Commit 73bed6f3 authored by cbalint13's avatar cbalint13

Rebase the code, massive cleanups. We still pass QA.

parent 2d85137e
......@@ -196,7 +196,7 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param orientation orientation on image (0->360)
* @param descriptor supplied array for descriptor storage
*/
virtual void get_descriptor( double y, double x, int orientation, float* descriptor ) const = 0;
......@@ -204,7 +204,7 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param orientation orientation on image (0->360)
* @param H homography matrix for warped grid
* @param descriptor supplied array for descriptor storage
* @param get_descriptor true if descriptor was computed
......@@ -214,7 +214,7 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param orientation orientation on image (0->360)
* @param descriptor supplied array for descriptor storage
*/
virtual void get_unnormalized_descriptor( double y, double x, int orientation, float* descriptor ) const = 0;
......@@ -222,18 +222,13 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param orientation orientation on image (0->360)
* @param H homography matrix for warped grid
* @param descriptor supplied array for descriptor storage
* @param get_unnormalized_descriptor true if descriptor was computed
*/
virtual bool get_unnormalized_descriptor( double y, double x, int orientation, double* H, float* descriptor ) const = 0;
/**
* @param image set image as working
*/
virtual void set_image( InputArray image ) = 0;
};
......
......@@ -49,7 +49,7 @@
*/
#include "precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <fstream>
#include <stdlib.h>
......@@ -167,11 +167,6 @@ public:
*/
virtual bool get_unnormalized_descriptor( double y, double x, int orientation, double* H, float* descriptor ) const;
/**
* @param image set image as working
*/
virtual void set_image( InputArray image );
protected:
......@@ -179,9 +174,6 @@ protected:
* DAISY parameters
*/
// operation mode
int m_mode;
// maximum radius of the descriptor region.
float m_rad;
......@@ -198,30 +190,29 @@ protected:
// default. change the value using set_normalization() function.
int m_nrm_type;
// holds optional H matrix
Mat m_h_matrix;
// input image.
float* m_image;
// number of bins in the histograms while computing orientation
int m_orientation_resolution;
Mat m_work_image;
// the number of grid locations
int m_grid_point_number;
// image height
int m_h;
// the size of the descriptor vector
int m_descriptor_size;
// image width
int m_w;
// size of m_hsz layers at a single sigma: m_hsz * m_layer_size
int m_cube_size;
// image roi
Rect m_roi;
// size of the layer :
// m_roi.width*m_roi.height
int m_layer_size;
// stores the descriptors :
// its size is [ m_roi.width*m_roi.height*m_descriptor_size ].
float* m_dense_descriptors;
// the clipping threshold to use in normalization: values above this value
// are clipped to this value for normalize_sift_way() function
float m_descriptor_normalization_threshold;
// stores the layered gradients in successively smoothed form: layer[n] =
// m_gradient_layers * gaussian( sigma_n ); n>= 1; layer[0] is the layered_gradient
float* m_smoothed_gradient_layers;
/*
* DAISY switches
*/
// if set to true, descriptors are scale invariant
bool m_scale_invariant;
......@@ -229,244 +220,149 @@ protected:
// if set to true, descriptors are rotation invariant
bool m_rotation_invariant;
// number of bins in the histograms while computing orientation
int m_orientation_resolution;
// if enabled, descriptors are computed with casting non-integer locations
// to integer positions otherwise we use interpolation.
bool m_disable_interpolation;
// switch to enable sample by keypoints orientation
bool m_use_orientation;
/*
* DAISY arrays
*/
// holds optional H matrix
Mat m_h_matrix;
// input image.
Mat m_image;
// image roi
Rect m_roi;
// stores the descriptors :
// its size is [ m_roi.width*m_roi.height*m_descriptor_size ].
Mat m_dense_descriptors;
// stores the layered gradients in successively smoothed form :
// layer[n] = m_gradient_layers * gaussian( sigma_n );
// n>= 1; layer[0] is the layered_gradient
Mat m_smoothed_gradient_layers;
// hold the scales of the pixels
float* m_scale_map;
Mat m_scale_map;
// holds the orientaitons of the pixels
int* m_orientation_map;
Mat m_orientation_map;
// Holds the oriented coordinates (y,x) of the grid points of the region.
double** m_oriented_grid_points;
Mat m_oriented_grid_points;
// holds the gaussian sigmas for radius quantizations for an incremental
// application
double* m_cube_sigmas;
bool m_descriptor_memory;
bool m_workspace_memory;
// the number of grid locations
int m_grid_point_number;
Mat m_cube_sigmas;
// the size of the descriptor vector
int m_descriptor_size;
// Holds the coordinates (y,x) of the grid points of the region.
Mat m_grid_points;
// holds the amount of shift that's required for histogram computation
double m_orientation_shift_table[360];
// if enabled, descriptors are computed with casting non-integer locations
// to integer positions otherwise we use interpolation.
bool m_disable_interpolation;
// switch to enable sample by keypoints orientation
bool m_use_orientation;
// size of m_hsz layers at a single sigma: m_hsz * m_layer_size
int m_cube_size;
private:
// size of the layer :
// m_roi.width*m_roi.height
int m_layer_size;
// two possible computational mode
// ONLY_KEYS -> (mode_1) compute descriptors on demand
// COMP_FULL -> (mode_2) compute all descriptors from image
enum { ONLY_KEYS = 0, COMP_FULL = 1 };
/*
* DAISY functions
*/
// computes the histogram at yx; the size of histogram is m_hist_th_q_no
void compute_histogram( float* hcube, int y, int x, float* histogram );
// reorganizes the cube data so that histograms are sequential in memory.
void compute_histograms();
// emulates the way sift is normalized.
void normalize_sift_way( float* desc ) const;
// initializes the class: computes gradient and structure-points
inline void initialize();
// normalizes the descriptor histogram by histogram
void normalize_partial( float* desc ) const;
// initializes for get_descriptor(double, double, int) mode: pre-computes
// convolutions of gradient layers in m_smoothed_gradient_layers
inline void initialize_single_descriptor_mode();
// normalizes the full descriptor.
void normalize_full( float* desc ) const;
// set & precompute parameters
inline void set_parameters();
// initializes the class: computes gradient and structure-points
void initialize();
// image set image as working
inline void set_image( InputArray image );
void update_selected_cubes();
// releases all the used memory; call this if you want to process
// multiple images within a loop.
inline void reset();
int quantize_radius( float rad ) const;
// releases unused memory after descriptor computation is completed.
inline void release_auxiliary();
int filter_size( double sigma );
// computes the descriptors for every pixel in the image.
inline void compute_descriptors();
// computes scales for every pixel and scales the structure grid so that the
// resulting descriptors are scale invariant. you must set
// m_scale_invariant flag to 1 for the program to call this function
void compute_scales();
// Return a number in the range [-0.5, 0.5] that represents the location of
// the peak of a parabola passing through the 3 evenly spaced samples. The
// center value is assumed to be greater than or equal to the other values
// if positive, or less than if negative.
float interpolate_peak( float left, float center, float right );
inline void compute_scales();
// Smooth a histogram by using a [1/3 1/3 1/3] kernel. Assume the histogram
// is connected in a circular buffer.
void smooth_histogram( float *hist, int bins );
// compute the smoothed gradient layers.
inline void compute_smoothed_gradient_layers();
// computes pixel orientations and rotates the structure grid so that
// resulting descriptors are rotation invariant. If the scales is also
// detected, then orientations are computed at the computed scales. you must
// set m_rotation_invariant flag to 1 for the program to call this function
void compute_orientations();
inline void compute_orientations();
// the clipping threshold to use in normalization: values above this value
// are clipped to this value for normalize_sift_way() function
float m_descriptor_normalization_threshold;
// computes the histogram at yx; the size of histogram is m_hist_th_q_no
inline void compute_histogram( float* hcube, int y, int x, float* histogram );
// reorganizes the cube data so that histograms are sequential in memory.
inline void compute_histograms();
// computes the sigma's of layers from descriptor parameters if the user did
// not sets it. these define the size of the petals of the descriptor.
void compute_cube_sigmas();
inline void compute_cube_sigmas();
// Computes the locations of the unscaled unrotated points where the
// histograms are going to be computed according to the given parameters.
void compute_grid_points();
inline void compute_grid_points();
// Computes the locations of the unscaled rotated points where the
// histograms are going to be computed according to the given parameters.
void compute_oriented_grid_points();
inline void compute_oriented_grid_points();
// smooths each of the layers by a Gaussian having "sigma" standart
// deviation.
void smooth_layers( float*layers, int h, int w, int layer_number, float sigma );
// Holds the coordinates (y,x) of the grid points of the region.
double** m_grid_points;
int get_hq() { return m_hist_th_q_no; }
int get_thq() { return m_th_q_no; }
int get_rq() { return m_rad_q_no; }
float get_rad() { return m_rad; }
// sets the type of the normalization to apply out of {NRM_PARTIAL,
// NRM_FULL, NRM_SIFT}. Call before using get_descriptor() if you want to
// change the default normalization type.
void set_normalization( int nrm_type ) { m_nrm_type = nrm_type; }
// normalizes the descriptor
inline void normalize_descriptor( float* desc, int nrm_type ) const;
// applies one of the normalizations (partial,full,sift) to the desciptors.
void normalize_descriptors( int nrm_type = DAISY::NRM_NONE );
// normalizes histograms individually
void normalize_histograms();
// gets the histogram at y,x with 'orientation' from the r'th cube
float* get_histogram( int y, int x, int r );
// if called, I don't use interpolation in the computation of
// descriptors.
void disable_interpolation() { m_disable_interpolation = true; }
// returns the region number.
int grid_point_number() { return m_grid_point_number; }
// releases all the used memory; call this if you want to process
// multiple images within a loop.
void reset();
// releases unused memory after descriptor computation is completed.
void release_auxiliary();
// computes the descriptors for every pixel in the image.
void compute_descriptors();
// returns all the descriptors.
float* get_dense_descriptors();
// returns oriented grid points. default is 0 orientation.
double* get_grid(int o=0);
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// scales for every pixel so that the resulting descriptors are scale
// invariant.
void scale_invariant( bool state = true )
{
g_scale_en = (int)( (log(g_sigma_2/g_sigma_0)) / log(g_sigma_step) ) - g_scale_st;
m_scale_invariant = state;
}
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// orientations for every pixel so that the resulting descriptors are
// rotation invariant. orientation steps are 360/ori_resolution
void rotation_invariant( int ori_resolution = 36, bool state = true )
{
m_rotation_invariant = state;
m_orientation_resolution = ori_resolution;
}
// sets the gaussian variances manually. must be called before
// initialize() to be considered. must be exact sigma values -> f
// converts to incremental format.
void set_cube_gaussians( double* sigma_array, int sz );
int* get_orientation_map() { return m_orientation_map; }
// call compute_descriptor_memory to find the amount of memory to allocate
void set_descriptor_memory( float* descriptor, long int d_size );
// call compute_workspace_memory to find the amount of memory to allocate
void set_workspace_memory( float* workspace, long int w_size );
// returns the amount of memory needed for the compute_descriptors()
// function. it is basically equal to imagesize x descriptor_size
int compute_descriptor_memory() {
if( m_h == 0 || m_descriptor_size == 0 ) {
CV_Error( Error::StsInternal, "Image and descriptor size is zero" );
}
return m_roi.width*m_roi.height * m_descriptor_size;
}
inline void normalize_descriptors( int nrm_type = DAISY::NRM_NONE );
// returns the amount of memory needed for workspace. call before initialize()
int compute_workspace_memory() {
if( m_cube_size == 0 ) {
CV_Error( Error::StsInternal, "Cube size is zero" );
}
return (g_cube_number+1)* m_cube_size;
}
void normalize_descriptor( float* desc, int nrm_type = DAISY::NRM_NONE ) const
{
if( nrm_type == DAISY::NRM_NONE ) nrm_type = m_nrm_type;
else if( nrm_type == DAISY::NRM_PARTIAL ) normalize_partial(desc);
else if( nrm_type == DAISY::NRM_FULL ) normalize_full(desc);
else if( nrm_type == DAISY::NRM_SIFT ) normalize_sift_way(desc);
else
CV_Error( Error::StsInternal, "No such normalization" );
}
// emulates the way sift is normalized.
inline void normalize_sift_way( float* desc ) const;
// transform a point via the homography
void point_transform_via_homography( double* H, double x, double y, double &u, double &v ) const
{
double kxp = H[0]*x + H[1]*y + H[2];
double kyp = H[3]*x + H[4]*y + H[5];
double kp = H[6]*x + H[7]*y + H[8];
u = kxp / kp;
v = kyp / kp;
}
// normalizes the descriptor histogram by histogram
inline void normalize_partial( float* desc ) const;
private:
// normalizes the full descriptor.
inline void normalize_full( float* desc ) const;
// two possible computational mode
// ONLY_KEYS -> (mode_1) compute descriptors on demand
// COMP_FULL -> (mode_2) compute all descriptors from image
enum { ONLY_KEYS = 0, COMP_FULL = 1 };
// normalizes histograms individually
inline void normalize_histograms();
// set & precompute parameters
inline void set_parameters();
inline void update_selected_cubes();
// Smooth a histogram by using a [1/3 1/3 1/3] kernel. Assume the histogram
// is connected in a circular buffer.
inline void smooth_histogram( Mat hist, int bins );
// initializes for get_descriptor(double, double, int) mode: pre-computes
// convolutions of gradient layers in m_smoothed_gradient_layers
inline void initialize_single_descriptor_mode();
// smooths each of the layers by a Gaussian having "sigma" standart
// deviation.
inline void smooth_layers( Mat layers, int h, int w, int layer_number, float sigma );
// returns the descriptor vector for the point (y, x) !!! use this for
// precomputed operations meaning that you must call compute_descriptors()
......@@ -474,9 +370,6 @@ private:
// normalize_descriptors() before calling compute_descriptors()
inline void get_descriptor( int y, int x, float* &descriptor );
// compute the smoothed gradient layers.
inline void compute_smoothed_gradient_layers();
// does not use interpolation while computing the histogram.
inline void ni_get_histogram( float* histogram, int y, int x, int shift, float* hcube ) const;
......@@ -506,568 +399,196 @@ private:
// does not use interpolation. for w/interpolation, call i_get_descriptor. see also get_descriptor
inline bool ni_get_descriptor( double y, double x, int orientation, double* H, float* descriptor ) const;
// creates a 1D gaussian filter with N(mean,sigma).
inline void gaussian_1d( float* fltr, int fsz, float sigma, float mean )
{
CV_Assert(fltr != NULL);
int sz = (fsz-1)/2;
int counter=-1;
float sum = 0.0;
float v = 2*sigma*sigma;
for( int x=-sz; x<=sz; x++ )
{
counter++;
fltr[counter] = exp((-((float)x-mean)*((float)x-mean))/v);
sum += fltr[counter];
}
if( sum != 0 )
{
for( int x=0; x<fsz; x++ )
fltr[x] /= sum;
}
}
inline void conv_horizontal( float* image, int h, int w, float* kernel, int ksize )
{
CvMat cvI; cvInitMatHeader(&cvI, h, w, CV_32FC1, (float*)image);
CvMat cvK; cvInitMatHeader(&cvK, 1, ksize, CV_32FC1, (float*)kernel);
cvFilter2D( &cvI, &cvI, &cvK );
}
inline void conv_horizontal( double* image, int h, int w, double* kernel, int ksize )
{
CvMat cvI; cvInitMatHeader(&cvI, h, w, CV_64FC1, (double*)image);
CvMat cvK; cvInitMatHeader(&cvK, 1, ksize, CV_64FC1, (double*)kernel);
cvFilter2D( &cvI, &cvI, &cvK );
}
inline void conv_vertical( float* image, int h, int w, float* kernel, int ksize )
{
CvMat cvI; cvInitMatHeader(&cvI, h, w, CV_32FC1, (float*)image);
CvMat cvK; cvInitMatHeader(&cvK, ksize, 1, CV_32FC1, (float*)kernel);
cvFilter2D( &cvI, &cvI, &cvK );
}
inline void conv_vertical( double* image, int h, int w, double* kernel, int ksize )
{
CvMat cvI; cvInitMatHeader(&cvI, h, w, CV_64FC1, (double*)image);
CvMat cvK; cvInitMatHeader(&cvK, ksize, 1, CV_64FC1, (double*)kernel);
cvFilter2D( &cvI, &cvI, &cvK );
}
/*
* DAISY utilities
*/
template<class T>
class rectangle
{
public:
T lx, ux, ly, uy;
T dx, dy;
rectangle(T xl, T xu, T yl, T yu) { lx=xl; ux=xu; ly=yl; uy=yu; dx=ux-lx; dy=uy-ly; };
rectangle() { lx = ux = ly = uy = dx = dy = 0; };
};
inline int quantize_radius( float rad ) const;
// checks if the number x is between lx - ux interval.
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx<=x is checked else lx<x is checked
// if ue=1 => x<=ux is checked else x<ux is checked
// by default x is searched inside of [lx,ux)
template<class T1, class T2, class T3> inline
bool is_inside(T1 x, T2 lx, T3 ux, bool le=true, bool ue=false) const
{
if( ( ((lx<x)&&(!le)) || ((lx<=x)&&le) ) && ( ((x<ux)&&(!ue)) || ((x<=ux)&&ue) ) )
{
return true;
}
else
{
return false;
}
}
// checks if the number x is between lx - ux and/or y is between ly - uy interval.
// If the number is inside, then function returns true, else it returns false.
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx<=x is checked else lx<x is checked
// if ue=1 => x<=ux is checked else x<ux is checked
// by default x is searched inside of [lx,ux).
// the same equality check is applied to the y variable as well.
// If the 'oper' is set '&' both of the numbers must be within the interval to return true
// But if the 'oper' is set to '|' then only one of them being true is sufficient.
template<class T1, class T2, class T3> inline
bool is_inside(T1 x, T2 lx, T3 ux, T1 y, T2 ly, T3 uy, bool le=true, bool ue=false, char oper='&') const
{
switch( oper )
{
case '|':
if( is_inside(x,lx,ux,le,ue) || is_inside(y,ly,uy,le,ue) )
return true;
return false;
default:
if( is_inside(x,lx,ux,le,ue) && is_inside(y,ly,uy,le,ue) )
return true;
return false;
}
}
// checks if the number x is between lx - ux and/or y is between ly - uy interval.
// If the number is inside, then function returns true, else it returns false.
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx<=x is checked else lx<x is checked
// if ue=1 => x<=ux is checked else x<ux is checked
// by default x is searched inside of [lx,ux).
// the same equality check is applied to the y variable as well.
// If the 'oper' is set '&' both of the numbers must be within the interval to return true
// But if the 'oper' is set to '|' then only one of them being true is sufficient.
template<class T1, class T2> inline
bool is_inside(T1 x, T1 y, rectangle<T2> roi, bool le=true, bool ue=false, char oper='&') const
{
switch( oper )
{
case '|':
if( is_inside(x,roi.lx,roi.ux,le,ue) || is_inside(y,roi.ly,roi.uy,le,ue) )
return true;
return false;
default:
if( is_inside(x,roi.lx,roi.ux,le,ue) && is_inside(y,roi.ly,roi.uy,le,ue) )
return true;
return false;
}
}
// checks if the number x is outside lx - ux interval
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx>x is checked else lx>=x is checked
// if ue=1 => x>ux is checked else x>=ux is checked
// by default is x is searched outside of [lx,ux)
template<class T1, class T2, class T3> inline
bool is_outside(T1 x, T2 lx, T3 ux, bool le=true, bool ue=false) const
{
return !(is_inside(x,lx,ux,le,ue));
}
// checks if the numbers x and y is outside their intervals.
// The equality is checked depending on the value of le and ue parameters.
// If le=1 => lx>x is checked else lx>=x is checked
// If ue=1 => x>ux is checked else x>=ux is checked
// By default is x is searched outside of [lx,ux) (Similarly for y)
// By default, 'oper' is set to OR. If one of them is outside it returns
// true otherwise false.
template<class T1, class T2, class T3> inline
bool is_outside(T1 x, T2 lx, T3 ux, T1 y, T2 ly, T3 uy, bool le=true, bool ue=false, char oper='|') const
{
switch( oper )
{
case '&':
if( is_outside(x,lx,ux,le,ue) && is_outside(y,ly,uy,le,ue) )
return true;
return false;
default:
if( is_outside(x,lx,ux,le,ue) || is_outside(y,ly,uy,le,ue) )
return true;
return false;
}
}
// checks if the numbers x and y is outside their intervals.
// The equality is checked depending on the value of le and ue parameters.
// If le=1 => lx>x is checked else lx>=x is checked
// If ue=1 => x>ux is checked else x>=ux is checked
// By default is x is searched outside of [lx,ux) (Similarly for y)
// By default, 'oper' is set to OR. If one of them is outside it returns
// true otherwise false.
template<class T1, class T2> inline
bool is_outside(T1 x, T1 y, rectangle<T2> roi, bool le=true, bool ue=false, char oper='|') const
{
switch( oper )
{
case '&':
if( is_outside(x,roi.lx,roi.ux,le,ue) && is_outside(y,roi.ly,roi.uy,le,ue) )
return true;
return false;
default:
if( is_outside(x,roi.lx,roi.ux,le,ue) || is_outside(y,roi.ly,roi.uy,le,ue) )
return true;
return false;
}
}
inline int filter_size( double sigma );
// computes the square of a number and returns it.
template<class T> inline
T square(T a) const
{
return a*a;
}
// computes the square of an array. if in_place is enabled, the
// result is returned in the array arr.
template<class T> inline
T* square(T* arr, int sz, bool in_place=false) const
{
T* out;
if( in_place ) out = arr;
else out = allocate<T>(sz);
for( int i=0; i<sz; i++ )
out[i] = arr[i]*arr[i];
return out;
}
// computes the l2norm of an array: [ sum_i( [a(i)]^2 ) ]^0.5
template<class T> inline
float l2norm( T* a, int sz) const
{
float norm=0;
for( int k=0; k<sz; k++ )
norm += a[k]*a[k];
return sqrt(norm);
}
// Return a number in the range [-0.5, 0.5] that represents the location of
// the peak of a parabola passing through the 3 evenly spaced samples. The
// center value is assumed to be greater than or equal to the other values
// if positive, or less than if negative.
inline float interpolate_peak( float left, float center, float right );
// computes the l2norm of the difference of two arrays: [ sum_i( [a(i)-b(i)]^2 ) ]^0.5
template<class T1, class T2> inline
float l2norm( T1* a, T2* b, int sz) const
{
float norm=0;
for( int i=0; i<sz; i++ )
{
norm += square( (float)a[i] - (float)b[i] );
}
norm = sqrt( norm );
return norm;
}
}; // END DAISY_Impl CLASS
template<class T> inline
float l2norm( T y0, T x0, T y1, T x1 ) const
{
float d0 = (float) (x0 - x1);
float d1 = (float) (y0 - y1);
return sqrt( d0*d0 + d1*d1 );
}
// -------------------------------------------------
/* DAISY computation routines */
// allocates a memory of size sz and returns a pointer to the array
template<class T> inline
T* allocate(const int sz)
{
T* array = new T[sz];
return array;
}
inline void DAISY_Impl::reset()
{
m_image.release();
// allocates a memory of size ysz x xsz and returns a double pointer to it
template<class T> inline
T** allocate(const int ysz, const int xsz)
{
T** mat = new T*[ysz];
int i;
m_orientation_map.release();
m_scale_map.release();
for(i=0; i<ysz; i++ )
mat[i] = new T[xsz];
// allocate<T>(xsz);
m_dense_descriptors.release();
m_smoothed_gradient_layers.release();
}
return mat;
}
inline void DAISY_Impl::release_auxiliary()
{
m_orientation_map.release();
m_scale_map.release();
// deallocates the memory and sets the pointer to null.
template<class T> inline
void deallocate(T* &array)
{
delete[] array;
array = NULL;
}
m_smoothed_gradient_layers.release();
// deallocates the memory and sets the pointer to null.
template<class T> inline
void deallocate(T** &mat, int ysz)
{
if( mat == NULL ) return;
m_grid_points.release();
m_oriented_grid_points.release();
m_cube_sigmas.release();
for(int i=0; i<ysz; i++)
deallocate(mat[i]);
m_image.release();
}
delete[] mat;
mat = NULL;
}
// creates a 1D gaussian filter with N(mean,sigma).
static void gaussian_1d( float* fltr, int fsz, float sigma, float mean )
{
CV_Assert(fltr != NULL);
// Converts the given polar coordinates of a point to cartesian
// ones.
template<class T1, class T2> inline
void polar2cartesian(T1 r, T1 t, T2 &y, T2 &x)
int sz = (fsz - 1) / 2;
int counter = -1;
float sum = 0.0f;
float v = 2 * sigma*sigma;
for( int x=-sz; x<=sz; x++ )
{
x = (T2)( r * cos( t ) );
y = (T2)( r * sin( t ) );
counter++;
fltr[counter] = exp((-((float)x-mean)*((float)x-mean))/v);
sum += fltr[counter];
}
if( sum != 0 )
for( int x=0; x<fsz; x++ ) fltr[x] /= sum;
}
template<typename T> inline
void convolve_sym_( T* image, int h, int w, T* kernel, int ksize )
{
conv_horizontal( image, h, w, kernel, ksize );
conv_vertical ( image, h, w, kernel, ksize );
}
template<class T>
inline void convolve_sym( T* image, int h, int w, T* kernel, int ksize, T* out=NULL )
{
if( out == NULL ) out = image;
else memcpy( out, image, sizeof(T)*h*w );
convolve_sym_(out, h, w, kernel, ksize);
}
// computes the gradient of an image
static void gradient( Mat im, int h, int w, Mat dy, Mat dx )
{
CV_Assert( !dx.empty() );
CV_Assert( !dy.empty() );
// divides the elements of the array with num
template<class T1, class T2> inline
void divide(T1* arr, int sz, T2 num ) const
for( int y=0; y<h; y++ )
{
float inv_num = (float) (1.0 / num);
for( int i=0; i<sz; i++ )
int yw = y*w;
for( int x=0; x<w; x++ )
{
arr[i] = (T1)(arr[i]*inv_num);
int ind = yw+x;
// dx
if( x>0 && x<w-1 ) dx.at<float>(ind) = (im.at<float>(ind+1)-im.at<float>(ind-1)) / 2.0f;
if( x==0 ) dx.at<float>(ind) = im.at<float>(ind+1)-im.at<float>(ind );
if( x==w-1 ) dx.at<float>(ind) = im.at<float>(ind )-im.at<float>(ind-1);
// dy
if( y>0 && y<h-1 ) dy.at<float>(ind) = (im.at<float>(ind+w)-im.at<float>(ind-w)) / 2.0f;
if( y==0 ) dy.at<float>(ind) = im.at<float>(ind+w)-im.at<float>(ind );
if( y==h-1 ) dy.at<float>(ind) = im.at<float>(ind )-im.at<float>(ind-w);
}
}
}
// returns an array filled with zeroes.
template<class T> inline
T* zeros(int r)
{
T* data = allocate<T>(r);
memset( data, 0, sizeof(T)*r );
return data;
}
static Mat layered_gradient( Mat data, int layer_no = 8 )
{
int data_size = data.rows * data.cols;
Mat layers( 1, layer_no*data_size, CV_32F, Scalar(0) );
template<class T> inline
T* layered_gradient( T* data, int h, int w, int layer_no=8 )
{
int data_size = h * w;
T* layers = zeros<T>(layer_no * data_size);
float kernel[5];
gaussian_1d(kernel, 5, 0.5f, 0.0f);
Mat Kernel(1, 5, CV_32F, (float*) kernel);
// smooth the data matrix
T* bdata = blur_gaussian_2d<T,T>( data, h, w, 0.5, 5, false );
Mat cvO;
// smooth the data matrix
filter2D( data, cvO, CV_32F, Kernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( cvO, cvO, CV_32F, Kernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
T *dx = new T[data_size];
T *dy = new T[data_size];
gradient(bdata, h, w, dy, dx);
deallocate( bdata );
Mat dx(1, data_size, CV_32F);
Mat dy(1, data_size, CV_32F);
gradient(cvO, data.rows, data.cols, dy, dx);
cvO.release();
#if defined _OPENMP
#pragma omp parallel for
#endif
for( int l=0; l<layer_no; l++ )
{
float angle = (float) (2*l*CV_PI/layer_no);
float kos = (float) cos( angle );
float zin = (float) sin( angle );
for( int l=0; l<layer_no; l++ )
{
float angle = (float) (2*l*CV_PI/layer_no);
float kos = (float) cos( angle );
float zin = (float) sin( angle );
T* layer_l = layers + l*data_size;
float* layer_l = layers.ptr<float>(0) + l*data_size;
for( int index=0; index<data_size; index++ )
{
float value = kos * dx[ index ] + zin * dy[ index ];
if( value > 0 ) layer_l[index] = value;
else layer_l[index] = 0;
}
for( int index=0; index<data_size; index++ )
{
float value = kos * dx.at<float>(index) + zin * dy.at<float>(index);
if( value > 0 ) layer_l[index] = value;
else layer_l[index] = 0;
}
deallocate(dy);
deallocate(dx);
return layers;
}
}
return layers;
}
// computes the gradient of an image and returns the result in
// pointers to REAL.
template <class T> inline
void gradient(T* im, int h, int w, T* dy, T* dx)
{
CV_Assert( dx != NULL );
CV_Assert( dy != NULL );
// data is not destroyed afterwards
static void layered_gradient( Mat data, int layer_no, Mat layers )
{
CV_Assert( !layers.empty() );
for( int y=0; y<h; y++ )
{
int yw = y*w;
for( int x=0; x<w; x++ )
{
int ind = yw+x;
// dx
if( x>0 && x<w-1 ) dx[ind] = (T) (((T)im[ind+1]-(T)im[ind-1])/2.0f);
if( x==0 ) dx[ind] = ((T)im[ind+1]-(T)im[ind]);
if( x==w-1 ) dx[ind] = ((T)im[ind ]-(T)im[ind-1]);
//dy
if( y>0 && y<h-1 ) dy[ind] = (T) (((T)im[ind+w]-(T)im[ind-w])/2.0f);
if( y==0 ) dy[ind] = ((T)im[ind+w]-(T)im[ind]);
if( y==h-1 ) dy[ind] = ((T)im[ind] -(T)im[ind-w]);
}
}
}
Mat cvI = data.clone();
layers.setTo( Scalar(0) );
int data_size = data.rows * data.cols;
// be careful, 'data' is destroyed afterwards
template<class T> inline
// original T* workspace=0 was removed
void layered_gradient( T* data, int h, int w, int layer_no, T* layers, int lwork = 0 )
{
int data_size = h * w;
CV_Assert(layers!=NULL);
memset(layers,0,sizeof(T)*data_size*layer_no);
bool was_empty = false;
T* work=NULL;
if( lwork < 3*data_size ) {
work = new T[3*data_size];
was_empty = true;
}
float kernel[5];
gaussian_1d(kernel, 5, 0.5f, 0.0f);
Mat Kernel(1, 5, CV_32F, (float*) kernel);
// // smooth the data matrix
// T* bdata = blur_gaussian_2d<T,T>( data, h, w, 0.5, 5, false);
float kernel[5]; gaussian_1d(kernel, 5, 0.5, 0);
memcpy( work, data, sizeof(T)*data_size );
convolve_sym( work, h, w, kernel, 5 );
filter2D( cvI, cvI, CV_32F, Kernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( cvI, cvI, CV_32F, Kernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
T *dx = work+data_size;
T *dy = work+2*data_size;
gradient( work, h, w, dy, dx );
Mat dx(1, data_size, CV_32F);
Mat dy(1, data_size, CV_32F);
gradient( cvI, data.rows, data.cols, dy, dx );
#if defined _OPENMP
#pragma omp parallel for
#endif
for( int l=0; l<layer_no; l++ )
{
float angle = (float) (2*l*CV_PI/layer_no);
float kos = (float) cos( angle );
float zin = (float) sin( angle );
for( int l=0; l<layer_no; l++ )
{
float angle = (float) (2*l*CV_PI/layer_no);
float kos = (float) cos( angle );
float zin = (float) sin( angle );
T* layer_l = layers + l*data_size;
float* layer_l = layers.ptr<float>(0) + l*data_size;
for( int index=0; index<data_size; index++ )
{
float value = kos * dx[ index ] + zin * dy[ index ];
if( value > 0 ) layer_l[index] = value;
else layer_l[index] = 0;
}
for( int index=0; index<data_size; index++ )
{
float value = kos * dx.at<float>(index) + zin * dy.at<float>(index);
if( value > 0 ) layer_l[index] = value;
else layer_l[index] = 0;
}
if( was_empty ) delete []work;
}
// casts a type T2 array into a type T1 array.
template<class T1, class T2> inline
T1* type_cast(T2* data, int sz)
{
T1* out = new T1[sz];
for( int i=0; i<sz; i++ )
out[i] = (T1)data[i];
return out;
}
// Applies a 2d gaussian blur of sigma std to the input array. if
// kernel_size is not set or it is set to 0, then it is taken as
// 3*sigma and if it is set to an even number, it is incremented
// to be an odd number. if in_place=true, then T1 must be equal
// to T2 naturally.
template<class T1, class T2> inline
T1* blur_gaussian_2d( T2* array, int rn, int cn, float sigma, int kernel_size = 0, bool in_place = false )
{
T1* out = NULL;
if( in_place )
out = (T1*)array;
else
out = type_cast<T1,T2>(array,rn*cn);
if( kernel_size == 0 )
kernel_size = (int)(3*sigma);
if( kernel_size%2 == 0 ) kernel_size++; // kernel size must be odd
if( kernel_size < 3 ) kernel_size= 3; // kernel size cannot be smaller than 3
float* kernel = new float[kernel_size];
gaussian_1d(kernel, kernel_size, sigma, 0);
// !! apply the filter separately
convolve_sym( out, rn, cn, kernel, kernel_size );
// conv_horizontal( out, rn, cn, kernel, kernel_size);
// conv_vertical ( out, rn, cn, kernel, kernel_size);
deallocate(kernel);
return out;
}
}; // END DAISY_Impl CLASS
// -------------------------------------------------
/* DAISY computation routines */
float* DAISY_Impl::get_histogram( int y, int x, int r )
{
CV_Assert( y >= 0 && y < m_h );
CV_Assert( x >= 0 && x < m_w );
CV_Assert( m_smoothed_gradient_layers );
CV_Assert( m_oriented_grid_points );
return m_smoothed_gradient_layers+g_selected_cubes[r]*m_cube_size + (y*m_w+x)*m_hist_th_q_no;
// i_get_histogram( histogram, y, x, 0, m_smoothed_gradient_layers+g_selected_cubes[r]*m_cube_size );
}
}
float* DAISY_Impl::get_dense_descriptors()
// transform a point via the homography
static void point_transform_via_homography( double* H, double x, double y, double &u, double &v )
{
return m_dense_descriptors;
double kxp = H[0]*x + H[1]*y + H[2];
double kyp = H[3]*x + H[4]*y + H[5];
double kp = H[6]*x + H[7]*y + H[8];
u = kxp / kp;
v = kyp / kp;
}
double* DAISY_Impl::get_grid(int o)
{
CV_Assert( o >= 0 && o < 360 );
return m_oriented_grid_points[o];
}
void DAISY_Impl::reset()
{
m_work_image.release();
if ( m_orientation_map ) deallocate( m_orientation_map );
if ( m_scale_map ) deallocate( m_scale_map );
if ( !m_descriptor_memory && m_dense_descriptors )
deallocate( m_dense_descriptors );
if ( !m_workspace_memory && m_smoothed_gradient_layers )
deallocate(m_smoothed_gradient_layers);
}
void DAISY_Impl::release_auxiliary()
{
if ( m_orientation_map ) deallocate( m_orientation_map );
if ( m_scale_map ) deallocate( m_scale_map );
if ( !m_workspace_memory && m_smoothed_gradient_layers )
deallocate( m_smoothed_gradient_layers );
if ( m_grid_points ) deallocate( m_grid_points, m_grid_point_number );
if ( m_oriented_grid_points )
deallocate( m_oriented_grid_points, g_grid_orientation_resolution );
if ( m_cube_sigmas ) deallocate( m_cube_sigmas );
m_work_image.release();
}
void DAISY_Impl::compute_grid_points()
inline void DAISY_Impl::compute_grid_points()
{
double r_step = m_rad / (double)m_rad_q_no;
double t_step = 2*CV_PI/ m_th_q_no;
if( m_grid_points )
deallocate( m_grid_points, m_grid_point_number );
m_grid_points.release();
m_grid_points = Mat( m_grid_point_number, 2, CV_64F );
m_grid_points = allocate<double>(m_grid_point_number, 2);
for( int y=0; y<m_grid_point_number; y++ )
{
m_grid_points[y][0] = 0;
m_grid_points[y][1] = 0;
m_grid_points.at<double>(y,0) = 0;
m_grid_points.at<double>(y,1) = 0;
}
for( int r=0; r<m_rad_q_no; r++ )
......@@ -1075,18 +596,26 @@ void DAISY_Impl::compute_grid_points()
int region = r*m_th_q_no+1;
for( int t=0; t<m_th_q_no; t++ )
{
double y, x;
polar2cartesian( (r+1)*r_step, t*t_step, y, x );
m_grid_points[region+t][0] = y;
m_grid_points[region+t][1] = x;
m_grid_points.at<double>(region+t,0) = (r+1)*r_step * sin( t*t_step );
m_grid_points.at<double>(region+t,1) = (r+1)*r_step * cos( t*t_step );
}
}
compute_oriented_grid_points();
}
/// Computes the descriptor by sampling convoluted orientation maps.
void DAISY_Impl::compute_descriptors()
inline void DAISY_Impl::normalize_descriptor( float* desc, int nrm_type = DAISY::NRM_NONE ) const
{
if( nrm_type == DAISY::NRM_NONE ) nrm_type = m_nrm_type;
else if( nrm_type == DAISY::NRM_PARTIAL ) normalize_partial(desc);
else if( nrm_type == DAISY::NRM_FULL ) normalize_full(desc);
else if( nrm_type == DAISY::NRM_SIFT ) normalize_sift_way(desc);
else
CV_Error( Error::StsInternal, "No such normalization" );
}
// Computes the descriptor by sampling convoluted orientation maps.
inline void DAISY_Impl::compute_descriptors()
{
int y_off = m_roi.y;
......@@ -1094,12 +623,10 @@ void DAISY_Impl::compute_descriptors()
int y_end = m_roi.y + m_roi.height;
int x_end = m_roi.x + m_roi.width;
if( m_scale_invariant ) compute_scales();
if( m_rotation_invariant ) compute_orientations();
if( !m_descriptor_memory )
m_dense_descriptors = allocate <float>(m_roi.width*m_roi.height * m_descriptor_size);
// if( m_scale_invariant ) compute_scales();
// if( m_rotation_invariant ) compute_orientations();
memset(m_dense_descriptors, 0, sizeof(float)*m_roi.width*m_roi.height * m_descriptor_size);
m_dense_descriptors = Mat( m_roi.width*m_roi.height, m_descriptor_size, CV_32F, Scalar(0) );
int y, x, index, orientation;
#if defined _OPENMP
......@@ -1109,63 +636,106 @@ void DAISY_Impl::compute_descriptors()
{
for( x=x_off; x<x_end; x++ )
{
index = y*m_w + x;
index = y*m_image.cols + x;
orientation = 0;
if( m_orientation_map ) orientation = m_orientation_map[index];
if( !( orientation >= 0 && orientation < g_grid_orientation_resolution ) ) orientation = 0;
get_unnormalized_descriptor( y, x, orientation, &(m_dense_descriptors[index*m_descriptor_size]) );
if( !m_orientation_map.empty() )
orientation = (int) m_orientation_map.at<ushort>( x, y );
if( !( orientation >= 0 && orientation < g_grid_orientation_resolution ) )
orientation = 0;
get_unnormalized_descriptor( y, x, orientation, m_dense_descriptors.ptr<float>( index ) );
}
}
}
void DAISY_Impl::smooth_layers( float* layers, int h, int w, int layer_number, float sigma )
inline void DAISY_Impl::smooth_layers( Mat layers, int h, int w, int layer_number, float sigma )
{
int fsz = filter_size(sigma);
float* filter = new float[fsz];
gaussian_1d(filter, fsz, sigma, 0);
int i;
float* layer=0;
float *layer = NULL;
int kernel_size = filter_size( sigma );
float kernel[kernel_size];
gaussian_1d( kernel, kernel_size, sigma, 0 );
float* ptr = layers.ptr<float>(0);
#if defined _OPENMP
#pragma omp parallel for private(i, layer)
#endif
for( i=0; i<layer_number; i++ )
{
layer = layers + i*h*w;
convolve_sym( layer, h, w, filter, fsz );
layer = ptr + i * h*w;
Mat cvI( h, w, CV_32FC1, (float*) layer );
Mat Kernel( 1, kernel_size, CV_32FC1, (float*) kernel );
filter2D( cvI, cvI, CV_32F, Kernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( cvI, cvI, CV_32F, Kernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
}
deallocate(filter);
}
void DAISY_Impl::normalize_partial( float* desc ) const
inline void DAISY_Impl::normalize_partial( float* desc ) const
{
float norm;
float norm = 0.0f;
for( int h=0; h<m_grid_point_number; h++ )
{
norm = l2norm( &(desc[h*m_hist_th_q_no]), m_hist_th_q_no );
if( norm != 0.0 ) divide( desc+h*m_hist_th_q_no, m_hist_th_q_no, norm);
// l2 norm
for( int i=0; i<m_hist_th_q_no; i++ )
{
norm += sqrt(desc[h*m_hist_th_q_no + i]
* desc[h*m_hist_th_q_no + i]);
}
if( norm != 0.0 )
// divide with norm
for( int i=0; i<m_hist_th_q_no; i++ )
{
desc[h*m_hist_th_q_no + i] /= norm;
}
}
}
void DAISY_Impl::normalize_full( float* desc ) const
inline void DAISY_Impl::normalize_full( float* desc ) const
{
float norm = l2norm( desc, m_descriptor_size );
if( norm != 0.0 ) divide(desc, m_descriptor_size, norm);
// l2 norm
float norm = 0.0f;
for( int i=0; i<m_descriptor_size; i++ )
{
norm += sqrt(desc[m_descriptor_size + i]
* desc[m_descriptor_size + i]);
}
if( norm != 0.0 )
// divide with norm
for( int i=0; i<m_descriptor_size; i++ )
{
desc[m_descriptor_size + i] /= norm;
}
}
void DAISY_Impl::normalize_sift_way( float* desc ) const
inline void DAISY_Impl::normalize_sift_way( float* desc ) const
{
bool changed = true;
int iter = 0;
float norm;
int h;
int iter = 0;
bool changed = true;
while( changed && iter < MAX_NORMALIZATION_ITER )
{
iter++;
changed = false;
norm = l2norm( desc, m_descriptor_size );
float norm = 0.0f;
for( int i=0; i<m_descriptor_size; i++ )
{
norm += sqrt(desc[m_descriptor_size + i]
* desc[m_descriptor_size + i]);
}
if( norm > 1e-5 )
divide( desc, m_descriptor_size, norm);
// divide with norm
for( int i=0; i<m_descriptor_size; i++ )
{
desc[m_descriptor_size + i] /= norm;
}
for( h=0; h<m_descriptor_size; h++ )
{
......@@ -1178,89 +748,79 @@ void DAISY_Impl::normalize_sift_way( float* desc ) const
}
}
void DAISY_Impl::normalize_descriptors( int nrm_type )
inline void DAISY_Impl::normalize_descriptors( int nrm_type )
{
int number_of_descriptors = m_roi.width * m_roi.height;
int d;
int number_of_descriptors = m_roi.width * m_roi.height;
#if defined _OPENMP
#pragma omp parallel for private(d)
#endif
for( d=0; d<number_of_descriptors; d++ )
normalize_descriptor( m_dense_descriptors+d*m_descriptor_size, nrm_type );
normalize_descriptor( m_dense_descriptors.ptr<float>( d ), nrm_type );
}
void DAISY_Impl::initialize()
inline void DAISY_Impl::initialize()
{
CV_Assert(m_h != 0); // no image ?
CV_Assert(m_w != 0);
// no image ?
CV_Assert(m_image.rows != 0);
CV_Assert(m_image.cols != 0);
if( m_layer_size == 0 ) {
m_layer_size = m_h*m_w;
m_cube_size = m_layer_size*m_hist_th_q_no;
m_layer_size = m_image.rows * m_image.cols;
m_cube_size = m_layer_size * m_hist_th_q_no;
}
int glsz = compute_workspace_memory();
if( !m_workspace_memory ) m_smoothed_gradient_layers = new float[glsz];
float* gradient_layers = m_smoothed_gradient_layers;
m_smoothed_gradient_layers = Mat( g_cube_number + 1, m_cube_size, CV_32F);
layered_gradient( m_image, m_h, m_w, m_hist_th_q_no, gradient_layers );
layered_gradient( m_image, m_hist_th_q_no, m_smoothed_gradient_layers );
// assuming a 0.5 image smoothness, we pull this to 1.6 as in sift
smooth_layers( gradient_layers, m_h, m_w, m_hist_th_q_no, (float)sqrt(g_sigma_init*g_sigma_init-0.25) );
smooth_layers( m_smoothed_gradient_layers, m_image.rows, m_image.cols,
m_hist_th_q_no, (float)sqrt(g_sigma_init*g_sigma_init-0.25) );
}
void DAISY_Impl::compute_cube_sigmas()
inline void DAISY_Impl::compute_cube_sigmas()
{
if( m_cube_sigmas == NULL )
if( m_cube_sigmas.empty() )
{
// user didn't set the sigma's; set them from the descriptor parameters
// user didn't set the sigma's;
// set them from the descriptor parameters
g_cube_number = m_rad_q_no;
m_cube_sigmas = allocate<double>(g_cube_number);
m_cube_sigmas = Mat(1, g_cube_number, CV_64F);
double r_step = double(m_rad)/m_rad_q_no;
for( int r=0; r< m_rad_q_no; r++ )
{
m_cube_sigmas[r] = (r+1)*r_step/2;
m_cube_sigmas.at<double>(r) = (r+1) * r_step/2;
}
}
update_selected_cubes();
}
void DAISY_Impl::set_cube_gaussians( double* sigma_array, int sz )
{
g_cube_number = sz;
if( m_cube_sigmas ) deallocate( m_cube_sigmas );
m_cube_sigmas = allocate<double>( g_cube_number );
for( int r=0; r<g_cube_number; r++ )
{
m_cube_sigmas[r] = sigma_array[r];
}
update_selected_cubes();
}
void DAISY_Impl::update_selected_cubes()
inline void DAISY_Impl::update_selected_cubes()
{
for( int r=0; r<m_rad_q_no; r++ )
{
double seed_sigma = ((double)r+1)*m_rad/m_rad_q_no/2.0;
g_selected_cubes[r] = quantize_radius( (float)seed_sigma );
g_selected_cubes[r] = quantize_radius( (float)seed_sigma );
}
}
int DAISY_Impl::quantize_radius( float rad ) const
inline int DAISY_Impl::quantize_radius( float rad ) const
{
if( rad <= m_cube_sigmas[0 ] ) return 0;
if( rad >= m_cube_sigmas[g_cube_number-1] ) return g_cube_number-1;
if( rad <= m_cube_sigmas.at<double>(0) )
return 0;
if( rad >= m_cube_sigmas.at<double>(g_cube_number-1) )
return g_cube_number-1;
float dist;
float mindist=FLT_MAX;
int mini=0;
for( int c=0; c<g_cube_number; c++ ) {
dist = (float) fabs( m_cube_sigmas[c]-rad );
dist = (float) fabs( m_cube_sigmas.at<double>(c)-rad );
if( dist < mindist ) {
mindist = dist;
mini=c;
......@@ -1269,24 +829,25 @@ int DAISY_Impl::quantize_radius( float rad ) const
return mini;
}
void DAISY_Impl::compute_histograms()
inline void DAISY_Impl::compute_histograms()
{
int r, y, x, ind;
float* hist=0;
for( r=0; r<g_cube_number; r++ )
{
float* dst = m_smoothed_gradient_layers+r*m_cube_size;
float* src = m_smoothed_gradient_layers+(r+1)*m_cube_size;
float* dst = m_smoothed_gradient_layers.ptr<float>(0) + r * m_cube_size;
float* src = m_smoothed_gradient_layers.ptr<float>(0) + (r+1)* m_cube_size;
#if defined _OPENMP
#pragma omp parallel for private(y,x,ind,hist)
#endif
for( y=0; y<m_h; y++ )
for( y=0; y<m_image.rows; y++ )
{
for( x=0; x<m_w; x++ )
for( x=0; x<m_image.cols; x++ )
{
ind = y*m_w+x;
ind = y*m_image.cols+x;
hist = dst+ind*m_hist_th_q_no;
compute_histogram( src, y, x, hist );
}
......@@ -1294,63 +855,75 @@ void DAISY_Impl::compute_histograms()
}
}
void DAISY_Impl::normalize_histograms()
inline void DAISY_Impl::normalize_histograms()
{
for( int r=0; r<g_cube_number; r++ )
{
float* dst = m_smoothed_gradient_layers+r*m_cube_size;
float* dst = m_smoothed_gradient_layers.ptr<float>(0) + r*m_cube_size;
#if defined _OPENMP
#pragma omp parallel for
#endif
for( int y=0; y<m_h; y++ )
for( int y=0; y<m_image.rows; y++ )
{
for( int x=0; x<m_w; x++ )
{
float* hist = dst + (y*m_w+x)*m_hist_th_q_no;
float norm = l2norm( hist, m_hist_th_q_no );
if( norm != 0.0 ) divide( hist, m_hist_th_q_no, norm );
}
}
for( int x=0; x<m_image.cols; x++ )
{
float* hist = dst + (y*m_image.cols+x) * m_hist_th_q_no;
float norm = 0.0f;
for( int i=0; i<m_hist_th_q_no; i++ )
norm += sqrt( hist[i] * hist[i] );
if( norm != 0.0 )
for( int i=0; i<m_hist_th_q_no; i++ )
hist[i] /= norm;
}
}
}
}
void DAISY_Impl::compute_smoothed_gradient_layers()
inline void DAISY_Impl::compute_smoothed_gradient_layers()
{
float* prev_cube = m_smoothed_gradient_layers;
float* prev_cube = m_smoothed_gradient_layers.ptr<float>(0);
float* cube = NULL;
double sigma;
for( int r=0; r<g_cube_number; r++ )
{
cube = m_smoothed_gradient_layers + (r+1)*m_cube_size;
cube = m_smoothed_gradient_layers.ptr<float>(0) + (r+1)*m_cube_size;
// incremental smoothing
if( r == 0 ) sigma = m_cube_sigmas[0];
else sigma = sqrt( m_cube_sigmas[r]*m_cube_sigmas[r] - m_cube_sigmas[r-1]*m_cube_sigmas[r-1] );
if( r == 0 )
sigma = m_cube_sigmas.at<double>(0);
else
sigma = sqrt( m_cube_sigmas.at<double>(r ) * m_cube_sigmas.at<double>(r )
- m_cube_sigmas.at<double>(r-1) * m_cube_sigmas.at<double>(r-1) );
int fsz = filter_size(sigma);
float* filter = new float[fsz];
gaussian_1d(filter, fsz, (float)sigma, 0);
int kernel_size = filter_size( sigma );
float kernel[kernel_size];
gaussian_1d(kernel, kernel_size, (float)sigma, 0);
#if defined _OPENMP
#pragma omp parallel for
#endif
for( int th=0; th<m_hist_th_q_no; th++ )
{
convolve_sym( prev_cube+th*m_layer_size, m_h, m_w, filter, fsz, cube+th*m_layer_size );
Mat cvI( m_image.rows, m_image.cols, CV_32FC1, (float*) prev_cube + th*m_layer_size );
Mat cvO( m_image.rows, m_image.cols, CV_32FC1, (float*) cube + th*m_layer_size );
Mat Kernel( 1, kernel_size, CV_32FC1, (float*) kernel );
filter2D( cvI, cvO, CV_32F, Kernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( cvO, cvO, CV_32F, Kernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
}
deallocate(filter);
prev_cube = cube;
}
compute_histograms();
}
void DAISY_Impl::compute_oriented_grid_points()
inline void DAISY_Impl::compute_oriented_grid_points()
{
m_oriented_grid_points = allocate<double>( g_grid_orientation_resolution, m_grid_point_number*2 );
m_oriented_grid_points =
Mat( g_grid_orientation_resolution, m_grid_point_number*2, CV_64F );
for( int i=0; i<g_grid_orientation_resolution; i++ )
{
......@@ -1359,34 +932,34 @@ void DAISY_Impl::compute_oriented_grid_points()
double kos = cos( angle );
double zin = sin( angle );
double* point_list = m_oriented_grid_points[ i ];
Mat point_list = m_oriented_grid_points.row( i );
for( int k=0; k<m_grid_point_number; k++ )
{
double y = m_grid_points[k][0];
double x = m_grid_points[k][1];
double y = m_grid_points.at<double>(k,0);
double x = m_grid_points.at<double>(k,1);
point_list[2*k+1] = x*kos + y*zin; // x
point_list[2*k ] = -x*zin + y*kos; // y
point_list.at<double>(2*k+1) = x*kos + y*zin; // x
point_list.at<double>(2*k ) = -x*zin + y*kos; // y
}
}
}
void DAISY_Impl::smooth_histogram(float *hist, int hsz)
inline void DAISY_Impl::smooth_histogram(Mat hist, int hsz)
{
int i;
float prev, temp;
prev = hist[hsz - 1];
prev = hist.at<float>(hsz - 1);
for (i = 0; i < hsz; i++)
{
temp = hist[i];
hist[i] = (float) ((prev + hist[i] + hist[(i + 1 == hsz) ? 0 : i + 1]) / 3.0);
temp = hist.at<float>(i);
hist.at<float>(i) = (prev + hist.at<float>(i) + hist.at<float>( (i + 1 == hsz) ? 0 : i + 1) ) / 3.0f;
prev = temp;
}
}
float DAISY_Impl::interpolate_peak(float left, float center, float right)
inline float DAISY_Impl::interpolate_peak(float left, float center, float right)
{
if( center < 0.0 )
{
......@@ -1402,7 +975,7 @@ float DAISY_Impl::interpolate_peak(float left, float center, float right)
else return (float) (0.5*(left -right)/den);
}
int DAISY_Impl::filter_size( double sigma )
inline int DAISY_Impl::filter_size( double sigma )
{
int fsz = (int)(5*sigma);
......@@ -1415,26 +988,32 @@ int DAISY_Impl::filter_size( double sigma )
return fsz;
}
void DAISY_Impl::compute_scales()
inline void DAISY_Impl::compute_scales()
{
//###############################################################################
//# scale detection is work-in-progress! do not use it if you're not Engin Tola #
//###############################################################################
int imsz = m_w * m_h;
int kernel_size = 0;
float sigma = (float) ( pow( g_sigma_step, g_scale_st)*g_sigma_0 );
float* sim = blur_gaussian_2d<float,float>( m_image, m_h, m_w, sigma, filter_size(sigma), false);
if( kernel_size == 0 ) kernel_size = (int)(3*sigma);
if( kernel_size%2 == 0 ) kernel_size++; // kernel size must be odd
if( kernel_size < 3 ) kernel_size = 3; // kernel size cannot be smaller than 3
float kernel[kernel_size];
gaussian_1d( kernel, kernel_size, sigma, 0 );
Mat Kernel( 1, kernel_size, CV_32F, (float*) kernel );
float* next_sim = NULL;
Mat sim, next_sim;
float* max_dog = allocate<float>(imsz);
// output gaussian image
filter2D( m_image, sim, CV_32F, Kernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( sim, sim, CV_32F, Kernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
m_scale_map = allocate<float>(imsz);
Mat max_dog( m_image.rows, m_image.cols, CV_32F, Scalar(0) );
m_scale_map = Mat( m_image.rows, m_image.cols, CV_32F, Scalar(0) );
memset( max_dog, 0, imsz*sizeof(float) );
memset( m_scale_map, 0, imsz*sizeof(float) );
int i;
float sigma_prev;
......@@ -1448,54 +1027,79 @@ void DAISY_Impl::compute_scales()
sigma_inc = sqrt( sigma_new*sigma_new - sigma_prev*sigma_prev );
sigma_prev = sigma_new;
next_sim = blur_gaussian_2d<float,float>( sim, m_h, m_w, sigma_inc, filter_size( sigma_inc ) , false);
kernel_size = filter_size( sigma_inc );
if( kernel_size == 0 ) kernel_size = (int)(3 * sigma_inc);
if( kernel_size%2 == 0 ) kernel_size++; // kernel size must be odd
if( kernel_size < 3 ) kernel_size= 3; // kernel size cannot be smaller than 3
float next_kernel[kernel_size];
gaussian_1d( next_kernel, kernel_size, sigma_inc, 0 );
Mat NextKernel( 1, kernel_size, CV_32F, (float*) next_kernel );
// output gaussian image
filter2D( sim, next_sim, CV_32F, NextKernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( next_sim, next_sim, CV_32F, NextKernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
#if defined _OPENMP
#pragma omp parallel for
#endif
for( int p=0; p<imsz; p++ )
for( int r=0; r<m_image.rows; r++ )
{
float dog = (float) fabs( next_sim[p] - sim[p] );
if( dog > max_dog[p] )
{
max_dog[p] = dog;
m_scale_map[p] = (float) i;
}
for( int c=0; c<m_image.cols; c++ )
{
float dog = (float) fabs( next_sim.at<float>(r,c) - sim.at<float>(r,c) );
if( dog > max_dog.at<float>(r,c) )
{
max_dog.at<float>(r,c) = dog;
m_scale_map.at<float>(r,c) = (float) i;
}
}
}
deallocate( sim );
sim.release();
sim = next_sim;
}
blur_gaussian_2d<float,float>( m_scale_map, m_h, m_w, 10.0, filter_size(10), true);
kernel_size = filter_size( 10.0f );
if( kernel_size == 0 ) kernel_size = (int)(3 * 10.0f);
if( kernel_size%2 == 0 ) kernel_size++; // kernel size must be odd
if( kernel_size < 3 ) kernel_size = 3; // kernel size cannot be smaller than 3
float filter_kernel[kernel_size];
gaussian_1d( filter_kernel, kernel_size, 10.0f, 0 );
Mat FilterKernel( 1, kernel_size, CV_32F, (float*) filter_kernel );
// output gaussian image
filter2D( m_scale_map, m_scale_map, CV_32F, FilterKernel, Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
filter2D( m_scale_map, m_scale_map, CV_32F, FilterKernel.t(), Point( -1.0f, -1.0f ), 0, BORDER_REPLICATE );
#if defined _OPENMP
#pragma omp parallel for
#endif
for( int q=0; q<imsz; q++ )
{
m_scale_map[q] = (float) round( m_scale_map[q] );
}
//save( m_scale_map, m_h, m_w, "scales.dat");
deallocate( sim );
deallocate( max_dog );
for( int r=0; r<m_image.rows; r++ )
{
for( int c=0; c<m_image.cols; c++ )
{
m_scale_map.at<float>(r,c) = (float) round( m_scale_map.at<float>(r,c) );
}
}
//save( m_scale_map, m_image.rows, m_image.cols, "scales.dat");
}
void DAISY_Impl::compute_orientations()
inline void DAISY_Impl::compute_orientations()
{
//#####################################################################################
//# orientation detection is work-in-progress! do not use it if you're not Engin Tola #
//#####################################################################################
CV_Assert( m_image != NULL );
CV_Assert( !m_image.empty() );
int data_size = m_w*m_h;
float* rotation_layers = layered_gradient( m_image, m_h, m_w, m_orientation_resolution );
int data_size = m_image.cols * m_image.rows;
Mat rotation_layers = layered_gradient( m_image, m_orientation_resolution );
m_orientation_map = new int[data_size];
memset( m_orientation_map, 0, sizeof(int)*data_size );
m_orientation_map = Mat(m_image.cols, m_image.rows, CV_16U, Scalar(0));
int ori, max_ind;
int ind;
......@@ -1506,33 +1110,34 @@ void DAISY_Impl::compute_orientations()
int x, y, kk;
float* hist=NULL;
Mat hist;
float sigma_inc;
float sigma_prev = 0;
float sigma_prev = 0.0f;
float sigma_new;
for( int scale=0; scale<g_scale_en; scale++ )
{
sigma_new = (float)( pow( g_sigma_step, scale ) * m_rad/3.0 );
sigma_inc = sqrt( sigma_new*sigma_new - sigma_prev*sigma_prev );
sigma_prev = sigma_new;
smooth_layers( rotation_layers, m_h, m_w, m_orientation_resolution, sigma_inc);
smooth_layers( rotation_layers, m_image.rows, m_image.cols, m_orientation_resolution, sigma_inc );
for( y=0; y<m_h; y ++ )
for( y=0; y<m_image.rows; y ++ )
{
hist = allocate<float>(m_orientation_resolution);
hist = Mat(1, m_orientation_resolution, CV_32F);
for( x=0; x<m_w; x++ )
for( x=0; x<m_image.cols; x++ )
{
ind = y*m_w+x;
ind = y*m_image.cols+x;
if( m_scale_invariant && m_scale_map[ ind ] != scale ) continue;
if( m_scale_invariant && m_scale_map.at<float>(y,x) != scale ) continue;
for( ori=0; ori<m_orientation_resolution; ori++ )
{
hist[ ori ] = rotation_layers[ori*data_size+ind];
hist.at<float>(ori) = rotation_layers.at<float>(ori*data_size+ind);
}
for( kk=0; kk<6; kk++ )
......@@ -1542,9 +1147,9 @@ void DAISY_Impl::compute_orientations()
max_ind = 0;
for( ori=0; ori<m_orientation_resolution; ori++ )
{
if( hist[ori] > max_val )
if( hist.at<float>(ori) > max_val )
{
max_val = hist[ori];
max_val = hist.at<float>(ori);
max_ind = ori;
}
}
......@@ -1557,7 +1162,7 @@ void DAISY_Impl::compute_orientations()
if( next >= m_orientation_resolution )
next -= m_orientation_resolution;
peak = interpolate_peak(hist[prev], hist[max_ind], hist[next]);
peak = interpolate_peak(hist.at<float>(prev), hist.at<float>(max_ind), hist.at<float>(next));
angle = (float)( ((float)max_ind + peak)*360.0/m_orientation_resolution );
int iangle = int(angle);
......@@ -1565,54 +1170,26 @@ void DAISY_Impl::compute_orientations()
if( iangle < 0 ) iangle += 360;
if( iangle >= 360 ) iangle -= 360;
if( !(iangle >= 0.0 && iangle < 360.0) )
{
angle = 0;
}
m_orientation_map[ ind ] = iangle;
m_orientation_map.at<float>(y,x) = iangle;
}
deallocate(hist);
hist.release();
}
}
deallocate( rotation_layers );
compute_oriented_grid_points();
}
void DAISY_Impl::set_descriptor_memory( float* descriptor, long int d_size )
{
CV_Assert( m_descriptor_memory == false );
CV_Assert( m_h*m_w != 0 );
CV_Assert( m_roi.width*m_roi.height != 0 );
CV_Assert( d_size >= compute_descriptor_memory() );
m_dense_descriptors = descriptor;
m_descriptor_memory = true;
}
void DAISY_Impl::set_workspace_memory( float* workspace, long int w_size )
{
CV_Assert( m_workspace_memory == false );
CV_Assert( m_h*m_w != 0 );
CV_Assert( m_roi.width*m_roi.height != 0 );
CV_Assert( w_size >= compute_workspace_memory() );
m_smoothed_gradient_layers = workspace;
m_workspace_memory = true;
}
// -------------------------------------------------
/* DAISY helper routines */
inline void DAISY_Impl::compute_histogram( float* hcube, int y, int x, float* histogram )
{
if( is_outside(x, 0, m_w-1, y, 0, m_h-1) ) return;
if ( ! Point( x, y ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) return;
float* spatial_shift = hcube + y * m_w + x;
int data_size = m_w * m_h;
float* spatial_shift = hcube + y * m_image.cols + x;
int data_size = m_image.cols * m_image.rows;
for( int h=0; h<m_hist_th_q_no; h++ )
histogram[h] = *(spatial_shift + h*data_size);
......@@ -1631,19 +1208,19 @@ inline void DAISY_Impl::bi_get_histogram( float* histogram, double y, double x,
int mnx = int( x );
int mny = int( y );
if( mnx >= m_w-2 || mny >= m_h-2 )
if( mnx >= m_image.cols-2 || mny >= m_image.rows-2 )
{
memset(histogram, 0, sizeof(float)*m_hist_th_q_no);
return;
}
int ind = mny*m_w+mnx;
int ind = mny*m_image.cols+mnx;
// A C --> pixel positions
// B D
float* A = hcube+ind*m_hist_th_q_no;
float* B = A+m_w*m_hist_th_q_no;
float* B = A+m_image.cols*m_hist_th_q_no;
float* C = A+m_hist_th_q_no;
float* D = A+(m_w+1)*m_hist_th_q_no;
float* D = A+(m_image.cols+1)*m_hist_th_q_no;
double alpha = mnx+1-x;
double beta = mny+1-y;
......@@ -1688,8 +1265,11 @@ inline void DAISY_Impl::ti_get_histogram( float* histogram, double y, double x,
inline void DAISY_Impl::ni_get_histogram( float* histogram, int y, int x, int shift, float* hcube ) const
{
if( is_outside(x, 0, m_w-1, y, 0, m_h-1) ) return;
float* hptr = hcube + (y*m_w+x)*m_hist_th_q_no;
if ( ! Point( x, y ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) return;
float* hptr = hcube + (y*m_image.cols+x)*m_hist_th_q_no;
for( int h=0; h<m_hist_th_q_no; h++ )
{
......@@ -1701,9 +1281,9 @@ inline void DAISY_Impl::ni_get_histogram( float* histogram, int y, int x, int sh
inline void DAISY_Impl::get_descriptor( int y, int x, float* &descriptor )
{
CV_Assert( m_dense_descriptors != NULL );
CV_Assert( y<m_h && x<m_w && y>=0 && x>=0 );
descriptor = &(m_dense_descriptors[(y*m_w+x)*m_descriptor_size]);
CV_Assert( !m_dense_descriptors.empty() );
CV_Assert( y<m_image.rows && x<m_image.cols && y>=0 && x>=0 );
descriptor = m_dense_descriptors.ptr<float>( y*m_image.cols+x );
}
inline void DAISY_Impl::get_descriptor( double y, double x, int orientation, float* descriptor ) const
......@@ -1725,22 +1305,24 @@ inline void DAISY_Impl::i_get_descriptor( double y, double x, int orientation, f
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert( y >= 0 && y < m_h );
CV_Assert( x >= 0 && x < m_w );
CV_Assert( y >= 0 && y < m_image.rows );
CV_Assert( x >= 0 && x < m_image.cols );
CV_Assert( orientation >= 0 && orientation < 360 );
CV_Assert( m_smoothed_gradient_layers );
CV_Assert( m_oriented_grid_points );
CV_Assert( !m_smoothed_gradient_layers.empty() );
CV_Assert( !m_oriented_grid_points.empty() );
CV_Assert( descriptor != NULL );
double shift = m_orientation_shift_table[orientation];
i_get_histogram( descriptor, y, x, shift, m_smoothed_gradient_layers+g_selected_cubes[0]*m_cube_size );
float *ptr = (float *) m_smoothed_gradient_layers.ptr<float>(0);
i_get_histogram( descriptor, y, x, shift, ptr + g_selected_cubes[0]*m_cube_size );
int r, rdt, region;
double yy, xx;
float* histogram = 0;
double* grid = m_oriented_grid_points[orientation];
Mat grid = m_oriented_grid_points.row( orientation );
// petals of the flower
for( r=0; r<m_rad_q_no; r++ )
......@@ -1748,11 +1330,15 @@ inline void DAISY_Impl::i_get_descriptor( double y, double x, int orientation, f
rdt = r*m_th_q_no+1;
for( region=rdt; region<rdt+m_th_q_no; region++ )
{
yy = y + grid[2*region ];
xx = x + grid[2*region+1];
if( is_outside(xx, 0, m_w-1, yy, 0, m_h-1) ) continue;
yy = y + grid.at<double>(2*region );
xx = x + grid.at<double>(2*region + 1);
if ( ! Point( xx, yy ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) continue;
histogram = descriptor+region*m_hist_th_q_no;
i_get_histogram( histogram, yy, xx, shift, m_smoothed_gradient_layers+g_selected_cubes[r]*m_cube_size );
i_get_histogram( histogram, yy, xx, shift, ptr + g_selected_cubes[r]*m_cube_size );
}
}
}
......@@ -1764,12 +1350,12 @@ inline void DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert( y >= 0 && y < m_h );
CV_Assert( x >= 0 && x < m_w );
CV_Assert( y >= 0 && y < m_image.rows );
CV_Assert( x >= 0 && x < m_image.cols );
CV_Assert( orientation >= 0 && orientation < 360 );
CV_Assert( m_smoothed_gradient_layers );
CV_Assert( m_oriented_grid_points );
CV_Assert( !m_smoothed_gradient_layers.empty() );
CV_Assert( !m_oriented_grid_points.empty() );
CV_Assert( descriptor != NULL );
double shift = m_orientation_shift_table[orientation];
......@@ -1780,27 +1366,30 @@ inline void DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
int ix = (int)x; if( x - ix > 0.5 ) ix++;
// center
ni_get_histogram( descriptor, iy, ix, ishift, m_smoothed_gradient_layers+g_selected_cubes[0]*m_cube_size );
float *ptr = (float *) m_smoothed_gradient_layers.ptr<float>(0);
ni_get_histogram( descriptor, iy, ix, ishift, ptr + g_selected_cubes[0]*m_cube_size );
double yy, xx;
float* histogram=0;
// petals of the flower
int r, rdt, region;
double* grid = m_oriented_grid_points[orientation];
Mat grid = m_oriented_grid_points.row( orientation );
for( r=0; r<m_rad_q_no; r++ )
{
rdt = r*m_th_q_no+1;
for( region=rdt; region<rdt+m_th_q_no; region++ )
{
yy = y + grid[2*region ];
xx = x + grid[2*region+1];
yy = y + grid.at<double>(2*region );
xx = x + grid.at<double>(2*region+1);
iy = (int)yy; if( yy - iy > 0.5 ) iy++;
ix = (int)xx; if( xx - ix > 0.5 ) ix++;
if( is_outside(ix, 0, m_w-1, iy, 0, m_h-1) ) continue;
if ( ! Point( xx, yy ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) continue;
histogram = descriptor+region*m_hist_th_q_no;
ni_get_histogram( histogram, iy, ix, ishift, m_smoothed_gradient_layers+g_selected_cubes[r]*m_cube_size );
ni_get_histogram( histogram, iy, ix, ishift, ptr + g_selected_cubes[r]*m_cube_size );
}
}
}
......@@ -1826,23 +1415,28 @@ inline bool DAISY_Impl::i_get_descriptor( double y, double x, int orientation, d
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert( orientation >= 0 && orientation < 360 );
CV_Assert( m_smoothed_gradient_layers );
CV_Assert( !m_smoothed_gradient_layers.empty() );
CV_Assert( descriptor != NULL );
int hradius[MAX_CUBE_NO];
double hy, hx, ry, rx;
point_transform_via_homography( H, x, y, hx, hy );
if( is_outside( hx, 0, m_w, hy, 0, m_h ) ) return false;
point_transform_via_homography( H, x+m_cube_sigmas[g_selected_cubes[0]], y, rx, ry);
double radius = l2norm( ry, rx, hy, hx );
if ( ! Point( hx, hy ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) return false;
point_transform_via_homography( H, x+m_cube_sigmas.at<double>(g_selected_cubes[0]), y, rx, ry);
double d0 = rx - hx; double d1 = ry - hy;
double radius = sqrt( d0*d0 + d1*d1 );
hradius[0] = quantize_radius( (float) radius );
double shift = m_orientation_shift_table[orientation];
i_get_histogram( descriptor, hy, hx, shift, m_smoothed_gradient_layers+hradius[0]*m_cube_size );
float *ptr = (float *) m_smoothed_gradient_layers.ptr<float>(0);
i_get_histogram( descriptor, hy, hx, shift, ptr + hradius[0]*m_cube_size );
double gy, gx;
int r, rdt, th, region;
......@@ -1854,21 +1448,24 @@ inline bool DAISY_Impl::i_get_descriptor( double y, double x, int orientation, d
{
region = rdt + th;
gy = y + m_grid_points[region][0];
gx = x + m_grid_points[region][1];
gy = y + m_grid_points.at<double>(region,0);
gx = x + m_grid_points.at<double>(region,1);
point_transform_via_homography(H, gx, gy, hx, hy);
if( th == 0 )
{
point_transform_via_homography(H, gx+m_cube_sigmas[g_selected_cubes[r]], gy, rx, ry);
radius = l2norm( ry, rx, hy, hx );
point_transform_via_homography(H, gx+m_cube_sigmas.at<double>(g_selected_cubes[r]), gy, rx, ry);
d0 = rx - hx; d1 = ry - hy;
radius = sqrt( d0*d0 + d1+d1 );
hradius[r] = quantize_radius( (float) radius );
}
if( is_outside(hx, 0, m_w-1, hy, 0, m_h-1) ) continue;
if ( ! Point( hx, hy ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) continue;
histogram = descriptor+region*m_hist_th_q_no;
i_get_histogram( histogram, hy, hx, shift, m_smoothed_gradient_layers+hradius[r]*m_cube_size );
i_get_histogram( histogram, hy, hx, shift, ptr + hradius[r]*m_cube_size );
}
}
return true;
......@@ -1881,24 +1478,27 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert( orientation >= 0 && orientation < 360 );
CV_Assert( m_smoothed_gradient_layers );
CV_Assert( !m_smoothed_gradient_layers.empty() );
CV_Assert( descriptor != NULL );
int hradius[MAX_CUBE_NO];
double radius;
double hy, hx, ry, rx;
point_transform_via_homography(H, x, y, hx, hy );
if( is_outside( hx, 0, m_w, hy, 0, m_h ) ) return false;
if ( ! Point( hx, hy ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) return false;
double shift = m_orientation_shift_table[orientation];
int ishift = (int)shift; if( shift - ishift > 0.5 ) ishift++;
point_transform_via_homography(H, x+m_cube_sigmas[g_selected_cubes[0]], y, rx, ry);
radius = l2norm( ry, rx, hy, hx );
point_transform_via_homography(H, x+m_cube_sigmas.at<double>(g_selected_cubes[0]), y, rx, ry);
double d0 = rx - hx; double d1 = ry - hy;
double radius = sqrt( d0*d0 + d1*d1 );
hradius[0] = quantize_radius( (float) radius );
int ihx = (int)hx; if( hx - ihx > 0.5 ) ihx++;
......@@ -1907,7 +1507,8 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
int r, rdt, th, region;
double gy, gx;
float* histogram=0;
ni_get_histogram( descriptor, ihy, ihx, ishift, m_smoothed_gradient_layers+hradius[0]*m_cube_size );
float *ptr = (float *) m_smoothed_gradient_layers.ptr<float>(0);
ni_get_histogram( descriptor, ihy, ihx, ishift, ptr + hradius[0]*m_cube_size );
for( r=0; r<m_rad_q_no; r++)
{
rdt = r*m_th_q_no + 1;
......@@ -1915,35 +1516,39 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
{
region = rdt + th;
gy = y + m_grid_points[region][0];
gx = x + m_grid_points[region][1];
gy = y + m_grid_points.at<double>(region,0);
gx = x + m_grid_points.at<double>(region,1);
point_transform_via_homography(H, gx, gy, hx, hy);
if( th == 0 )
{
point_transform_via_homography(H, gx+m_cube_sigmas[g_selected_cubes[r]], gy, rx, ry);
radius = l2norm( ry, rx, hy, hx );
point_transform_via_homography(H, gx+m_cube_sigmas.at<double>(g_selected_cubes[r]), gy, rx, ry);
d0 = rx - hx; d1 = ry - hy;
radius = sqrt( d0*d0 + d1*d1 );
hradius[r] = quantize_radius( (float) radius );
}
ihx = (int)hx; if( hx - ihx > 0.5 ) ihx++;
ihy = (int)hy; if( hy - ihy > 0.5 ) ihy++;
if( is_outside(ihx, 0, m_w-1, ihy, 0, m_h-1) ) continue;
if ( ! Point( ihx, ihy ).inside(
Rect( 0, 0, m_image.cols-1, m_image.rows-1 ) )
) continue;
histogram = descriptor+region*m_hist_th_q_no;
ni_get_histogram( histogram, ihy, ihx, ishift, m_smoothed_gradient_layers+hradius[r]*m_cube_size );
ni_get_histogram( histogram, ihy, ihx, ishift, ptr + hradius[r]*m_cube_size );
}
}
return true;
}
void DAISY_Impl::initialize_single_descriptor_mode( )
inline void DAISY_Impl::initialize_single_descriptor_mode( )
{
initialize();
compute_smoothed_gradient_layers();
}
void DAISY_Impl::set_parameters( )
inline void DAISY_Impl::set_parameters( )
{
m_grid_point_number = m_rad_q_no * m_th_q_no + 1; // +1 is for center pixel
m_descriptor_size = m_grid_point_number * m_hist_th_q_no;
......@@ -1952,7 +1557,7 @@ void DAISY_Impl::set_parameters( )
{
m_orientation_shift_table[i] = i/360.0 * m_hist_th_q_no;
}
m_layer_size = m_h*m_w;
m_layer_size = m_image.rows*m_image.cols;
m_cube_size = m_layer_size*m_hist_th_q_no;
compute_cube_sigmas();
......@@ -1961,48 +1566,29 @@ void DAISY_Impl::set_parameters( )
// set/convert image array for daisy internal routines
// daisy internals use CV_32F image with norm to 1.0f
void DAISY_Impl::set_image( InputArray _image )
inline void DAISY_Impl::set_image( InputArray _image )
{
// release previous image
// and previous daisies workspace
// and previous workspace
reset();
// fetch new image
Mat image = _image.getMat();
// image cannot be empty
CV_Assert( ! image.empty() );
// base size
m_h = image.rows;
m_w = image.cols;
// clone image for conversion
if ( image.depth() != CV_32F ) {
m_work_image = image.clone();
m_image = image.clone();
// convert to gray inplace
if( m_work_image.channels() > 1 )
cvtColor( m_work_image, m_work_image, COLOR_BGR2GRAY );
// convert to float if it is necessary
if ( m_work_image.depth() != CV_32F )
{
// convert and normalize
m_work_image.convertTo( m_work_image, CV_32F );
m_work_image /= 255.0f;
} else
CV_Error( Error::StsUnsupportedFormat, "" );
// use cloned work image
m_image = m_work_image.ptr<float>(0);
if( m_image.channels() > 1 )
cvtColor( m_image, m_image, COLOR_BGR2GRAY );
// convert and normalize
m_image.convertTo( m_image, CV_32F );
m_image /= 255.0f;
} else
// use original user supplied CV_32F image
// should be a normalized one (cannot check)
m_image = image.ptr<float>(0);
m_image = image;
}
......@@ -2019,7 +1605,7 @@ void DAISY_Impl::compute( InputArray _image, std::vector<KeyPoint>& keypoints, O
set_image( _image );
// whole image
m_roi = Rect( 0, 0, m_w, m_h );
m_roi = Rect( 0, 0, m_image.cols, m_image.rows );
// get homography
Mat H = m_h_matrix;
......@@ -2080,8 +1666,7 @@ void DAISY_Impl::compute( InputArray _image, Rect roi, OutputArray _descriptors
normalize_descriptors();
Mat descriptors = _descriptors.getMat();
descriptors = Mat( m_roi.width * m_roi.height, m_descriptor_size,
CV_32F, &m_dense_descriptors[0] );
descriptors = m_dense_descriptors;
release_auxiliary();
}
......@@ -2099,7 +1684,7 @@ void DAISY_Impl::compute( InputArray _image, OutputArray _descriptors )
set_image( _image );
// whole image
m_roi = Rect( 0, 0, m_w, m_h );
m_roi = Rect( 0, 0, m_image.cols, m_image.rows );
set_parameters();
initialize_single_descriptor_mode();
......@@ -2109,8 +1694,7 @@ void DAISY_Impl::compute( InputArray _image, OutputArray _descriptors )
normalize_descriptors();
Mat descriptors = _descriptors.getMat();
descriptors = Mat( m_h * m_w, m_descriptor_size,
CV_32F, &m_dense_descriptors[0] );
descriptors = m_dense_descriptors;
release_auxiliary();
}
......@@ -2121,31 +1705,25 @@ DAISY_Impl::DAISY_Impl( float _radius, int _q_radius, int _q_theta, int _q_hist,
: m_rad(_radius), m_rad_q_no(_q_radius), m_th_q_no(_q_theta), m_hist_th_q_no(_q_hist),
m_nrm_type(_norm), m_disable_interpolation(_interpolation), m_use_orientation(_use_orientation)
{
m_w = 0;
m_h = 0;
m_image = 0;
m_grid_point_number = 0;
m_descriptor_size = 0;
m_smoothed_gradient_layers = NULL;
m_dense_descriptors = NULL;
m_grid_points = NULL;
m_oriented_grid_points = NULL;
m_grid_point_number = 0;
m_grid_points.release();
m_dense_descriptors.release();
m_smoothed_gradient_layers.release();
m_oriented_grid_points.release();
m_scale_invariant = false;
m_rotation_invariant = false;
m_scale_map = NULL;
m_orientation_map = NULL;
m_scale_map.release();
m_orientation_map.release();
m_orientation_resolution = 36;
m_scale_map = NULL;
m_cube_sigmas = NULL;
// unused features
m_descriptor_memory = false;
m_workspace_memory = false;
m_cube_sigmas.release();
m_cube_size = 0;
m_layer_size = 0;
......@@ -2158,12 +1736,11 @@ DAISY_Impl::DAISY_Impl( float _radius, int _q_radius, int _q_theta, int _q_hist,
// destructor
DAISY_Impl::~DAISY_Impl()
{
if ( !m_workspace_memory ) deallocate( m_smoothed_gradient_layers );
deallocate( m_grid_points, m_grid_point_number );
deallocate( m_oriented_grid_points, g_grid_orientation_resolution );
deallocate( m_orientation_map );
deallocate( m_scale_map );
deallocate( m_cube_sigmas );
m_scale_map.release();
m_grid_points.release();
m_orientation_map.release();
m_oriented_grid_points.release();
m_smoothed_gradient_layers.release();
}
Ptr<DAISY> DAISY::create( float radius, int q_radius, int q_theta, int q_hist,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment