Commit 74f48e80 authored by Zhou Chao's avatar Zhou Chao

Add L0 smoothing

parent 1c0cb8b5
......@@ -77,3 +77,14 @@
year={2008},
organization={ACM}
}
@inproceedings{xu2011image,
title={Image smoothing via L 0 gradient minimization},
author={Xu, Li and Lu, Cewu and Xu, Yi and Jia, Jiaya},
booktitle={ACM Transactions on Graphics (TOG)},
volume={30},
number={6},
pages={174},
year={2011},
organization={ACM}
}
......@@ -378,6 +378,19 @@ it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
*/
CV_EXPORTS_W void fastGlobalSmootherFilter(InputArray guide, InputArray src, OutputArray dst, double lambda, double sigma_color, double lambda_attenuation=0.25, int num_iter=3);
/** @brief Global image smoothing via L0 gradient minimization.
@param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
@param dst destination image.
@param lambda parameter defining the smooth term weight.
@param kappa parameter defining the increasing factor of the weight of the gradient data term.
For more details about L0 Smoother, see the original paper @cite xu2011image.
*/
CV_EXPORTS_W void l0Smooth(InputArray src, OutputArray dst, double lambda = 0.02, double kappa = 2.0);
//! @}
}
}
......
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::ximgproc;
typedef tuple<Size, MatType, int> L0SmoothTestParam;
typedef TestBaseWithParam<L0SmoothTestParam> L0SmoothTest;
PERF_TEST_P(L0SmoothTest, perf,
Combine(
SZ_TYPICAL,
Values(CV_8U, CV_16U, CV_32F, CV_64F),
Values(1, 3))
)
{
L0SmoothTestParam params = GetParam();
Size sz = get<0>(params);
int depth = get<1>(params);
int srcCn = get<2>(params);
Mat src(sz, CV_MAKE_TYPE(depth, srcCn));
Mat dst(sz, src.type());
cv::setNumThreads(cv::getNumberOfCPUs());
declare.in(src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs());
RNG rnd(sz.height + depth + srcCn);
double lambda = rnd.uniform(0.01, 0.05);
double kappa = rnd.uniform(1.0, 3.0);
TEST_CYCLE_N(1)
{
l0Smooth(src, dst, lambda, kappa);
}
SANITY_CHECK_NOTHING();
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
using namespace std;
namespace
{
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) {
Mat S = src.getMat();
Mat D = dst.getMat();
if(S.data == D.data){
S = S.clone();
}
D.create(S.size(), S.type());
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y));
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y));
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y));
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y));
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y));
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y));
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y));
Mat d3(D, Rect(0,0,shift_x, shift_y));
s0.copyTo(d0);
s1.copyTo(d1);
s2.copyTo(d2);
s3.copyTo(d3);
}
// dft after padding imaginary
void fft(InputArray src, OutputArray dst) {
Mat S = src.getMat();
Mat planes[] = { S, Mat::zeros(S.size(), S.type()) };
merge(planes, 2, dst);
// compute the result
dft(dst, dst);
}
void psf2otf(InputArray src, OutputArray dst, int height, int width){
Mat S = src.getMat();
Mat D = dst.getMat();
Mat padded;
if(S.data == D.data){
S = S.clone();
}
// add padding
copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols,
BORDER_CONSTANT, Scalar::all(0));
shift(padded, padded, width - S.cols / 2, height - S.rows / 2);
// convert to frequency domain
fft(padded, dst);
}
void dftMultiChannel(InputArray src, vector<Mat> &dst){
Mat S = src.getMat();
split(S, dst);
for(int i = 0; i < S.channels(); i++){
fft(dst[i], dst[i]);
}
}
void idftMultiChannel(const vector<Mat> &src, OutputArray dst){
Mat *channels = new Mat[src.size()];
for(int i = 0 ; unsigned(i) < src.size(); i++){
idft(src[i], channels[i]);
Mat realImg[2];
split(channels[i], realImg);
channels[i] = realImg[0] / src[i].cols / src[i].rows;
}
Mat D;
merge(channels, src.size(), D);
D.copyTo(dst);
delete[] channels;
}
void addComplex(InputArray aSrc, int bSrc, OutputArray dst){
Mat panels[2];
split(aSrc.getMat(), panels);
panels[0] = panels[0] + bSrc;
merge(panels, 2, dst);
}
void divComplexByReal(InputArray aSrc, InputArray bSrc, OutputArray dst){
Mat aPanels[2];
Mat bPanels[2];
split(aSrc.getMat(), aPanels);
split(bSrc.getMat(), bPanels);
Mat realPart;
Mat imaginaryPart;
divide(aPanels[0], bSrc.getMat(), realPart);
divide(aPanels[1], bSrc.getMat(), imaginaryPart);
aPanels[0] = realPart;
aPanels[1] = imaginaryPart;
Mat rst;
merge(aPanels, 2, dst);
}
void divComplexByRealMultiChannel(const vector<Mat> &numer,
const vector<Mat> &denom, vector<Mat> &dst)
{
for(int i = 0; unsigned(i) < numer.size(); i++)
{
divComplexByReal(numer[i], denom[i], dst[i]);
}
}
// power of 2 of the absolute value of the complex
Mat pow2absComplex(InputArray src){
Mat S = src.getMat();
Mat sPanels[2];
split(S, sPanels);
return sPanels[0].mul(sPanels[0]) + sPanels[1].mul(sPanels[1]);
}
}
namespace cv
{
namespace ximgproc
{
void l0Smooth(InputArray src, OutputArray dst, double lambda, double kappa)
{
Mat S = src.getMat();
CV_Assert(!S.empty());
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U
|| S.depth() == CV_32F || S.depth() == CV_64F);
dst.create(src.size(), src.type());
if(S.data == dst.getMat().data){
S = S.clone();
}
if(S.depth() == CV_8U)
{
S.convertTo(S, CV_32F, 1/255.0f);
}
else if(S.depth() == CV_16U)
{
S.convertTo(S, CV_32F, 1/65535.0f);
}else if(S.depth() == CV_64F){
S.convertTo(S, CV_32F);
}
const double betaMax = 100000;
// gradient operators in frequency domain
Mat otfFx, otfFy;
float kernel[2] = {-1, 1};
float kernel_inv[2] = {1,-1};
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols);
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols);
vector<Mat> denomConst;
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy);
for(int i = 0; i < S.channels(); i++){
denomConst.push_back(tmp);
}
// input image in frequency domain
vector<Mat> numerConst;
dftMultiChannel(S, numerConst);
/*********************************
* solver
*********************************/
double beta = 2 * lambda;
while(beta < betaMax){
// h, v subproblem
Mat h, v;
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0),
0, BORDER_REPLICATE);
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0),
0, BORDER_REPLICATE);
Mat hvMag = h.mul(h) + v.mul(v);
Mat mask;
if(S.channels() == 1)
{
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY);
}
else if(S.channels() > 1)
{
Mat *channels = new Mat[S.channels()];
split(hvMag, channels);
hvMag = channels[0];
for(int i = 1; i < S.channels(); i++){
hvMag = hvMag + channels[i];
}
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY);
Mat in[] = {mask, mask, mask};
merge(in, 3, mask);
delete[] channels;
}
h = h.mul(mask);
v = v.mul(mask);
// S subproblem
vector<Mat> denom(S.channels());
for(int i = 0; i < S.channels(); i++){
denom[i] = beta * denomConst[i] + 1;
}
Mat hGrad, vGrad;
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv));
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv));
vector<Mat> hvGradFreq;
dftMultiChannel(hGrad+vGrad, hvGradFreq);
vector<Mat> numer(S.channels());
for(int i = 0; i < S.channels(); i++){
numer[i] = numerConst[i] + hvGradFreq[i] * beta;
}
vector<Mat> sFreq(S.channels());
divComplexByRealMultiChannel(numer, denom, sFreq);
idftMultiChannel(sFreq, S);
beta = beta * kappa;
}
Mat D = dst.getMat();
if(D.depth() == CV_8U)
{
S.convertTo(D, CV_8U, 255);
}
else if(D.depth() == CV_16U)
{
S.convertTo(D, CV_16U, 65535);
}else if(D.depth() == CV_64F){
S.convertTo(D, CV_64F);
}else{
S.copyTo(D);
}
}
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16UC1, CV_16UC3);
typedef tuple<Size, SrcTypes> L0SmoothParams;
typedef TestWithParam<L0SmoothParams> L0SmoothTest;
TEST(L0SmoothTest, SplatSurfaceAccuracy)
{
RNG rnd(0);
for (int i = 0; i < 3; i++)
{
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
Scalar surfaceValue;
int srcCn = 3;
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
double lambda = rnd.uniform(0.01, 0.05);
double kappa = rnd.uniform(1.5, 5.0);
Mat res;
l0Smooth(src, res, lambda, kappa);
// When filtering a constant image we should get the same image:
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
EXPECT_LE(normL1, 1.0/64);
}
}
TEST_P(L0SmoothTest, MultiThreadReproducibility)
{
if (cv::getNumberOfCPUs() == 1)
return;
double MAX_DIF = 10.0;
double MAX_MEAN_DIF = 1.0 / 8.0;
int loopsCount = 2;
RNG rng(0);
L0SmoothParams params = GetParam();
Size size = get<0>(params);
int srcType = get<1>(params);
Mat src(size,srcType);
if(src.depth()==CV_8U)
randu(src, 0, 255);
else if(src.depth()==CV_16U)
randu(src, 0, 65535);
else
randu(src, -100000.0f, 100000.0f);
for (int iter = 0; iter <= loopsCount; iter++)
{
double lambda = rng.uniform(0.01, 0.05);
double kappa = rng.uniform(1.5, 5.0);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat resMultiThread;
l0Smooth(src, resMultiThread, lambda, kappa);
cv::setNumThreads(1);
Mat resSingleThread;
l0Smooth(src, resSingleThread, lambda, kappa);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels());
}
}
INSTANTIATE_TEST_CASE_P(FullSet, L0SmoothTest,Combine(Values(szODD, szQVGA), SrcTypes::all()));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment