Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
74f48e80
Commit
74f48e80
authored
Sep 16, 2015
by
Zhou Chao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add L0 smoothing
parent
1c0cb8b5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
533 additions
and
0 deletions
+533
-0
ximgproc.bib
modules/ximgproc/doc/ximgproc.bib
+11
-0
edge_filter.hpp
modules/ximgproc/include/opencv2/ximgproc/edge_filter.hpp
+13
-0
perf_l0_smooth.cpp
modules/ximgproc/perf/perf_l0_smooth.cpp
+81
-0
l0_smooth.cpp
modules/ximgproc/src/l0_smooth.cpp
+308
-0
test_l0_smooth.cpp
modules/ximgproc/test/test_l0_smooth.cpp
+120
-0
No files found.
modules/ximgproc/doc/ximgproc.bib
View file @
74f48e80
...
...
@@ -77,3 +77,14 @@
year={2008},
organization={ACM}
}
@inproceedings{xu2011image,
title={Image smoothing via L 0 gradient minimization},
author={Xu, Li and Lu, Cewu and Xu, Yi and Jia, Jiaya},
booktitle={ACM Transactions on Graphics (TOG)},
volume={30},
number={6},
pages={174},
year={2011},
organization={ACM}
}
modules/ximgproc/include/opencv2/ximgproc/edge_filter.hpp
View file @
74f48e80
...
...
@@ -378,6 +378,19 @@ it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
*/
CV_EXPORTS_W
void
fastGlobalSmootherFilter
(
InputArray
guide
,
InputArray
src
,
OutputArray
dst
,
double
lambda
,
double
sigma_color
,
double
lambda_attenuation
=
0.25
,
int
num_iter
=
3
);
/** @brief Global image smoothing via L0 gradient minimization.
@param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
@param dst destination image.
@param lambda parameter defining the smooth term weight.
@param kappa parameter defining the increasing factor of the weight of the gradient data term.
For more details about L0 Smoother, see the original paper @cite xu2011image.
*/
CV_EXPORTS_W
void
l0Smooth
(
InputArray
src
,
OutputArray
dst
,
double
lambda
=
0.02
,
double
kappa
=
2.0
);
//! @}
}
}
...
...
modules/ximgproc/perf/perf_l0_smooth.cpp
0 → 100644
View file @
74f48e80
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace
cvtest
{
using
std
::
tr1
::
tuple
;
using
std
::
tr1
::
get
;
using
namespace
perf
;
using
namespace
testing
;
using
namespace
cv
;
using
namespace
cv
::
ximgproc
;
typedef
tuple
<
Size
,
MatType
,
int
>
L0SmoothTestParam
;
typedef
TestBaseWithParam
<
L0SmoothTestParam
>
L0SmoothTest
;
PERF_TEST_P
(
L0SmoothTest
,
perf
,
Combine
(
SZ_TYPICAL
,
Values
(
CV_8U
,
CV_16U
,
CV_32F
,
CV_64F
),
Values
(
1
,
3
))
)
{
L0SmoothTestParam
params
=
GetParam
();
Size
sz
=
get
<
0
>
(
params
);
int
depth
=
get
<
1
>
(
params
);
int
srcCn
=
get
<
2
>
(
params
);
Mat
src
(
sz
,
CV_MAKE_TYPE
(
depth
,
srcCn
));
Mat
dst
(
sz
,
src
.
type
());
cv
::
setNumThreads
(
cv
::
getNumberOfCPUs
());
declare
.
in
(
src
,
WARMUP_RNG
).
out
(
dst
).
tbb_threads
(
cv
::
getNumberOfCPUs
());
RNG
rnd
(
sz
.
height
+
depth
+
srcCn
);
double
lambda
=
rnd
.
uniform
(
0.01
,
0.05
);
double
kappa
=
rnd
.
uniform
(
1.0
,
3.0
);
TEST_CYCLE_N
(
1
)
{
l0Smooth
(
src
,
dst
,
lambda
,
kappa
);
}
SANITY_CHECK_NOTHING
();
}
}
modules/ximgproc/src/l0_smooth.cpp
0 → 100644
View file @
74f48e80
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
using
namespace
cv
;
using
namespace
std
;
namespace
{
void
shift
(
InputArray
src
,
OutputArray
dst
,
int
shift_x
,
int
shift_y
)
{
Mat
S
=
src
.
getMat
();
Mat
D
=
dst
.
getMat
();
if
(
S
.
data
==
D
.
data
){
S
=
S
.
clone
();
}
D
.
create
(
S
.
size
(),
S
.
type
());
Mat
s0
(
S
,
Rect
(
0
,
0
,
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
));
Mat
s1
(
S
,
Rect
(
S
.
cols
-
shift_x
,
0
,
shift_x
,
S
.
rows
-
shift_y
));
Mat
s2
(
S
,
Rect
(
0
,
S
.
rows
-
shift_y
,
S
.
cols
-
shift_x
,
shift_y
));
Mat
s3
(
S
,
Rect
(
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
,
shift_x
,
shift_y
));
Mat
d0
(
D
,
Rect
(
shift_x
,
shift_y
,
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
));
Mat
d1
(
D
,
Rect
(
0
,
shift_y
,
shift_x
,
S
.
rows
-
shift_y
));
Mat
d2
(
D
,
Rect
(
shift_x
,
0
,
S
.
cols
-
shift_x
,
shift_y
));
Mat
d3
(
D
,
Rect
(
0
,
0
,
shift_x
,
shift_y
));
s0
.
copyTo
(
d0
);
s1
.
copyTo
(
d1
);
s2
.
copyTo
(
d2
);
s3
.
copyTo
(
d3
);
}
// dft after padding imaginary
void
fft
(
InputArray
src
,
OutputArray
dst
)
{
Mat
S
=
src
.
getMat
();
Mat
planes
[]
=
{
S
,
Mat
::
zeros
(
S
.
size
(),
S
.
type
())
};
merge
(
planes
,
2
,
dst
);
// compute the result
dft
(
dst
,
dst
);
}
void
psf2otf
(
InputArray
src
,
OutputArray
dst
,
int
height
,
int
width
){
Mat
S
=
src
.
getMat
();
Mat
D
=
dst
.
getMat
();
Mat
padded
;
if
(
S
.
data
==
D
.
data
){
S
=
S
.
clone
();
}
// add padding
copyMakeBorder
(
S
,
padded
,
0
,
height
-
S
.
rows
,
0
,
width
-
S
.
cols
,
BORDER_CONSTANT
,
Scalar
::
all
(
0
));
shift
(
padded
,
padded
,
width
-
S
.
cols
/
2
,
height
-
S
.
rows
/
2
);
// convert to frequency domain
fft
(
padded
,
dst
);
}
void
dftMultiChannel
(
InputArray
src
,
vector
<
Mat
>
&
dst
){
Mat
S
=
src
.
getMat
();
split
(
S
,
dst
);
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
fft
(
dst
[
i
],
dst
[
i
]);
}
}
void
idftMultiChannel
(
const
vector
<
Mat
>
&
src
,
OutputArray
dst
){
Mat
*
channels
=
new
Mat
[
src
.
size
()];
for
(
int
i
=
0
;
unsigned
(
i
)
<
src
.
size
();
i
++
){
idft
(
src
[
i
],
channels
[
i
]);
Mat
realImg
[
2
];
split
(
channels
[
i
],
realImg
);
channels
[
i
]
=
realImg
[
0
]
/
src
[
i
].
cols
/
src
[
i
].
rows
;
}
Mat
D
;
merge
(
channels
,
src
.
size
(),
D
);
D
.
copyTo
(
dst
);
delete
[]
channels
;
}
void
addComplex
(
InputArray
aSrc
,
int
bSrc
,
OutputArray
dst
){
Mat
panels
[
2
];
split
(
aSrc
.
getMat
(),
panels
);
panels
[
0
]
=
panels
[
0
]
+
bSrc
;
merge
(
panels
,
2
,
dst
);
}
void
divComplexByReal
(
InputArray
aSrc
,
InputArray
bSrc
,
OutputArray
dst
){
Mat
aPanels
[
2
];
Mat
bPanels
[
2
];
split
(
aSrc
.
getMat
(),
aPanels
);
split
(
bSrc
.
getMat
(),
bPanels
);
Mat
realPart
;
Mat
imaginaryPart
;
divide
(
aPanels
[
0
],
bSrc
.
getMat
(),
realPart
);
divide
(
aPanels
[
1
],
bSrc
.
getMat
(),
imaginaryPart
);
aPanels
[
0
]
=
realPart
;
aPanels
[
1
]
=
imaginaryPart
;
Mat
rst
;
merge
(
aPanels
,
2
,
dst
);
}
void
divComplexByRealMultiChannel
(
const
vector
<
Mat
>
&
numer
,
const
vector
<
Mat
>
&
denom
,
vector
<
Mat
>
&
dst
)
{
for
(
int
i
=
0
;
unsigned
(
i
)
<
numer
.
size
();
i
++
)
{
divComplexByReal
(
numer
[
i
],
denom
[
i
],
dst
[
i
]);
}
}
// power of 2 of the absolute value of the complex
Mat
pow2absComplex
(
InputArray
src
){
Mat
S
=
src
.
getMat
();
Mat
sPanels
[
2
];
split
(
S
,
sPanels
);
return
sPanels
[
0
].
mul
(
sPanels
[
0
])
+
sPanels
[
1
].
mul
(
sPanels
[
1
]);
}
}
namespace
cv
{
namespace
ximgproc
{
void
l0Smooth
(
InputArray
src
,
OutputArray
dst
,
double
lambda
,
double
kappa
)
{
Mat
S
=
src
.
getMat
();
CV_Assert
(
!
S
.
empty
());
CV_Assert
(
S
.
depth
()
==
CV_8U
||
S
.
depth
()
==
CV_16U
||
S
.
depth
()
==
CV_32F
||
S
.
depth
()
==
CV_64F
);
dst
.
create
(
src
.
size
(),
src
.
type
());
if
(
S
.
data
==
dst
.
getMat
().
data
){
S
=
S
.
clone
();
}
if
(
S
.
depth
()
==
CV_8U
)
{
S
.
convertTo
(
S
,
CV_32F
,
1
/
255.0
f
);
}
else
if
(
S
.
depth
()
==
CV_16U
)
{
S
.
convertTo
(
S
,
CV_32F
,
1
/
65535.0
f
);
}
else
if
(
S
.
depth
()
==
CV_64F
){
S
.
convertTo
(
S
,
CV_32F
);
}
const
double
betaMax
=
100000
;
// gradient operators in frequency domain
Mat
otfFx
,
otfFy
;
float
kernel
[
2
]
=
{
-
1
,
1
};
float
kernel_inv
[
2
]
=
{
1
,
-
1
};
psf2otf
(
Mat
(
1
,
2
,
CV_32FC1
,
kernel_inv
),
otfFx
,
S
.
rows
,
S
.
cols
);
psf2otf
(
Mat
(
2
,
1
,
CV_32FC1
,
kernel_inv
),
otfFy
,
S
.
rows
,
S
.
cols
);
vector
<
Mat
>
denomConst
;
Mat
tmp
=
pow2absComplex
(
otfFx
)
+
pow2absComplex
(
otfFy
);
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
denomConst
.
push_back
(
tmp
);
}
// input image in frequency domain
vector
<
Mat
>
numerConst
;
dftMultiChannel
(
S
,
numerConst
);
/*********************************
* solver
*********************************/
double
beta
=
2
*
lambda
;
while
(
beta
<
betaMax
){
// h, v subproblem
Mat
h
,
v
;
filter2D
(
S
,
h
,
-
1
,
Mat
(
1
,
2
,
CV_32FC1
,
kernel
),
Point
(
0
,
0
),
0
,
BORDER_REPLICATE
);
filter2D
(
S
,
v
,
-
1
,
Mat
(
2
,
1
,
CV_32FC1
,
kernel
),
Point
(
0
,
0
),
0
,
BORDER_REPLICATE
);
Mat
hvMag
=
h
.
mul
(
h
)
+
v
.
mul
(
v
);
Mat
mask
;
if
(
S
.
channels
()
==
1
)
{
threshold
(
hvMag
,
mask
,
lambda
/
beta
,
1
,
THRESH_BINARY
);
}
else
if
(
S
.
channels
()
>
1
)
{
Mat
*
channels
=
new
Mat
[
S
.
channels
()];
split
(
hvMag
,
channels
);
hvMag
=
channels
[
0
];
for
(
int
i
=
1
;
i
<
S
.
channels
();
i
++
){
hvMag
=
hvMag
+
channels
[
i
];
}
threshold
(
hvMag
,
mask
,
lambda
/
beta
,
1
,
THRESH_BINARY
);
Mat
in
[]
=
{
mask
,
mask
,
mask
};
merge
(
in
,
3
,
mask
);
delete
[]
channels
;
}
h
=
h
.
mul
(
mask
);
v
=
v
.
mul
(
mask
);
// S subproblem
vector
<
Mat
>
denom
(
S
.
channels
());
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
denom
[
i
]
=
beta
*
denomConst
[
i
]
+
1
;
}
Mat
hGrad
,
vGrad
;
filter2D
(
h
,
hGrad
,
-
1
,
Mat
(
1
,
2
,
CV_32FC1
,
kernel_inv
));
filter2D
(
v
,
vGrad
,
-
1
,
Mat
(
2
,
1
,
CV_32FC1
,
kernel_inv
));
vector
<
Mat
>
hvGradFreq
;
dftMultiChannel
(
hGrad
+
vGrad
,
hvGradFreq
);
vector
<
Mat
>
numer
(
S
.
channels
());
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
numer
[
i
]
=
numerConst
[
i
]
+
hvGradFreq
[
i
]
*
beta
;
}
vector
<
Mat
>
sFreq
(
S
.
channels
());
divComplexByRealMultiChannel
(
numer
,
denom
,
sFreq
);
idftMultiChannel
(
sFreq
,
S
);
beta
=
beta
*
kappa
;
}
Mat
D
=
dst
.
getMat
();
if
(
D
.
depth
()
==
CV_8U
)
{
S
.
convertTo
(
D
,
CV_8U
,
255
);
}
else
if
(
D
.
depth
()
==
CV_16U
)
{
S
.
convertTo
(
D
,
CV_16U
,
65535
);
}
else
if
(
D
.
depth
()
==
CV_64F
){
S
.
convertTo
(
D
,
CV_64F
);
}
else
{
S
.
copyTo
(
D
);
}
}
}
}
modules/ximgproc/test/test_l0_smooth.cpp
0 → 100644
View file @
74f48e80
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace
cvtest
{
using
namespace
std
;
using
namespace
std
::
tr1
;
using
namespace
testing
;
using
namespace
perf
;
using
namespace
cv
;
using
namespace
cv
::
ximgproc
;
CV_ENUM
(
SrcTypes
,
CV_8UC1
,
CV_8UC3
,
CV_16UC1
,
CV_16UC3
);
typedef
tuple
<
Size
,
SrcTypes
>
L0SmoothParams
;
typedef
TestWithParam
<
L0SmoothParams
>
L0SmoothTest
;
TEST
(
L0SmoothTest
,
SplatSurfaceAccuracy
)
{
RNG
rnd
(
0
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Size
sz
(
rnd
.
uniform
(
512
,
1024
),
rnd
.
uniform
(
512
,
1024
));
Scalar
surfaceValue
;
int
srcCn
=
3
;
rnd
.
fill
(
surfaceValue
,
RNG
::
UNIFORM
,
0
,
255
);
Mat
src
(
sz
,
CV_MAKE_TYPE
(
CV_8U
,
srcCn
),
surfaceValue
);
double
lambda
=
rnd
.
uniform
(
0.01
,
0.05
);
double
kappa
=
rnd
.
uniform
(
1.5
,
5.0
);
Mat
res
;
l0Smooth
(
src
,
res
,
lambda
,
kappa
);
// When filtering a constant image we should get the same image:
double
normL1
=
cvtest
::
norm
(
src
,
res
,
NORM_L1
)
/
src
.
total
()
/
src
.
channels
();
EXPECT_LE
(
normL1
,
1.0
/
64
);
}
}
TEST_P
(
L0SmoothTest
,
MultiThreadReproducibility
)
{
if
(
cv
::
getNumberOfCPUs
()
==
1
)
return
;
double
MAX_DIF
=
10.0
;
double
MAX_MEAN_DIF
=
1.0
/
8.0
;
int
loopsCount
=
2
;
RNG
rng
(
0
);
L0SmoothParams
params
=
GetParam
();
Size
size
=
get
<
0
>
(
params
);
int
srcType
=
get
<
1
>
(
params
);
Mat
src
(
size
,
srcType
);
if
(
src
.
depth
()
==
CV_8U
)
randu
(
src
,
0
,
255
);
else
if
(
src
.
depth
()
==
CV_16U
)
randu
(
src
,
0
,
65535
);
else
randu
(
src
,
-
100000.0
f
,
100000.0
f
);
for
(
int
iter
=
0
;
iter
<=
loopsCount
;
iter
++
)
{
double
lambda
=
rng
.
uniform
(
0.01
,
0.05
);
double
kappa
=
rng
.
uniform
(
1.5
,
5.0
);
cv
::
setNumThreads
(
cv
::
getNumberOfCPUs
());
Mat
resMultiThread
;
l0Smooth
(
src
,
resMultiThread
,
lambda
,
kappa
);
cv
::
setNumThreads
(
1
);
Mat
resSingleThread
;
l0Smooth
(
src
,
resSingleThread
,
lambda
,
kappa
);
EXPECT_LE
(
cv
::
norm
(
resSingleThread
,
resMultiThread
,
NORM_INF
),
MAX_DIF
);
EXPECT_LE
(
cv
::
norm
(
resSingleThread
,
resMultiThread
,
NORM_L1
),
MAX_MEAN_DIF
*
src
.
total
()
*
src
.
channels
());
}
}
INSTANTIATE_TEST_CASE_P
(
FullSet
,
L0SmoothTest
,
Combine
(
Values
(
szODD
,
szQVGA
),
SrcTypes
::
all
()));
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment