Commit 73e1625a authored by Alex Leontiev's avatar Alex Leontiev

docs

parent 0b175445
......@@ -9,6 +9,10 @@ The following algorithms are implemented at the moment.
.. [OLB] H Grabner, M Grabner, and H Bischof, Real-time tracking via on-line boosting, In Proc. BMVC, volume 1, pages 47– 56, 2006
.. [MedianFlow] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-Backward Error: Automatic Detection of Tracking Failures,” International Conference on Pattern Recognition, 2010, pp. 23-26.
.. [TLD] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,” Pattern Analysis and Machine Intelligence 2011.
TrackerBoosting
---------------
......@@ -63,7 +67,7 @@ Constructor
:param parameters: BOOSTING parameters :ocv:struct:`TrackerBoosting::Params`
TrackerMIL
----------
----------------------
The MIL algorithm trains a classifier in an online manner to separate the object from the background. Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is based on [MIL]_.
......@@ -118,3 +122,108 @@ Constructor
.. ocv:function:: Ptr<trackerMIL> TrackerMIL::createTracker(const trackerMIL::Params &parameters=trackerMIL::Params())
:param parameters: MIL parameters :ocv:struct:`TrackerMIL::Params`
TrackerMedianFlow
----------------------
Implementation of a paper "Forward-Backward Error: Automatic Detection of Tracking Failures" by Z. Kalal, K. Mikolajczyk
and Jiri Matas. The implementation is based on [MedianFlow]_.
The tracker is suitable for very smooth and predictable movements when object is visible throughout the whole sequence. It's quite and
accurate for this type of problems (in particular, it was shown by authors to outperform MIL). During the implementation period the code at
http://www.aonsquared.co.uk/node/5, the courtesy of the author Arthur Amarra, was used for the reference purpose.
.. ocv:class:: TrackerMedianFlow
Implementation of TrackerMedianFlow from :ocv:class:`Tracker`::
class CV_EXPORTS_W TrackerMedianFlow : public Tracker
{
public:
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
static Ptr<trackerMedianFlow> createTracker(const trackerMedianFlow::Params &parameters=trackerMedianFlow::Params());
virtual ~trackerMedianFlow(){};
protected:
bool initImpl( const Mat& image, const Rect2d& boundingBox );
bool updateImpl( const Mat& image, Rect2d& boundingBox );
};
TrackerMedianFlow::Params
------------------------------------
.. ocv:struct:: TrackerMedianFlow::Params
List of MedianFlow parameters::
struct CV_EXPORTS Params
{
Params();
int pointsInGrid; //square root of number of keypoints used; increase it to trade
//accurateness for speed; default value is sensible and recommended
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
};
TrackerMedianFlow::createTracker
-----------------------------------
Constructor
.. ocv:function:: Ptr<trackerMedianFlow> TrackerMedianFlow::createTracker(const trackerMedianFlow::Params &parameters=trackerMedianFlow::Params())
:param parameters: Median Flow parameters :ocv:struct:`TrackerMedianFlow::Params`
TrackerTLD
----------------------
TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into tracking, learning
and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so
far and corrects the tracker if necessary. The learning estimates detector’s errors and updates it to avoid these errors in the future.
The implementation is based on [TLD]_.
The Median Flow algorithm (see above) was chosen as a tracking component in this implementation, following authors. Tracker is supposed to be able
to handle rapid motions, partial occlusions, object absence etc.
.. ocv:class:: TrackerTLD
Implementation of TrackerTLD from :ocv:class:`Tracker`::
class CV_EXPORTS_W TrackerTLD : public Tracker
{
public:
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
static Ptr<trackerTLD> createTracker(const trackerTLD::Params &parameters=trackerTLD::Params());
virtual ~trackerTLD(){};
protected:
bool initImpl( const Mat& image, const Rect2d& boundingBox );
bool updateImpl( const Mat& image, Rect2d& boundingBox );
};
TrackerTLD::Params
------------------------
.. ocv:struct:: TrackerTLD::Params
List of TLD parameters::
struct CV_EXPORTS Params
{
Params();
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
};
TrackerTLD::createTracker
-------------------------------
Constructor
.. ocv:function:: Ptr<trackerTLD> TrackerTLD::createTracker(const trackerTLD::Params &parameters=trackerTLD::Params())
:param parameters: TLD parameters :ocv:struct:`TrackerTLD::Params`
......@@ -1017,7 +1017,8 @@ class CV_EXPORTS_W TrackerMedianFlow : public Tracker
struct CV_EXPORTS Params
{
Params();
int pointsInGrid;
int pointsInGrid; //square root of number of keypoints used; increase it to trade
//accurateness for speed; default value is sensible and recommended
void read( const FileNode& /*fn*/ );
void write( FileStorage& /*fs*/ ) const;
};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment