
collectGarbage
()
{}
Ptr
<
DenseOpticalFlow
>
createOptFlow_BlockMatching
()
{
return
makePtr
<
OpticalFlowBlockMatching
>
();
}
}
}
modules/optflow/src/learn_prior.py
View file @
7a18e788
import
os
,
sys
#!/usr/bin/env python
import
os
import
sys
import
numpy
as
np
import
numpy
as
np
import
cv2
import
cv2
import
struct
import
struct
import
argparse
from
math
import
sqrt
from
math
import
sqrt
basis_size
=
(
14
,
18
)
argparser
=
argparse
.
ArgumentParser
(
lambd
=
0.2
description
=
'''Use this script to generate prior for using with PCAFlow.
Basis size here must match corresponding parameter in the PCAFlow.
Gamma should be selected experimentally.'''
)
argparser
.
add_argument
(
'-f'
,
'--files'
,
nargs
=
'+'
,
help
=
'List of optical flow .flo files for learning'
,
required
=
True
)
argparser
.
add_argument
(
'-o'
,
'--output'
,
help
=
'Output file for prior'
,
required
=
True
)
argparser
.
add_argument
(
'--width'
,
type
=
int
,
help
=
'Size of the basis first dimension'
,
required
=
True
,
default
=
18
)
argparser
.
add_argument
(
'--height'
,
type
=
int
,
help
=
'Size of the basis second dimension'
,
required
=
True
,
default
=
14
)
argparser
.
add_argument
(
'-g'
,
'--gamma'
,
type
=
float
,
help
=
'Amount of regularization. The greater this parameter, the bigger will be an impact of the regularization.'
,
required
=
True
)
args
=
argparser
.
parse_args
()
basis_size
=
(
args
.
height
,
args
.
width
)
gamma
=
args
.
gamma
def
find_flo
(
pp
):
def
find_flo
(
pp
):
f
=
[]
f
=
[]
...
@@ -14,38 +51,42 @@ def find_flo(pp):
...
@@ -14,38 +51,42 @@ def find_flo(pp):
f
.
append
(
p
)
f
.
append
(
p
)
else
:
else
:
for
root
,
subdirs
,
files
in
os
.
walk
(
p
):
for
root
,
subdirs
,
files
in
os
.
walk
(
p
):
f
+=
map
(
lambda
x
:
os
.
path
.
join
(
root
,
x
),
filter
(
lambda
x
:
x
.
split
(
'.'
)[
-
1
]
==
'flo'
,
files
))
f
+=
map
(
lambda
x
:
os
.
path
.
join
(
root
,
x
),
filter
(
lambda
x
:
x
.
split
(
'.'
)[
-
1
]
==
'flo'
,
files
))
return
list
(
set
(
f
))
return
list
(
set
(
f
))
def
load_flo
(
flo
):
def
load_flo
(
flo
):
with
open
(
flo
)
as
f
:
with
open
(
flo
)
as
f
:
magic
=
np
.
fromfile
(
f
,
np
.
float32
,
count
=
1
)
magic
=
np
.
fromfile
(
f
,
np
.
float32
,
count
=
1
)[
0
]
if
202021.25
!=
magic
:
if
202021.25
!=
magic
:
print
(
'Magic number incorrect. Invalid .flo file'
)
print
(
'Magic number incorrect. Invalid .flo file'
)
else
:
else
:
w
=
np
.
fromfile
(
f
,
np
.
int32
,
count
=
1
)
w
=
np
.
fromfile
(
f
,
np
.
int32
,
count
=
1
)[
0
]
h
=
np
.
fromfile
(
f
,
np
.
int32
,
count
=
1
)
h
=
np
.
fromfile
(
f
,
np
.
int32
,
count
=
1
)[
0
]
print
(
'Reading
%
dx
%
d flo file
%
s'
%
(
w
,
h
,
flo
))
print
(
'Reading
%
dx
%
d flo file
%
s'
%
(
w
,
h
,
flo
))
data
=
np
.
fromfile
(
f
,
np
.
float32
,
count
=
2
*
w
*
h
)
data
=
np
.
fromfile
(
f
,
np
.
float32
,
count
=
2
*
w
*
h
)
# Reshape data into 3D array (columns, rows, bands)
# Reshape data into 3D array (columns, rows, bands)
flow
=
np
.
resize
(
data
,
(
h
,
w
,
2
))
flow
=
np
.
reshape
(
data
,
(
h
,
w
,
2
))
return
flow
[:,:,
0
],
flow
[:,:,
1
]
return
flow
[:,
:,
0
],
flow
[:,
:,
1
]
def
get_w
(
m
):
def
get_w
(
m
):
s
=
m
.
shape
s
=
m
.
shape
w
=
cv2
.
dct
(
m
)
w
=
cv2
.
dct
(
m
)
w
*=
2.0
/
sqrt
(
s
[
0
]
*
s
[
1
])
w
*=
2.0
/
sqrt
(
s
[
0
]
*
s
[
1
])
#w[0,0] *= 0.5
#w[0,0] *= 0.5
w
[:,
0
]
*=
sqrt
(
0.5
)
w
[:,
0
]
*=
sqrt
(
0.5
)
w
[
0
,
:]
*=
sqrt
(
0.5
)
w
[
0
,
:]
*=
sqrt
(
0.5
)
w
=
w
[
0
:
basis_size
[
0
],
0
:
basis_size
[
1
]]
.
transpose
()
.
flatten
()
w
=
w
[
0
:
basis_size
[
0
],
0
:
basis_size
[
1
]]
.
transpose
()
.
flatten
()
return
w
return
w
w1
=
[]
w1
=
[]
w2
=
[]
w2
=
[]
for
flo
in
find_flo
(
sys
.
argv
[
1
:]
):
for
flo
in
find_flo
(
args
.
files
):
x
,
y
=
load_flo
(
flo
)
x
,
y
=
load_flo
(
flo
)
w1
.
append
(
get_w
(
x
))
w1
.
append
(
get_w
(
x
))
w2
.
append
(
get_w
(
y
))
w2
.
append
(
get_w
(
y
))
...
@@ -57,8 +98,10 @@ for i in xrange(len(w1)):
...
@@ -57,8 +98,10 @@ for i in xrange(len(w1)):
for
i
in
xrange
(
len
(
w2
)):
for
i
in
xrange
(
len
(
w2
)):
w2
[
i
]
-=
w2mean
w2
[
i
]
-=
w2mean
Q1
=
sum
([
w1
[
i
]
.
reshape
(
-
1
,
1
)
.
dot
(
w1
[
i
]
.
reshape
(
1
,
-
1
))
for
i
in
xrange
(
len
(
w1
))])
/
len
(
w1
)
Q1
=
sum
([
w1
[
i
]
.
reshape
(
-
1
,
1
)
.
dot
(
w1
[
i
]
.
reshape
(
1
,
-
1
))
Q2
=
sum
([
w2
[
i
]
.
reshape
(
-
1
,
1
)
.
dot
(
w2
[
i
]
.
reshape
(
1
,
-
1
))
for
i
in
xrange
(
len
(
w2
))])
/
len
(
w2
)
for
i
in
xrange
(
len
(
w1
))])
/
len
(
w1
)
Q2
=
sum
([
w2
[
i
]
.
reshape
(
-
1
,
1
)
.
dot
(
w2
[
i
]
.
reshape
(
1
,
-
1
))
for
i
in
xrange
(
len
(
w2
))])
/
len
(
w2
)
Q1
=
np
.
matrix
(
Q1
)
Q1
=
np
.
matrix
(
Q1
)
Q2
=
np
.
matrix
(
Q2
)
Q2
=
np
.
matrix
(
Q2
)
...
@@ -69,11 +112,11 @@ if len(w1) > 1:
...
@@ -69,11 +112,11 @@ if len(w1) > 1:
break
break
except
np
.
linalg
.
linalg
.
LinAlgError
:
except
np
.
linalg
.
linalg
.
LinAlgError
:
mev
=
min
(
np
.
linalg
.
eig
(
Q1
)[
0
])
.
real
mev
=
min
(
np
.
linalg
.
eig
(
Q1
)[
0
])
.
real
assert
(
mev
<
0
)
assert
(
mev
<
0
)
print
(
'Q1'
,
mev
)
print
(
'Q1'
,
mev
)
if
-
mev
<
1e-6
:
if
-
mev
<
1e-6
:
mev
=
-
1e-6
mev
=
-
1e-6
Q1
+=
(
-
mev
*
1.000001
)
*
np
.
identity
(
Q1
.
shape
[
0
])
Q1
+=
(
-
mev
*
1.000001
)
*
np
.
identity
(
Q1
.
shape
[
0
])
while
True
:
while
True
:
try
:
try
:
...
@@ -81,43 +124,43 @@ if len(w1) > 1:
...
@@ -81,43 +124,43 @@ if len(w1) > 1:
break
break
except
np
.
linalg
.
linalg
.
LinAlgError
:
except
np
.
linalg
.
linalg
.
LinAlgError
:
mev
=
min
(
np
.
linalg
.
eig
(
Q2
)[
0
])
.
real
mev
=
min
(
np
.
linalg
.
eig
(
Q2
)[
0
])
.
real
assert
(
mev
<
0
)
assert
(
mev
<
0
)
print
(
'Q2'
,
mev
)
print
(
'Q2'
,
mev
)
if
-
mev
<
1e-6
:
if
-
mev
<
1e-6
:
mev
=
-
1e-6
mev
=
-
1e-6
Q2
+=
(
-
mev
*
1.000001
)
*
np
.
identity
(
Q2
.
shape
[
0
])
Q2
+=
(
-
mev
*
1.000001
)
*
np
.
identity
(
Q2
.
shape
[
0
])
else
:
else
:
L1
=
np
.
identity
(
Q1
.
shape
[
0
])
L1
=
np
.
identity
(
Q1
.
shape
[
0
])
L2
=
np
.
identity
(
Q2
.
shape
[
0
])
L2
=
np
.
identity
(
Q2
.
shape
[
0
])
L1
=
np
.
linalg
.
inv
(
L1
)
*
lambd
L1
=
np
.
linalg
.
inv
(
L1
)
*
gamma
L2
=
np
.
linalg
.
inv
(
L2
)
*
lambd
L2
=
np
.
linalg
.
inv
(
L2
)
*
gamma
assert
(
L1
.
shape
==
L2
.
shape
)
assert
(
L1
.
shape
==
L2
.
shape
)
assert
(
L1
.
shape
[
0
]
==
L1
.
shape
[
1
])
assert
(
L1
.
shape
[
0
]
==
L1
.
shape
[
1
])
f
=
open
(
'cov.dat'
,
'wb'
)
f
=
open
(
args
.
output
,
'wb'
)
f
.
write
(
struct
.
pack
(
'I'
,
L1
.
shape
[
0
]))
f
.
write
(
struct
.
pack
(
'I'
,
L1
.
shape
[
0
]))
f
.
write
(
struct
.
pack
(
'I'
,
L1
.
shape
[
1
]))
f
.
write
(
struct
.
pack
(
'I'
,
L1
.
shape
[
1
]))
for
i
in
xrange
(
L1
.
shape
[
0
]):
for
i
in
xrange
(
L1
.
shape
[
0
]):
for
j
in
xrange
(
L1
.
shape
[
1
]):
for
j
in
xrange
(
L1
.
shape
[
1
]):
f
.
write
(
struct
.
pack
(
'f'
,
L1
[
i
,
j
]))
f
.
write
(
struct
.
pack
(
'f'
,
L1
[
i
,
j
]))
for
i
in
xrange
(
L2
.
shape
[
0
]):
for
i
in
xrange
(
L2
.
shape
[
0
]):
for
j
in
xrange
(
L2
.
shape
[
1
]):
for
j
in
xrange
(
L2
.
shape
[
1
]):
f
.
write
(
struct
.
pack
(
'f'
,
L2
[
i
,
j
]))
f
.
write
(
struct
.
pack
(
'f'
,
L2
[
i
,
j
]))
b1
=
L1
.
dot
(
w1mean
.
reshape
(
-
1
,
1
))
b1
=
L1
.
dot
(
w1mean
.
reshape
(
-
1
,
1
))
b2
=
L2
.
dot
(
w2mean
.
reshape
(
-
1
,
1
))
b2
=
L2
.
dot
(
w2mean
.
reshape
(
-
1
,
1
))
assert
(
L1
.
shape
[
0
]
==
b1
.
shape
[
0
])
assert
(
L1
.
shape
[
0
]
==
b1
.
shape
[
0
])
for
i
in
xrange
(
b1
.
shape
[
0
]):
for
i
in
xrange
(
b1
.
shape
[
0
]):
f
.
write
(
struct
.
pack
(
'f'
,
b1
[
i
,
0
]))
f
.
write
(
struct
.
pack
(
'f'
,
b1
[
i
,
0
]))
for
i
in
xrange
(
b2
.
shape
[
0
]):
for
i
in
xrange
(
b2
.
shape
[
0
]):
f
.
write
(
struct
.
pack
(
'f'
,
b2
[
i
,
0
]))
f
.
write
(
struct
.
pack
(
'f'
,
b2
[
i
,
0
]))
f
.
close
()
f
.
close
()
modules/optflow/src/pcaflow.cpp
View file @
7a18e788
...
@@ -48,7 +48,7 @@ namespace cv
...
@@ -48,7 +48,7 @@ namespace cv
namespace
optflow
namespace
optflow
{
{
OpticalFlowPCAFlow
::
OpticalFlowPCAFlow
(
const
pcaflow
::
Prior
*
_prior
,
const
Size
_basisSize
,
float
_sparseRate
,
OpticalFlowPCAFlow
::
OpticalFlowPCAFlow
(
const
PCA
Prior
*
_prior
,
const
Size
_basisSize
,
float
_sparseRate
,
float
_retainedCornersFraction
,
float
_occlusionsThreshold
,
float
_retainedCornersFraction
,
float
_occlusionsThreshold
,
float
_dampingFactor
)
float
_dampingFactor
)
:
prior
(
_prior
),
basisSize
(
_basisSize
),
sparseRate
(
_sparseRate
),
:
prior
(
_prior
),
basisSize
(
_basisSize
),
sparseRate
(
_sparseRate
),
...
@@ -60,15 +60,6 @@ OpticalFlowPCAFlow::OpticalFlowPCAFlow( const pcaflow::Prior *_prior, const Size
...
@@ -60,15 +60,6 @@ OpticalFlowPCAFlow::OpticalFlowPCAFlow( const pcaflow::Prior *_prior, const Size
CV_Assert
(
occlusionsThreshold
>
0
);
CV_Assert
(
occlusionsThreshold
>
0
);
}
}
inline
float
eDistSq
(
const
Point2f
&
p1
,
const
Point2f
&
p2
)
{
const
float
dx
=
p1
.
x
-
p2
.
x
;
const
float
dy
=
p1
.
y
-
p2
.
y
;
return
dx
*
dx
+
dy
*
dy
;
}
inline
float
eNormSq
(
const
Point2f
&
v
)
{
return
v
.
x
*
v
.
x
+
v
.
y
*
v
.
y
;
}
template
<
typename
T
>
static
inline
int
mathSign
(
T
val
)
{
return
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
)
);
}
template
<
typename
T
>
static
inline
int
mathSign
(
T
val
)
{
return
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
)
);
}
static
inline
void
symOrtho
(
double
a
,
double
b
,
double
&
c
,
double
&
s
,
double
&
r
)
static
inline
void
symOrtho
(
double
a
,
double
b
,
double
&
c
,
double
&
s
,
double
&
r
)
...
@@ -224,7 +215,7 @@ void OpticalFlowPCAFlow::removeOcclusions( UMat &from, UMat &to, std::vector<Poi
...
@@ -224,7 +215,7 @@ void OpticalFlowPCAFlow::removeOcclusions( UMat &from, UMat &to, std::vector<Poi
if
(
predictedStatus
[
i
]
)
if
(
predictedStatus
[
i
]
)
{
{
Point2f
flowDiff
=
features
[
i
]
-
backwardFeatures
[
i
];
Point2f
flowDiff
=
features
[
i
]
-
backwardFeatures
[
i
];
if
(
eNormSq
(
flowDiff
)
<=
threshold
)
if
(
flowDiff
.
dot
(
flowDiff
)
<=
threshold
)
{
{
features
[
j
]
=
features
[
i
];
features
[
j
]
=
features
[
i
];
predictedFeatures
[
j
]
=
predictedFeatures
[
i
];
predictedFeatures
[
j
]
=
predictedFeatures
[
i
];
...
@@ -462,10 +453,7 @@ void OpticalFlowPCAFlow::collectGarbage() {}
...
@@ -462,10 +453,7 @@ void OpticalFlowPCAFlow::collectGarbage() {}
Ptr
<
DenseOpticalFlow
>
createOptFlow_PCAFlow
()
{
return
makePtr
<
OpticalFlowPCAFlow
>
();
}
Ptr
<
DenseOpticalFlow
>
createOptFlow_PCAFlow
()
{
return
makePtr
<
OpticalFlowPCAFlow
>
();
}
namespace
pcaflow
PCAPrior
::
PCAPrior
(
const
char
*
pathToPrior
)
{
Prior
::
Prior
(
const
char
*
pathToPrior
)
{
{
FILE
*
f
=
fopen
(
pathToPrior
,
"r"
);
FILE
*
f
=
fopen
(
pathToPrior
,
"r"
);
CV_Assert
(
f
);
CV_Assert
(
f
);
...
@@ -487,7 +475,7 @@ Prior::Prior( const char *pathToPrior )
...
@@ -487,7 +475,7 @@ Prior::Prior( const char *pathToPrior )
fclose
(
f
);
fclose
(
f
);
}
}
void
Prior
::
fillConstraints
(
float
*
A1
,
float
*
A2
,
float
*
b1
,
float
*
b2
)
const
void
P
CAP
rior
::
fillConstraints
(
float
*
A1
,
float
*
A2
,
float
*
b1
,
float
*
b2
)
const
{
{
memcpy
(
A1
,
L1
.
ptr
<
float
>
(),
L1
.
size
().
area
()
*
sizeof
(
float
)
);
memcpy
(
A1
,
L1
.
ptr
<
float
>
(),
L1
.
size
().
area
()
*
sizeof
(
float
)
);
memcpy
(
A2
,
L2
.
ptr
<
float
>
(),
L2
.
size
().
area
()
*
sizeof
(
float
)
);
memcpy
(
A2
,
L2
.
ptr
<
float
>
(),
L2
.
size
().
area
()
*
sizeof
(
float
)
);
...
@@ -496,4 +484,3 @@ void Prior::fillConstraints( float *A1, float *A2, float *b1, float *b2 ) const
...
@@ -496,4 +484,3 @@ void Prior::fillConstraints( float *A1, float *A2, float *b1, float *b2 ) const
}
}
}
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment