Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
73bed6f3
Commit
73bed6f3
authored
May 18, 2015
by
cbalint13
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Rebase the code, massive cleanups. We still pass QA.
parent
2d85137e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
605 additions
and
1033 deletions
+605
-1033
xfeatures2d.hpp
modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
+4
-9
daisy.cpp
modules/xfeatures2d/src/daisy.cpp
+601
-1024
No files found.
modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
View file @
73bed6f3
...
...
@@ -196,7 +196,7 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param ori
entation
orientation on image (0->360)
* @param descriptor supplied array for descriptor storage
*/
virtual
void
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
const
=
0
;
...
...
@@ -204,7 +204,7 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param ori
entation
orientation on image (0->360)
* @param H homography matrix for warped grid
* @param descriptor supplied array for descriptor storage
* @param get_descriptor true if descriptor was computed
...
...
@@ -214,7 +214,7 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param ori
entation
orientation on image (0->360)
* @param descriptor supplied array for descriptor storage
*/
virtual
void
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
const
=
0
;
...
...
@@ -222,18 +222,13 @@ public:
/**
* @param y position y on image
* @param x position x on image
* @param ori orientation on image (0->360)
* @param ori
entation
orientation on image (0->360)
* @param H homography matrix for warped grid
* @param descriptor supplied array for descriptor storage
* @param get_unnormalized_descriptor true if descriptor was computed
*/
virtual
bool
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
const
=
0
;
/**
* @param image set image as working
*/
virtual
void
set_image
(
InputArray
image
)
=
0
;
};
...
...
modules/xfeatures2d/src/daisy.cpp
View file @
73bed6f3
...
...
@@ -49,7 +49,7 @@
*/
#include "precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <fstream>
#include <stdlib.h>
...
...
@@ -167,11 +167,6 @@ public:
*/
virtual
bool
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
const
;
/**
* @param image set image as working
*/
virtual
void
set_image
(
InputArray
image
);
protected
:
...
...
@@ -179,9 +174,6 @@ protected:
* DAISY parameters
*/
// operation mode
int
m_mode
;
// maximum radius of the descriptor region.
float
m_rad
;
...
...
@@ -198,30 +190,29 @@ protected:
// default. change the value using set_normalization() function.
int
m_nrm_type
;
// holds optional H matrix
Mat
m_h_matrix
;
// input image.
float
*
m_image
;
// number of bins in the histograms while computing orientation
int
m_orientation_resolution
;
Mat
m_work_image
;
// the number of grid locations
int
m_grid_point_number
;
//
image height
int
m_
h
;
//
the size of the descriptor vector
int
m_
descriptor_size
;
//
image width
int
m_
w
;
//
size of m_hsz layers at a single sigma: m_hsz * m_layer_size
int
m_
cube_size
;
// image roi
Rect
m_roi
;
// size of the layer :
// m_roi.width*m_roi.height
int
m_layer_size
;
//
stores the descriptors :
//
its size is [ m_roi.width*m_roi.height*m_descriptor_size ].
float
*
m_dense_descriptors
;
//
the clipping threshold to use in normalization: values above this value
//
are clipped to this value for normalize_sift_way() function
float
m_descriptor_normalization_threshold
;
/
/ stores the layered gradients in successively smoothed form: layer[n] =
// m_gradient_layers * gaussian( sigma_n ); n>= 1; layer[0] is the layered_gradient
float
*
m_smoothed_gradient_layers
;
/
*
* DAISY switches
*/
// if set to true, descriptors are scale invariant
bool
m_scale_invariant
;
...
...
@@ -229,244 +220,149 @@ protected:
// if set to true, descriptors are rotation invariant
bool
m_rotation_invariant
;
// number of bins in the histograms while computing orientation
int
m_orientation_resolution
;
// if enabled, descriptors are computed with casting non-integer locations
// to integer positions otherwise we use interpolation.
bool
m_disable_interpolation
;
// switch to enable sample by keypoints orientation
bool
m_use_orientation
;
/*
* DAISY arrays
*/
// holds optional H matrix
Mat
m_h_matrix
;
// input image.
Mat
m_image
;
// image roi
Rect
m_roi
;
// stores the descriptors :
// its size is [ m_roi.width*m_roi.height*m_descriptor_size ].
Mat
m_dense_descriptors
;
// stores the layered gradients in successively smoothed form :
// layer[n] = m_gradient_layers * gaussian( sigma_n );
// n>= 1; layer[0] is the layered_gradient
Mat
m_smoothed_gradient_layers
;
// hold the scales of the pixels
float
*
m_scale_map
;
Mat
m_scale_map
;
// holds the orientaitons of the pixels
int
*
m_orientation_map
;
Mat
m_orientation_map
;
// Holds the oriented coordinates (y,x) of the grid points of the region.
double
**
m_oriented_grid_points
;
Mat
m_oriented_grid_points
;
// holds the gaussian sigmas for radius quantizations for an incremental
// application
double
*
m_cube_sigmas
;
bool
m_descriptor_memory
;
bool
m_workspace_memory
;
// the number of grid locations
int
m_grid_point_number
;
Mat
m_cube_sigmas
;
//
the size of the descriptor vector
int
m_descriptor_size
;
//
Holds the coordinates (y,x) of the grid points of the region.
Mat
m_grid_points
;
// holds the amount of shift that's required for histogram computation
double
m_orientation_shift_table
[
360
];
// if enabled, descriptors are computed with casting non-integer locations
// to integer positions otherwise we use interpolation.
bool
m_disable_interpolation
;
// switch to enable sample by keypoints orientation
bool
m_use_orientation
;
// size of m_hsz layers at a single sigma: m_hsz * m_layer_size
int
m_cube_size
;
private
:
// size of the layer :
// m_roi.width*m_roi.height
int
m_layer_size
;
// two possible computational mode
// ONLY_KEYS -> (mode_1) compute descriptors on demand
// COMP_FULL -> (mode_2) compute all descriptors from image
enum
{
ONLY_KEYS
=
0
,
COMP_FULL
=
1
};
/*
* DAISY functions
*/
// computes the histogram at yx; the size of histogram is m_hist_th_q_no
void
compute_histogram
(
float
*
hcube
,
int
y
,
int
x
,
float
*
histogram
);
// reorganizes the cube data so that histograms are sequential in memory.
void
compute_histograms
();
// emulates the way sift is normalized.
void
normalize_sift_way
(
float
*
desc
)
const
;
// initializes the class: computes gradient and structure-points
inline
void
initialize
();
// normalizes the descriptor histogram by histogram
void
normalize_partial
(
float
*
desc
)
const
;
// initializes for get_descriptor(double, double, int) mode: pre-computes
// convolutions of gradient layers in m_smoothed_gradient_layers
inline
void
initialize_single_descriptor_mode
();
//
normalizes the full descriptor.
void
normalize_full
(
float
*
desc
)
const
;
//
set & precompute parameters
inline
void
set_parameters
()
;
// i
nitializes the class: computes gradient and structure-points
void
initialize
(
);
// i
mage set image as working
inline
void
set_image
(
InputArray
image
);
void
update_selected_cubes
();
// releases all the used memory; call this if you want to process
// multiple images within a loop.
inline
void
reset
();
int
quantize_radius
(
float
rad
)
const
;
// releases unused memory after descriptor computation is completed.
inline
void
release_auxiliary
();
int
filter_size
(
double
sigma
);
// computes the descriptors for every pixel in the image.
inline
void
compute_descriptors
();
// computes scales for every pixel and scales the structure grid so that the
// resulting descriptors are scale invariant. you must set
// m_scale_invariant flag to 1 for the program to call this function
void
compute_scales
();
// Return a number in the range [-0.5, 0.5] that represents the location of
// the peak of a parabola passing through the 3 evenly spaced samples. The
// center value is assumed to be greater than or equal to the other values
// if positive, or less than if negative.
float
interpolate_peak
(
float
left
,
float
center
,
float
right
);
inline
void
compute_scales
();
// Smooth a histogram by using a [1/3 1/3 1/3] kernel. Assume the histogram
// is connected in a circular buffer.
void
smooth_histogram
(
float
*
hist
,
int
bins
);
// compute the smoothed gradient layers.
inline
void
compute_smoothed_gradient_layers
();
// computes pixel orientations and rotates the structure grid so that
// resulting descriptors are rotation invariant. If the scales is also
// detected, then orientations are computed at the computed scales. you must
// set m_rotation_invariant flag to 1 for the program to call this function
void
compute_orientations
();
inline
void
compute_orientations
();
// the clipping threshold to use in normalization: values above this value
// are clipped to this value for normalize_sift_way() function
float
m_descriptor_normalization_threshold
;
// computes the histogram at yx; the size of histogram is m_hist_th_q_no
inline
void
compute_histogram
(
float
*
hcube
,
int
y
,
int
x
,
float
*
histogram
);
// reorganizes the cube data so that histograms are sequential in memory.
inline
void
compute_histograms
();
// computes the sigma's of layers from descriptor parameters if the user did
// not sets it. these define the size of the petals of the descriptor.
void
compute_cube_sigmas
();
inline
void
compute_cube_sigmas
();
// Computes the locations of the unscaled unrotated points where the
// histograms are going to be computed according to the given parameters.
void
compute_grid_points
();
inline
void
compute_grid_points
();
// Computes the locations of the unscaled rotated points where the
// histograms are going to be computed according to the given parameters.
void
compute_oriented_grid_points
();
inline
void
compute_oriented_grid_points
();
// smooths each of the layers by a Gaussian having "sigma" standart
// deviation.
void
smooth_layers
(
float
*
layers
,
int
h
,
int
w
,
int
layer_number
,
float
sigma
);
// Holds the coordinates (y,x) of the grid points of the region.
double
**
m_grid_points
;
int
get_hq
()
{
return
m_hist_th_q_no
;
}
int
get_thq
()
{
return
m_th_q_no
;
}
int
get_rq
()
{
return
m_rad_q_no
;
}
float
get_rad
()
{
return
m_rad
;
}
// sets the type of the normalization to apply out of {NRM_PARTIAL,
// NRM_FULL, NRM_SIFT}. Call before using get_descriptor() if you want to
// change the default normalization type.
void
set_normalization
(
int
nrm_type
)
{
m_nrm_type
=
nrm_type
;
}
// normalizes the descriptor
inline
void
normalize_descriptor
(
float
*
desc
,
int
nrm_type
)
const
;
// applies one of the normalizations (partial,full,sift) to the desciptors.
void
normalize_descriptors
(
int
nrm_type
=
DAISY
::
NRM_NONE
);
// normalizes histograms individually
void
normalize_histograms
();
// gets the histogram at y,x with 'orientation' from the r'th cube
float
*
get_histogram
(
int
y
,
int
x
,
int
r
);
// if called, I don't use interpolation in the computation of
// descriptors.
void
disable_interpolation
()
{
m_disable_interpolation
=
true
;
}
// returns the region number.
int
grid_point_number
()
{
return
m_grid_point_number
;
}
// releases all the used memory; call this if you want to process
// multiple images within a loop.
void
reset
();
// releases unused memory after descriptor computation is completed.
void
release_auxiliary
();
// computes the descriptors for every pixel in the image.
void
compute_descriptors
();
// returns all the descriptors.
float
*
get_dense_descriptors
();
// returns oriented grid points. default is 0 orientation.
double
*
get_grid
(
int
o
=
0
);
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// scales for every pixel so that the resulting descriptors are scale
// invariant.
void
scale_invariant
(
bool
state
=
true
)
{
g_scale_en
=
(
int
)(
(
log
(
g_sigma_2
/
g_sigma_0
))
/
log
(
g_sigma_step
)
)
-
g_scale_st
;
m_scale_invariant
=
state
;
}
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// orientations for every pixel so that the resulting descriptors are
// rotation invariant. orientation steps are 360/ori_resolution
void
rotation_invariant
(
int
ori_resolution
=
36
,
bool
state
=
true
)
{
m_rotation_invariant
=
state
;
m_orientation_resolution
=
ori_resolution
;
}
// sets the gaussian variances manually. must be called before
// initialize() to be considered. must be exact sigma values -> f
// converts to incremental format.
void
set_cube_gaussians
(
double
*
sigma_array
,
int
sz
);
int
*
get_orientation_map
()
{
return
m_orientation_map
;
}
// call compute_descriptor_memory to find the amount of memory to allocate
void
set_descriptor_memory
(
float
*
descriptor
,
long
int
d_size
);
// call compute_workspace_memory to find the amount of memory to allocate
void
set_workspace_memory
(
float
*
workspace
,
long
int
w_size
);
// returns the amount of memory needed for the compute_descriptors()
// function. it is basically equal to imagesize x descriptor_size
int
compute_descriptor_memory
()
{
if
(
m_h
==
0
||
m_descriptor_size
==
0
)
{
CV_Error
(
Error
::
StsInternal
,
"Image and descriptor size is zero"
);
}
return
m_roi
.
width
*
m_roi
.
height
*
m_descriptor_size
;
}
inline
void
normalize_descriptors
(
int
nrm_type
=
DAISY
::
NRM_NONE
);
// returns the amount of memory needed for workspace. call before initialize()
int
compute_workspace_memory
()
{
if
(
m_cube_size
==
0
)
{
CV_Error
(
Error
::
StsInternal
,
"Cube size is zero"
);
}
return
(
g_cube_number
+
1
)
*
m_cube_size
;
}
void
normalize_descriptor
(
float
*
desc
,
int
nrm_type
=
DAISY
::
NRM_NONE
)
const
{
if
(
nrm_type
==
DAISY
::
NRM_NONE
)
nrm_type
=
m_nrm_type
;
else
if
(
nrm_type
==
DAISY
::
NRM_PARTIAL
)
normalize_partial
(
desc
);
else
if
(
nrm_type
==
DAISY
::
NRM_FULL
)
normalize_full
(
desc
);
else
if
(
nrm_type
==
DAISY
::
NRM_SIFT
)
normalize_sift_way
(
desc
);
else
CV_Error
(
Error
::
StsInternal
,
"No such normalization"
);
}
// emulates the way sift is normalized.
inline
void
normalize_sift_way
(
float
*
desc
)
const
;
// transform a point via the homography
void
point_transform_via_homography
(
double
*
H
,
double
x
,
double
y
,
double
&
u
,
double
&
v
)
const
{
double
kxp
=
H
[
0
]
*
x
+
H
[
1
]
*
y
+
H
[
2
];
double
kyp
=
H
[
3
]
*
x
+
H
[
4
]
*
y
+
H
[
5
];
double
kp
=
H
[
6
]
*
x
+
H
[
7
]
*
y
+
H
[
8
];
u
=
kxp
/
kp
;
v
=
kyp
/
kp
;
}
// normalizes the descriptor histogram by histogram
inline
void
normalize_partial
(
float
*
desc
)
const
;
private
:
// normalizes the full descriptor.
inline
void
normalize_full
(
float
*
desc
)
const
;
// two possible computational mode
// ONLY_KEYS -> (mode_1) compute descriptors on demand
// COMP_FULL -> (mode_2) compute all descriptors from image
enum
{
ONLY_KEYS
=
0
,
COMP_FULL
=
1
};
// normalizes histograms individually
inline
void
normalize_histograms
();
// set & precompute parameters
inline
void
set_parameters
();
inline
void
update_selected_cubes
();
// Smooth a histogram by using a [1/3 1/3 1/3] kernel. Assume the histogram
// is connected in a circular buffer.
inline
void
smooth_histogram
(
Mat
hist
,
int
bins
);
//
initializes for get_descriptor(double, double, int) mode: pre-computes
//
convolutions of gradient layers in m_smoothed_gradient_layers
inline
void
initialize_single_descriptor_mode
(
);
//
smooths each of the layers by a Gaussian having "sigma" standart
//
deviation.
inline
void
smooth_layers
(
Mat
layers
,
int
h
,
int
w
,
int
layer_number
,
float
sigma
);
// returns the descriptor vector for the point (y, x) !!! use this for
// precomputed operations meaning that you must call compute_descriptors()
...
...
@@ -474,9 +370,6 @@ private:
// normalize_descriptors() before calling compute_descriptors()
inline
void
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
);
// compute the smoothed gradient layers.
inline
void
compute_smoothed_gradient_layers
();
// does not use interpolation while computing the histogram.
inline
void
ni_get_histogram
(
float
*
histogram
,
int
y
,
int
x
,
int
shift
,
float
*
hcube
)
const
;
...
...
@@ -506,568 +399,196 @@ private:
// does not use interpolation. for w/interpolation, call i_get_descriptor. see also get_descriptor
inline
bool
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
const
;
// creates a 1D gaussian filter with N(mean,sigma).
inline
void
gaussian_1d
(
float
*
fltr
,
int
fsz
,
float
sigma
,
float
mean
)
{
CV_Assert
(
fltr
!=
NULL
);
int
sz
=
(
fsz
-
1
)
/
2
;
int
counter
=-
1
;
float
sum
=
0.0
;
float
v
=
2
*
sigma
*
sigma
;
for
(
int
x
=-
sz
;
x
<=
sz
;
x
++
)
{
counter
++
;
fltr
[
counter
]
=
exp
((
-
((
float
)
x
-
mean
)
*
((
float
)
x
-
mean
))
/
v
);
sum
+=
fltr
[
counter
];
}
if
(
sum
!=
0
)
{
for
(
int
x
=
0
;
x
<
fsz
;
x
++
)
fltr
[
x
]
/=
sum
;
}
}
inline
void
conv_horizontal
(
float
*
image
,
int
h
,
int
w
,
float
*
kernel
,
int
ksize
)
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_32FC1
,
(
float
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
1
,
ksize
,
CV_32FC1
,
(
float
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
inline
void
conv_horizontal
(
double
*
image
,
int
h
,
int
w
,
double
*
kernel
,
int
ksize
)
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_64FC1
,
(
double
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
1
,
ksize
,
CV_64FC1
,
(
double
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
inline
void
conv_vertical
(
float
*
image
,
int
h
,
int
w
,
float
*
kernel
,
int
ksize
)
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_32FC1
,
(
float
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
ksize
,
1
,
CV_32FC1
,
(
float
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
inline
void
conv_vertical
(
double
*
image
,
int
h
,
int
w
,
double
*
kernel
,
int
ksize
)
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_64FC1
,
(
double
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
ksize
,
1
,
CV_64FC1
,
(
double
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
/*
* DAISY utilities
*/
template
<
class
T
>
class
rectangle
{
public
:
T
lx
,
ux
,
ly
,
uy
;
T
dx
,
dy
;
rectangle
(
T
xl
,
T
xu
,
T
yl
,
T
yu
)
{
lx
=
xl
;
ux
=
xu
;
ly
=
yl
;
uy
=
yu
;
dx
=
ux
-
lx
;
dy
=
uy
-
ly
;
};
rectangle
()
{
lx
=
ux
=
ly
=
uy
=
dx
=
dy
=
0
;
};
};
inline
int
quantize_radius
(
float
rad
)
const
;
// checks if the number x is between lx - ux interval.
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx<=x is checked else lx<x is checked
// if ue=1 => x<=ux is checked else x<ux is checked
// by default x is searched inside of [lx,ux)
template
<
class
T1
,
class
T2
,
class
T3
>
inline
bool
is_inside
(
T1
x
,
T2
lx
,
T3
ux
,
bool
le
=
true
,
bool
ue
=
false
)
const
{
if
(
(
((
lx
<
x
)
&&
(
!
le
))
||
((
lx
<=
x
)
&&
le
)
)
&&
(
((
x
<
ux
)
&&
(
!
ue
))
||
((
x
<=
ux
)
&&
ue
)
)
)
{
return
true
;
}
else
{
return
false
;
}
}
// checks if the number x is between lx - ux and/or y is between ly - uy interval.
// If the number is inside, then function returns true, else it returns false.
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx<=x is checked else lx<x is checked
// if ue=1 => x<=ux is checked else x<ux is checked
// by default x is searched inside of [lx,ux).
// the same equality check is applied to the y variable as well.
// If the 'oper' is set '&' both of the numbers must be within the interval to return true
// But if the 'oper' is set to '|' then only one of them being true is sufficient.
template
<
class
T1
,
class
T2
,
class
T3
>
inline
bool
is_inside
(
T1
x
,
T2
lx
,
T3
ux
,
T1
y
,
T2
ly
,
T3
uy
,
bool
le
=
true
,
bool
ue
=
false
,
char
oper
=
'&'
)
const
{
switch
(
oper
)
{
case
'|'
:
if
(
is_inside
(
x
,
lx
,
ux
,
le
,
ue
)
||
is_inside
(
y
,
ly
,
uy
,
le
,
ue
)
)
return
true
;
return
false
;
default
:
if
(
is_inside
(
x
,
lx
,
ux
,
le
,
ue
)
&&
is_inside
(
y
,
ly
,
uy
,
le
,
ue
)
)
return
true
;
return
false
;
}
}
// checks if the number x is between lx - ux and/or y is between ly - uy interval.
// If the number is inside, then function returns true, else it returns false.
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx<=x is checked else lx<x is checked
// if ue=1 => x<=ux is checked else x<ux is checked
// by default x is searched inside of [lx,ux).
// the same equality check is applied to the y variable as well.
// If the 'oper' is set '&' both of the numbers must be within the interval to return true
// But if the 'oper' is set to '|' then only one of them being true is sufficient.
template
<
class
T1
,
class
T2
>
inline
bool
is_inside
(
T1
x
,
T1
y
,
rectangle
<
T2
>
roi
,
bool
le
=
true
,
bool
ue
=
false
,
char
oper
=
'&'
)
const
{
switch
(
oper
)
{
case
'|'
:
if
(
is_inside
(
x
,
roi
.
lx
,
roi
.
ux
,
le
,
ue
)
||
is_inside
(
y
,
roi
.
ly
,
roi
.
uy
,
le
,
ue
)
)
return
true
;
return
false
;
default
:
if
(
is_inside
(
x
,
roi
.
lx
,
roi
.
ux
,
le
,
ue
)
&&
is_inside
(
y
,
roi
.
ly
,
roi
.
uy
,
le
,
ue
)
)
return
true
;
return
false
;
}
}
// checks if the number x is outside lx - ux interval
// the equality is checked depending on the value of le and ue parameters.
// if le=1 => lx>x is checked else lx>=x is checked
// if ue=1 => x>ux is checked else x>=ux is checked
// by default is x is searched outside of [lx,ux)
template
<
class
T1
,
class
T2
,
class
T3
>
inline
bool
is_outside
(
T1
x
,
T2
lx
,
T3
ux
,
bool
le
=
true
,
bool
ue
=
false
)
const
{
return
!
(
is_inside
(
x
,
lx
,
ux
,
le
,
ue
));
}
// checks if the numbers x and y is outside their intervals.
// The equality is checked depending on the value of le and ue parameters.
// If le=1 => lx>x is checked else lx>=x is checked
// If ue=1 => x>ux is checked else x>=ux is checked
// By default is x is searched outside of [lx,ux) (Similarly for y)
// By default, 'oper' is set to OR. If one of them is outside it returns
// true otherwise false.
template
<
class
T1
,
class
T2
,
class
T3
>
inline
bool
is_outside
(
T1
x
,
T2
lx
,
T3
ux
,
T1
y
,
T2
ly
,
T3
uy
,
bool
le
=
true
,
bool
ue
=
false
,
char
oper
=
'|'
)
const
{
switch
(
oper
)
{
case
'&'
:
if
(
is_outside
(
x
,
lx
,
ux
,
le
,
ue
)
&&
is_outside
(
y
,
ly
,
uy
,
le
,
ue
)
)
return
true
;
return
false
;
default
:
if
(
is_outside
(
x
,
lx
,
ux
,
le
,
ue
)
||
is_outside
(
y
,
ly
,
uy
,
le
,
ue
)
)
return
true
;
return
false
;
}
}
// checks if the numbers x and y is outside their intervals.
// The equality is checked depending on the value of le and ue parameters.
// If le=1 => lx>x is checked else lx>=x is checked
// If ue=1 => x>ux is checked else x>=ux is checked
// By default is x is searched outside of [lx,ux) (Similarly for y)
// By default, 'oper' is set to OR. If one of them is outside it returns
// true otherwise false.
template
<
class
T1
,
class
T2
>
inline
bool
is_outside
(
T1
x
,
T1
y
,
rectangle
<
T2
>
roi
,
bool
le
=
true
,
bool
ue
=
false
,
char
oper
=
'|'
)
const
{
switch
(
oper
)
{
case
'&'
:
if
(
is_outside
(
x
,
roi
.
lx
,
roi
.
ux
,
le
,
ue
)
&&
is_outside
(
y
,
roi
.
ly
,
roi
.
uy
,
le
,
ue
)
)
return
true
;
return
false
;
default
:
if
(
is_outside
(
x
,
roi
.
lx
,
roi
.
ux
,
le
,
ue
)
||
is_outside
(
y
,
roi
.
ly
,
roi
.
uy
,
le
,
ue
)
)
return
true
;
return
false
;
}
}
inline
int
filter_size
(
double
sigma
);
// computes the square of a number and returns it.
template
<
class
T
>
inline
T
square
(
T
a
)
const
{
return
a
*
a
;
}
// computes the square of an array. if in_place is enabled, the
// result is returned in the array arr.
template
<
class
T
>
inline
T
*
square
(
T
*
arr
,
int
sz
,
bool
in_place
=
false
)
const
{
T
*
out
;
if
(
in_place
)
out
=
arr
;
else
out
=
allocate
<
T
>
(
sz
);
for
(
int
i
=
0
;
i
<
sz
;
i
++
)
out
[
i
]
=
arr
[
i
]
*
arr
[
i
];
return
out
;
}
// computes the l2norm of an array: [ sum_i( [a(i)]^2 ) ]^0.5
template
<
class
T
>
inline
float
l2norm
(
T
*
a
,
int
sz
)
const
{
float
norm
=
0
;
for
(
int
k
=
0
;
k
<
sz
;
k
++
)
norm
+=
a
[
k
]
*
a
[
k
];
return
sqrt
(
norm
);
}
// Return a number in the range [-0.5, 0.5] that represents the location of
// the peak of a parabola passing through the 3 evenly spaced samples. The
// center value is assumed to be greater than or equal to the other values
// if positive, or less than if negative.
inline
float
interpolate_peak
(
float
left
,
float
center
,
float
right
);
// computes the l2norm of the difference of two arrays: [ sum_i( [a(i)-b(i)]^2 ) ]^0.5
template
<
class
T1
,
class
T2
>
inline
float
l2norm
(
T1
*
a
,
T2
*
b
,
int
sz
)
const
{
float
norm
=
0
;
for
(
int
i
=
0
;
i
<
sz
;
i
++
)
{
norm
+=
square
(
(
float
)
a
[
i
]
-
(
float
)
b
[
i
]
);
}
norm
=
sqrt
(
norm
);
return
norm
;
}
};
// END DAISY_Impl CLASS
template
<
class
T
>
inline
float
l2norm
(
T
y0
,
T
x0
,
T
y1
,
T
x1
)
const
{
float
d0
=
(
float
)
(
x0
-
x1
);
float
d1
=
(
float
)
(
y0
-
y1
);
return
sqrt
(
d0
*
d0
+
d1
*
d1
);
}
// -------------------------------------------------
/* DAISY computation routines */
// allocates a memory of size sz and returns a pointer to the array
template
<
class
T
>
inline
T
*
allocate
(
const
int
sz
)
{
T
*
array
=
new
T
[
sz
];
return
array
;
}
inline
void
DAISY_Impl
::
reset
()
{
m_image
.
release
();
// allocates a memory of size ysz x xsz and returns a double pointer to it
template
<
class
T
>
inline
T
**
allocate
(
const
int
ysz
,
const
int
xsz
)
{
T
**
mat
=
new
T
*
[
ysz
];
int
i
;
m_orientation_map
.
release
();
m_scale_map
.
release
();
for
(
i
=
0
;
i
<
ysz
;
i
++
)
mat
[
i
]
=
new
T
[
xsz
]
;
// allocate<T>(xsz);
m_dense_descriptors
.
release
();
m_smoothed_gradient_layers
.
release
()
;
}
return
mat
;
}
inline
void
DAISY_Impl
::
release_auxiliary
()
{
m_orientation_map
.
release
();
m_scale_map
.
release
();
// deallocates the memory and sets the pointer to null.
template
<
class
T
>
inline
void
deallocate
(
T
*
&
array
)
{
delete
[]
array
;
array
=
NULL
;
}
m_smoothed_gradient_layers
.
release
();
// deallocates the memory and sets the pointer to null.
template
<
class
T
>
inline
void
deallocate
(
T
**
&
mat
,
int
ysz
)
{
if
(
mat
==
NULL
)
return
;
m_grid_points
.
release
();
m_oriented_grid_points
.
release
();
m_cube_sigmas
.
release
();
for
(
int
i
=
0
;
i
<
ysz
;
i
++
)
deallocate
(
mat
[
i
]);
m_image
.
release
();
}
delete
[]
mat
;
mat
=
NULL
;
}
// creates a 1D gaussian filter with N(mean,sigma).
static
void
gaussian_1d
(
float
*
fltr
,
int
fsz
,
float
sigma
,
float
mean
)
{
CV_Assert
(
fltr
!=
NULL
);
// Converts the given polar coordinates of a point to cartesian
// ones.
template
<
class
T1
,
class
T2
>
inline
void
polar2cartesian
(
T1
r
,
T1
t
,
T2
&
y
,
T2
&
x
)
int
sz
=
(
fsz
-
1
)
/
2
;
int
counter
=
-
1
;
float
sum
=
0.0
f
;
float
v
=
2
*
sigma
*
sigma
;
for
(
int
x
=-
sz
;
x
<=
sz
;
x
++
)
{
x
=
(
T2
)(
r
*
cos
(
t
)
);
y
=
(
T2
)(
r
*
sin
(
t
)
);
counter
++
;
fltr
[
counter
]
=
exp
((
-
((
float
)
x
-
mean
)
*
((
float
)
x
-
mean
))
/
v
);
sum
+=
fltr
[
counter
];
}
if
(
sum
!=
0
)
for
(
int
x
=
0
;
x
<
fsz
;
x
++
)
fltr
[
x
]
/=
sum
;
}
template
<
typename
T
>
inline
void
convolve_sym_
(
T
*
image
,
int
h
,
int
w
,
T
*
kernel
,
int
ksize
)
{
conv_horizontal
(
image
,
h
,
w
,
kernel
,
ksize
);
conv_vertical
(
image
,
h
,
w
,
kernel
,
ksize
);
}
template
<
class
T
>
inline
void
convolve_sym
(
T
*
image
,
int
h
,
int
w
,
T
*
kernel
,
int
ksize
,
T
*
out
=
NULL
)
{
if
(
out
==
NULL
)
out
=
image
;
else
memcpy
(
out
,
image
,
sizeof
(
T
)
*
h
*
w
);
convolve_sym_
(
out
,
h
,
w
,
kernel
,
ksize
);
}
// computes the gradient of an image
static
void
gradient
(
Mat
im
,
int
h
,
int
w
,
Mat
dy
,
Mat
dx
)
{
CV_Assert
(
!
dx
.
empty
()
);
CV_Assert
(
!
dy
.
empty
()
);
// divides the elements of the array with num
template
<
class
T1
,
class
T2
>
inline
void
divide
(
T1
*
arr
,
int
sz
,
T2
num
)
const
for
(
int
y
=
0
;
y
<
h
;
y
++
)
{
float
inv_num
=
(
float
)
(
1.0
/
num
);
for
(
int
i
=
0
;
i
<
sz
;
i
++
)
int
yw
=
y
*
w
;
for
(
int
x
=
0
;
x
<
w
;
x
++
)
{
arr
[
i
]
=
(
T1
)(
arr
[
i
]
*
inv_num
);
int
ind
=
yw
+
x
;
// dx
if
(
x
>
0
&&
x
<
w
-
1
)
dx
.
at
<
float
>
(
ind
)
=
(
im
.
at
<
float
>
(
ind
+
1
)
-
im
.
at
<
float
>
(
ind
-
1
))
/
2.0
f
;
if
(
x
==
0
)
dx
.
at
<
float
>
(
ind
)
=
im
.
at
<
float
>
(
ind
+
1
)
-
im
.
at
<
float
>
(
ind
);
if
(
x
==
w
-
1
)
dx
.
at
<
float
>
(
ind
)
=
im
.
at
<
float
>
(
ind
)
-
im
.
at
<
float
>
(
ind
-
1
);
// dy
if
(
y
>
0
&&
y
<
h
-
1
)
dy
.
at
<
float
>
(
ind
)
=
(
im
.
at
<
float
>
(
ind
+
w
)
-
im
.
at
<
float
>
(
ind
-
w
))
/
2.0
f
;
if
(
y
==
0
)
dy
.
at
<
float
>
(
ind
)
=
im
.
at
<
float
>
(
ind
+
w
)
-
im
.
at
<
float
>
(
ind
);
if
(
y
==
h
-
1
)
dy
.
at
<
float
>
(
ind
)
=
im
.
at
<
float
>
(
ind
)
-
im
.
at
<
float
>
(
ind
-
w
);
}
}
}
// returns an array filled with zeroes.
template
<
class
T
>
inline
T
*
zeros
(
int
r
)
{
T
*
data
=
allocate
<
T
>
(
r
);
memset
(
data
,
0
,
sizeof
(
T
)
*
r
);
return
data
;
}
static
Mat
layered_gradient
(
Mat
data
,
int
layer_no
=
8
)
{
int
data_size
=
data
.
rows
*
data
.
cols
;
Mat
layers
(
1
,
layer_no
*
data_size
,
CV_32F
,
Scalar
(
0
)
);
template
<
class
T
>
inline
T
*
layered_gradient
(
T
*
data
,
int
h
,
int
w
,
int
layer_no
=
8
)
{
int
data_size
=
h
*
w
;
T
*
layers
=
zeros
<
T
>
(
layer_no
*
data_size
);
float
kernel
[
5
];
gaussian_1d
(
kernel
,
5
,
0.5
f
,
0.0
f
);
Mat
Kernel
(
1
,
5
,
CV_32F
,
(
float
*
)
kernel
);
// smooth the data matrix
T
*
bdata
=
blur_gaussian_2d
<
T
,
T
>
(
data
,
h
,
w
,
0.5
,
5
,
false
);
Mat
cvO
;
// smooth the data matrix
filter2D
(
data
,
cvO
,
CV_32F
,
Kernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvO
,
cvO
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
T
*
dx
=
new
T
[
data_size
];
T
*
dy
=
new
T
[
data_size
];
gradient
(
bdata
,
h
,
w
,
dy
,
dx
);
deallocate
(
bdata
);
Mat
dx
(
1
,
data_size
,
CV_32F
);
Mat
dy
(
1
,
data_size
,
CV_32F
);
gradient
(
cvO
,
data
.
rows
,
data
.
cols
,
dy
,
dx
);
cvO
.
release
();
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
l
=
0
;
l
<
layer_no
;
l
++
)
{
float
angle
=
(
float
)
(
2
*
l
*
CV_PI
/
layer_no
);
float
kos
=
(
float
)
cos
(
angle
);
float
zin
=
(
float
)
sin
(
angle
);
for
(
int
l
=
0
;
l
<
layer_no
;
l
++
)
{
float
angle
=
(
float
)
(
2
*
l
*
CV_PI
/
layer_no
);
float
kos
=
(
float
)
cos
(
angle
);
float
zin
=
(
float
)
sin
(
angle
);
T
*
layer_l
=
layers
+
l
*
data_size
;
float
*
layer_l
=
layers
.
ptr
<
float
>
(
0
)
+
l
*
data_size
;
for
(
int
index
=
0
;
index
<
data_size
;
index
++
)
{
float
value
=
kos
*
dx
[
index
]
+
zin
*
dy
[
index
];
if
(
value
>
0
)
layer_l
[
index
]
=
value
;
else
layer_l
[
index
]
=
0
;
}
for
(
int
index
=
0
;
index
<
data_size
;
index
++
)
{
float
value
=
kos
*
dx
.
at
<
float
>
(
index
)
+
zin
*
dy
.
at
<
float
>
(
index
);
if
(
value
>
0
)
layer_l
[
index
]
=
value
;
else
layer_l
[
index
]
=
0
;
}
deallocate
(
dy
);
deallocate
(
dx
);
return
layers
;
}
}
return
layers
;
}
// computes the gradient of an image and returns the result in
// pointers to REAL.
template
<
class
T
>
inline
void
gradient
(
T
*
im
,
int
h
,
int
w
,
T
*
dy
,
T
*
dx
)
{
CV_Assert
(
dx
!=
NULL
);
CV_Assert
(
dy
!=
NULL
);
// data is not destroyed afterwards
static
void
layered_gradient
(
Mat
data
,
int
layer_no
,
Mat
layers
)
{
CV_Assert
(
!
layers
.
empty
()
);
for
(
int
y
=
0
;
y
<
h
;
y
++
)
{
int
yw
=
y
*
w
;
for
(
int
x
=
0
;
x
<
w
;
x
++
)
{
int
ind
=
yw
+
x
;
// dx
if
(
x
>
0
&&
x
<
w
-
1
)
dx
[
ind
]
=
(
T
)
(((
T
)
im
[
ind
+
1
]
-
(
T
)
im
[
ind
-
1
])
/
2.0
f
);
if
(
x
==
0
)
dx
[
ind
]
=
((
T
)
im
[
ind
+
1
]
-
(
T
)
im
[
ind
]);
if
(
x
==
w
-
1
)
dx
[
ind
]
=
((
T
)
im
[
ind
]
-
(
T
)
im
[
ind
-
1
]);
//dy
if
(
y
>
0
&&
y
<
h
-
1
)
dy
[
ind
]
=
(
T
)
(((
T
)
im
[
ind
+
w
]
-
(
T
)
im
[
ind
-
w
])
/
2.0
f
);
if
(
y
==
0
)
dy
[
ind
]
=
((
T
)
im
[
ind
+
w
]
-
(
T
)
im
[
ind
]);
if
(
y
==
h
-
1
)
dy
[
ind
]
=
((
T
)
im
[
ind
]
-
(
T
)
im
[
ind
-
w
]);
}
}
}
Mat
cvI
=
data
.
clone
();
layers
.
setTo
(
Scalar
(
0
)
);
int
data_size
=
data
.
rows
*
data
.
cols
;
// be careful, 'data' is destroyed afterwards
template
<
class
T
>
inline
// original T* workspace=0 was removed
void
layered_gradient
(
T
*
data
,
int
h
,
int
w
,
int
layer_no
,
T
*
layers
,
int
lwork
=
0
)
{
int
data_size
=
h
*
w
;
CV_Assert
(
layers
!=
NULL
);
memset
(
layers
,
0
,
sizeof
(
T
)
*
data_size
*
layer_no
);
bool
was_empty
=
false
;
T
*
work
=
NULL
;
if
(
lwork
<
3
*
data_size
)
{
work
=
new
T
[
3
*
data_size
];
was_empty
=
true
;
}
float
kernel
[
5
];
gaussian_1d
(
kernel
,
5
,
0.5
f
,
0.0
f
);
Mat
Kernel
(
1
,
5
,
CV_32F
,
(
float
*
)
kernel
);
// // smooth the data matrix
// T* bdata = blur_gaussian_2d<T,T>( data, h, w, 0.5, 5, false);
float
kernel
[
5
];
gaussian_1d
(
kernel
,
5
,
0.5
,
0
);
memcpy
(
work
,
data
,
sizeof
(
T
)
*
data_size
);
convolve_sym
(
work
,
h
,
w
,
kernel
,
5
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
T
*
dx
=
work
+
data_size
;
T
*
dy
=
work
+
2
*
data_size
;
gradient
(
work
,
h
,
w
,
dy
,
dx
);
Mat
dx
(
1
,
data_size
,
CV_32F
)
;
Mat
dy
(
1
,
data_size
,
CV_32F
)
;
gradient
(
cvI
,
data
.
rows
,
data
.
cols
,
dy
,
dx
);
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
l
=
0
;
l
<
layer_no
;
l
++
)
{
float
angle
=
(
float
)
(
2
*
l
*
CV_PI
/
layer_no
);
float
kos
=
(
float
)
cos
(
angle
);
float
zin
=
(
float
)
sin
(
angle
);
for
(
int
l
=
0
;
l
<
layer_no
;
l
++
)
{
float
angle
=
(
float
)
(
2
*
l
*
CV_PI
/
layer_no
);
float
kos
=
(
float
)
cos
(
angle
);
float
zin
=
(
float
)
sin
(
angle
);
T
*
layer_l
=
layers
+
l
*
data_size
;
float
*
layer_l
=
layers
.
ptr
<
float
>
(
0
)
+
l
*
data_size
;
for
(
int
index
=
0
;
index
<
data_size
;
index
++
)
{
float
value
=
kos
*
dx
[
index
]
+
zin
*
dy
[
index
];
if
(
value
>
0
)
layer_l
[
index
]
=
value
;
else
layer_l
[
index
]
=
0
;
}
for
(
int
index
=
0
;
index
<
data_size
;
index
++
)
{
float
value
=
kos
*
dx
.
at
<
float
>
(
index
)
+
zin
*
dy
.
at
<
float
>
(
index
);
if
(
value
>
0
)
layer_l
[
index
]
=
value
;
else
layer_l
[
index
]
=
0
;
}
if
(
was_empty
)
delete
[]
work
;
}
// casts a type T2 array into a type T1 array.
template
<
class
T1
,
class
T2
>
inline
T1
*
type_cast
(
T2
*
data
,
int
sz
)
{
T1
*
out
=
new
T1
[
sz
];
for
(
int
i
=
0
;
i
<
sz
;
i
++
)
out
[
i
]
=
(
T1
)
data
[
i
];
return
out
;
}
// Applies a 2d gaussian blur of sigma std to the input array. if
// kernel_size is not set or it is set to 0, then it is taken as
// 3*sigma and if it is set to an even number, it is incremented
// to be an odd number. if in_place=true, then T1 must be equal
// to T2 naturally.
template
<
class
T1
,
class
T2
>
inline
T1
*
blur_gaussian_2d
(
T2
*
array
,
int
rn
,
int
cn
,
float
sigma
,
int
kernel_size
=
0
,
bool
in_place
=
false
)
{
T1
*
out
=
NULL
;
if
(
in_place
)
out
=
(
T1
*
)
array
;
else
out
=
type_cast
<
T1
,
T2
>
(
array
,
rn
*
cn
);
if
(
kernel_size
==
0
)
kernel_size
=
(
int
)(
3
*
sigma
);
if
(
kernel_size
%
2
==
0
)
kernel_size
++
;
// kernel size must be odd
if
(
kernel_size
<
3
)
kernel_size
=
3
;
// kernel size cannot be smaller than 3
float
*
kernel
=
new
float
[
kernel_size
];
gaussian_1d
(
kernel
,
kernel_size
,
sigma
,
0
);
// !! apply the filter separately
convolve_sym
(
out
,
rn
,
cn
,
kernel
,
kernel_size
);
// conv_horizontal( out, rn, cn, kernel, kernel_size);
// conv_vertical ( out, rn, cn, kernel, kernel_size);
deallocate
(
kernel
);
return
out
;
}
};
// END DAISY_Impl CLASS
// -------------------------------------------------
/* DAISY computation routines */
float
*
DAISY_Impl
::
get_histogram
(
int
y
,
int
x
,
int
r
)
{
CV_Assert
(
y
>=
0
&&
y
<
m_h
);
CV_Assert
(
x
>=
0
&&
x
<
m_w
);
CV_Assert
(
m_smoothed_gradient_layers
);
CV_Assert
(
m_oriented_grid_points
);
return
m_smoothed_gradient_layers
+
g_selected_cubes
[
r
]
*
m_cube_size
+
(
y
*
m_w
+
x
)
*
m_hist_th_q_no
;
// i_get_histogram( histogram, y, x, 0, m_smoothed_gradient_layers+g_selected_cubes[r]*m_cube_size );
}
}
float
*
DAISY_Impl
::
get_dense_descriptors
(
)
// transform a point via the homography
static
void
point_transform_via_homography
(
double
*
H
,
double
x
,
double
y
,
double
&
u
,
double
&
v
)
{
return
m_dense_descriptors
;
double
kxp
=
H
[
0
]
*
x
+
H
[
1
]
*
y
+
H
[
2
];
double
kyp
=
H
[
3
]
*
x
+
H
[
4
]
*
y
+
H
[
5
];
double
kp
=
H
[
6
]
*
x
+
H
[
7
]
*
y
+
H
[
8
];
u
=
kxp
/
kp
;
v
=
kyp
/
kp
;
}
double
*
DAISY_Impl
::
get_grid
(
int
o
)
{
CV_Assert
(
o
>=
0
&&
o
<
360
);
return
m_oriented_grid_points
[
o
];
}
void
DAISY_Impl
::
reset
()
{
m_work_image
.
release
();
if
(
m_orientation_map
)
deallocate
(
m_orientation_map
);
if
(
m_scale_map
)
deallocate
(
m_scale_map
);
if
(
!
m_descriptor_memory
&&
m_dense_descriptors
)
deallocate
(
m_dense_descriptors
);
if
(
!
m_workspace_memory
&&
m_smoothed_gradient_layers
)
deallocate
(
m_smoothed_gradient_layers
);
}
void
DAISY_Impl
::
release_auxiliary
()
{
if
(
m_orientation_map
)
deallocate
(
m_orientation_map
);
if
(
m_scale_map
)
deallocate
(
m_scale_map
);
if
(
!
m_workspace_memory
&&
m_smoothed_gradient_layers
)
deallocate
(
m_smoothed_gradient_layers
);
if
(
m_grid_points
)
deallocate
(
m_grid_points
,
m_grid_point_number
);
if
(
m_oriented_grid_points
)
deallocate
(
m_oriented_grid_points
,
g_grid_orientation_resolution
);
if
(
m_cube_sigmas
)
deallocate
(
m_cube_sigmas
);
m_work_image
.
release
();
}
void
DAISY_Impl
::
compute_grid_points
()
inline
void
DAISY_Impl
::
compute_grid_points
()
{
double
r_step
=
m_rad
/
(
double
)
m_rad_q_no
;
double
t_step
=
2
*
CV_PI
/
m_th_q_no
;
if
(
m_grid_points
)
deallocate
(
m_grid_points
,
m_grid_point_number
);
m_grid_points
.
release
();
m_grid_points
=
Mat
(
m_grid_point_number
,
2
,
CV_64F
);
m_grid_points
=
allocate
<
double
>
(
m_grid_point_number
,
2
);
for
(
int
y
=
0
;
y
<
m_grid_point_number
;
y
++
)
{
m_grid_points
[
y
][
0
]
=
0
;
m_grid_points
[
y
][
1
]
=
0
;
m_grid_points
.
at
<
double
>
(
y
,
0
)
=
0
;
m_grid_points
.
at
<
double
>
(
y
,
1
)
=
0
;
}
for
(
int
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
...
...
@@ -1075,18 +596,26 @@ void DAISY_Impl::compute_grid_points()
int
region
=
r
*
m_th_q_no
+
1
;
for
(
int
t
=
0
;
t
<
m_th_q_no
;
t
++
)
{
double
y
,
x
;
polar2cartesian
(
(
r
+
1
)
*
r_step
,
t
*
t_step
,
y
,
x
);
m_grid_points
[
region
+
t
][
0
]
=
y
;
m_grid_points
[
region
+
t
][
1
]
=
x
;
m_grid_points
.
at
<
double
>
(
region
+
t
,
0
)
=
(
r
+
1
)
*
r_step
*
sin
(
t
*
t_step
);
m_grid_points
.
at
<
double
>
(
region
+
t
,
1
)
=
(
r
+
1
)
*
r_step
*
cos
(
t
*
t_step
);
}
}
compute_oriented_grid_points
();
}
/// Computes the descriptor by sampling convoluted orientation maps.
void
DAISY_Impl
::
compute_descriptors
()
inline
void
DAISY_Impl
::
normalize_descriptor
(
float
*
desc
,
int
nrm_type
=
DAISY
::
NRM_NONE
)
const
{
if
(
nrm_type
==
DAISY
::
NRM_NONE
)
nrm_type
=
m_nrm_type
;
else
if
(
nrm_type
==
DAISY
::
NRM_PARTIAL
)
normalize_partial
(
desc
);
else
if
(
nrm_type
==
DAISY
::
NRM_FULL
)
normalize_full
(
desc
);
else
if
(
nrm_type
==
DAISY
::
NRM_SIFT
)
normalize_sift_way
(
desc
);
else
CV_Error
(
Error
::
StsInternal
,
"No such normalization"
);
}
// Computes the descriptor by sampling convoluted orientation maps.
inline
void
DAISY_Impl
::
compute_descriptors
()
{
int
y_off
=
m_roi
.
y
;
...
...
@@ -1094,12 +623,10 @@ void DAISY_Impl::compute_descriptors()
int
y_end
=
m_roi
.
y
+
m_roi
.
height
;
int
x_end
=
m_roi
.
x
+
m_roi
.
width
;
if
(
m_scale_invariant
)
compute_scales
();
if
(
m_rotation_invariant
)
compute_orientations
();
if
(
!
m_descriptor_memory
)
m_dense_descriptors
=
allocate
<
float
>
(
m_roi
.
width
*
m_roi
.
height
*
m_descriptor_size
);
// if( m_scale_invariant ) compute_scales();
// if( m_rotation_invariant ) compute_orientations();
m
emset
(
m_dense_descriptors
,
0
,
sizeof
(
float
)
*
m_roi
.
width
*
m_roi
.
height
*
m_descriptor_size
);
m
_dense_descriptors
=
Mat
(
m_roi
.
width
*
m_roi
.
height
,
m_descriptor_size
,
CV_32F
,
Scalar
(
0
)
);
int
y
,
x
,
index
,
orientation
;
#if defined _OPENMP
...
...
@@ -1109,63 +636,106 @@ void DAISY_Impl::compute_descriptors()
{
for
(
x
=
x_off
;
x
<
x_end
;
x
++
)
{
index
=
y
*
m_
w
+
x
;
index
=
y
*
m_
image
.
cols
+
x
;
orientation
=
0
;
if
(
m_orientation_map
)
orientation
=
m_orientation_map
[
index
];
if
(
!
(
orientation
>=
0
&&
orientation
<
g_grid_orientation_resolution
)
)
orientation
=
0
;
get_unnormalized_descriptor
(
y
,
x
,
orientation
,
&
(
m_dense_descriptors
[
index
*
m_descriptor_size
])
);
if
(
!
m_orientation_map
.
empty
()
)
orientation
=
(
int
)
m_orientation_map
.
at
<
ushort
>
(
x
,
y
);
if
(
!
(
orientation
>=
0
&&
orientation
<
g_grid_orientation_resolution
)
)
orientation
=
0
;
get_unnormalized_descriptor
(
y
,
x
,
orientation
,
m_dense_descriptors
.
ptr
<
float
>
(
index
)
);
}
}
}
void
DAISY_Impl
::
smooth_layers
(
float
*
layers
,
int
h
,
int
w
,
int
layer_number
,
float
sigma
)
inline
void
DAISY_Impl
::
smooth_layers
(
Mat
layers
,
int
h
,
int
w
,
int
layer_number
,
float
sigma
)
{
int
fsz
=
filter_size
(
sigma
);
float
*
filter
=
new
float
[
fsz
];
gaussian_1d
(
filter
,
fsz
,
sigma
,
0
);
int
i
;
float
*
layer
=
0
;
float
*
layer
=
NULL
;
int
kernel_size
=
filter_size
(
sigma
);
float
kernel
[
kernel_size
];
gaussian_1d
(
kernel
,
kernel_size
,
sigma
,
0
);
float
*
ptr
=
layers
.
ptr
<
float
>
(
0
);
#if defined _OPENMP
#pragma omp parallel for private(i, layer)
#endif
for
(
i
=
0
;
i
<
layer_number
;
i
++
)
{
layer
=
layers
+
i
*
h
*
w
;
convolve_sym
(
layer
,
h
,
w
,
filter
,
fsz
);
layer
=
ptr
+
i
*
h
*
w
;
Mat
cvI
(
h
,
w
,
CV_32FC1
,
(
float
*
)
layer
);
Mat
Kernel
(
1
,
kernel_size
,
CV_32FC1
,
(
float
*
)
kernel
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
}
deallocate
(
filter
);
}
void
DAISY_Impl
::
normalize_partial
(
float
*
desc
)
const
inline
void
DAISY_Impl
::
normalize_partial
(
float
*
desc
)
const
{
float
norm
;
float
norm
=
0.0
f
;
for
(
int
h
=
0
;
h
<
m_grid_point_number
;
h
++
)
{
norm
=
l2norm
(
&
(
desc
[
h
*
m_hist_th_q_no
]),
m_hist_th_q_no
);
if
(
norm
!=
0.0
)
divide
(
desc
+
h
*
m_hist_th_q_no
,
m_hist_th_q_no
,
norm
);
// l2 norm
for
(
int
i
=
0
;
i
<
m_hist_th_q_no
;
i
++
)
{
norm
+=
sqrt
(
desc
[
h
*
m_hist_th_q_no
+
i
]
*
desc
[
h
*
m_hist_th_q_no
+
i
]);
}
if
(
norm
!=
0.0
)
// divide with norm
for
(
int
i
=
0
;
i
<
m_hist_th_q_no
;
i
++
)
{
desc
[
h
*
m_hist_th_q_no
+
i
]
/=
norm
;
}
}
}
void
DAISY_Impl
::
normalize_full
(
float
*
desc
)
const
inline
void
DAISY_Impl
::
normalize_full
(
float
*
desc
)
const
{
float
norm
=
l2norm
(
desc
,
m_descriptor_size
);
if
(
norm
!=
0.0
)
divide
(
desc
,
m_descriptor_size
,
norm
);
// l2 norm
float
norm
=
0.0
f
;
for
(
int
i
=
0
;
i
<
m_descriptor_size
;
i
++
)
{
norm
+=
sqrt
(
desc
[
m_descriptor_size
+
i
]
*
desc
[
m_descriptor_size
+
i
]);
}
if
(
norm
!=
0.0
)
// divide with norm
for
(
int
i
=
0
;
i
<
m_descriptor_size
;
i
++
)
{
desc
[
m_descriptor_size
+
i
]
/=
norm
;
}
}
void
DAISY_Impl
::
normalize_sift_way
(
float
*
desc
)
const
inline
void
DAISY_Impl
::
normalize_sift_way
(
float
*
desc
)
const
{
bool
changed
=
true
;
int
iter
=
0
;
float
norm
;
int
h
;
int
iter
=
0
;
bool
changed
=
true
;
while
(
changed
&&
iter
<
MAX_NORMALIZATION_ITER
)
{
iter
++
;
changed
=
false
;
norm
=
l2norm
(
desc
,
m_descriptor_size
);
float
norm
=
0.0
f
;
for
(
int
i
=
0
;
i
<
m_descriptor_size
;
i
++
)
{
norm
+=
sqrt
(
desc
[
m_descriptor_size
+
i
]
*
desc
[
m_descriptor_size
+
i
]);
}
if
(
norm
>
1e-5
)
divide
(
desc
,
m_descriptor_size
,
norm
);
// divide with norm
for
(
int
i
=
0
;
i
<
m_descriptor_size
;
i
++
)
{
desc
[
m_descriptor_size
+
i
]
/=
norm
;
}
for
(
h
=
0
;
h
<
m_descriptor_size
;
h
++
)
{
...
...
@@ -1178,89 +748,79 @@ void DAISY_Impl::normalize_sift_way( float* desc ) const
}
}
void
DAISY_Impl
::
normalize_descriptors
(
int
nrm_type
)
inline
void
DAISY_Impl
::
normalize_descriptors
(
int
nrm_type
)
{
int
number_of_descriptors
=
m_roi
.
width
*
m_roi
.
height
;
int
d
;
int
number_of_descriptors
=
m_roi
.
width
*
m_roi
.
height
;
#if defined _OPENMP
#pragma omp parallel for private(d)
#endif
for
(
d
=
0
;
d
<
number_of_descriptors
;
d
++
)
normalize_descriptor
(
m_dense_descriptors
+
d
*
m_descriptor_size
,
nrm_type
);
normalize_descriptor
(
m_dense_descriptors
.
ptr
<
float
>
(
d
)
,
nrm_type
);
}
void
DAISY_Impl
::
initialize
()
inline
void
DAISY_Impl
::
initialize
()
{
CV_Assert
(
m_h
!=
0
);
// no image ?
CV_Assert
(
m_w
!=
0
);
// no image ?
CV_Assert
(
m_image
.
rows
!=
0
);
CV_Assert
(
m_image
.
cols
!=
0
);
if
(
m_layer_size
==
0
)
{
m_layer_size
=
m_
h
*
m_w
;
m_cube_size
=
m_layer_size
*
m_hist_th_q_no
;
m_layer_size
=
m_
image
.
rows
*
m_image
.
cols
;
m_cube_size
=
m_layer_size
*
m_hist_th_q_no
;
}
int
glsz
=
compute_workspace_memory
();
if
(
!
m_workspace_memory
)
m_smoothed_gradient_layers
=
new
float
[
glsz
];
float
*
gradient_layers
=
m_smoothed_gradient_layers
;
m_smoothed_gradient_layers
=
Mat
(
g_cube_number
+
1
,
m_cube_size
,
CV_32F
);
layered_gradient
(
m_image
,
m_h
,
m_w
,
m_hist_th_q_no
,
gradient_layers
);
layered_gradient
(
m_image
,
m_h
ist_th_q_no
,
m_smoothed_
gradient_layers
);
// assuming a 0.5 image smoothness, we pull this to 1.6 as in sift
smooth_layers
(
gradient_layers
,
m_h
,
m_w
,
m_hist_th_q_no
,
(
float
)
sqrt
(
g_sigma_init
*
g_sigma_init
-
0.25
)
);
smooth_layers
(
m_smoothed_gradient_layers
,
m_image
.
rows
,
m_image
.
cols
,
m_hist_th_q_no
,
(
float
)
sqrt
(
g_sigma_init
*
g_sigma_init
-
0.25
)
);
}
void
DAISY_Impl
::
compute_cube_sigmas
()
inline
void
DAISY_Impl
::
compute_cube_sigmas
()
{
if
(
m_cube_sigmas
==
NULL
)
if
(
m_cube_sigmas
.
empty
()
)
{
// user didn't set the sigma's; set them from the descriptor parameters
// user didn't set the sigma's;
// set them from the descriptor parameters
g_cube_number
=
m_rad_q_no
;
m_cube_sigmas
=
allocate
<
double
>
(
g_cube_number
);
m_cube_sigmas
=
Mat
(
1
,
g_cube_number
,
CV_64F
);
double
r_step
=
double
(
m_rad
)
/
m_rad_q_no
;
for
(
int
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
m_cube_sigmas
[
r
]
=
(
r
+
1
)
*
r_step
/
2
;
m_cube_sigmas
.
at
<
double
>
(
r
)
=
(
r
+
1
)
*
r_step
/
2
;
}
}
update_selected_cubes
();
}
void
DAISY_Impl
::
set_cube_gaussians
(
double
*
sigma_array
,
int
sz
)
{
g_cube_number
=
sz
;
if
(
m_cube_sigmas
)
deallocate
(
m_cube_sigmas
);
m_cube_sigmas
=
allocate
<
double
>
(
g_cube_number
);
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
m_cube_sigmas
[
r
]
=
sigma_array
[
r
];
}
update_selected_cubes
();
}
void
DAISY_Impl
::
update_selected_cubes
()
inline
void
DAISY_Impl
::
update_selected_cubes
()
{
for
(
int
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
double
seed_sigma
=
((
double
)
r
+
1
)
*
m_rad
/
m_rad_q_no
/
2.0
;
g_selected_cubes
[
r
]
=
quantize_radius
(
(
float
)
seed_sigma
);
g_selected_cubes
[
r
]
=
quantize_radius
(
(
float
)
seed_sigma
);
}
}
int
DAISY_Impl
::
quantize_radius
(
float
rad
)
const
in
line
in
t
DAISY_Impl
::
quantize_radius
(
float
rad
)
const
{
if
(
rad
<=
m_cube_sigmas
[
0
]
)
return
0
;
if
(
rad
>=
m_cube_sigmas
[
g_cube_number
-
1
]
)
return
g_cube_number
-
1
;
if
(
rad
<=
m_cube_sigmas
.
at
<
double
>
(
0
)
)
return
0
;
if
(
rad
>=
m_cube_sigmas
.
at
<
double
>
(
g_cube_number
-
1
)
)
return
g_cube_number
-
1
;
float
dist
;
float
mindist
=
FLT_MAX
;
int
mini
=
0
;
for
(
int
c
=
0
;
c
<
g_cube_number
;
c
++
)
{
dist
=
(
float
)
fabs
(
m_cube_sigmas
[
c
]
-
rad
);
dist
=
(
float
)
fabs
(
m_cube_sigmas
.
at
<
double
>
(
c
)
-
rad
);
if
(
dist
<
mindist
)
{
mindist
=
dist
;
mini
=
c
;
...
...
@@ -1269,24 +829,25 @@ int DAISY_Impl::quantize_radius( float rad ) const
return
mini
;
}
void
DAISY_Impl
::
compute_histograms
()
inline
void
DAISY_Impl
::
compute_histograms
()
{
int
r
,
y
,
x
,
ind
;
float
*
hist
=
0
;
for
(
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
float
*
dst
=
m_smoothed_gradient_layers
+
r
*
m_cube_size
;
float
*
src
=
m_smoothed_gradient_layers
+
(
r
+
1
)
*
m_cube_size
;
float
*
dst
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
r
*
m_cube_size
;
float
*
src
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
(
r
+
1
)
*
m_cube_size
;
#if defined _OPENMP
#pragma omp parallel for private(y,x,ind,hist)
#endif
for
(
y
=
0
;
y
<
m_
h
;
y
++
)
for
(
y
=
0
;
y
<
m_
image
.
rows
;
y
++
)
{
for
(
x
=
0
;
x
<
m_
w
;
x
++
)
for
(
x
=
0
;
x
<
m_
image
.
cols
;
x
++
)
{
ind
=
y
*
m_
w
+
x
;
ind
=
y
*
m_
image
.
cols
+
x
;
hist
=
dst
+
ind
*
m_hist_th_q_no
;
compute_histogram
(
src
,
y
,
x
,
hist
);
}
...
...
@@ -1294,63 +855,75 @@ void DAISY_Impl::compute_histograms()
}
}
void
DAISY_Impl
::
normalize_histograms
()
inline
void
DAISY_Impl
::
normalize_histograms
()
{
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
float
*
dst
=
m_smoothed_gradient_layers
+
r
*
m_cube_size
;
float
*
dst
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
r
*
m_cube_size
;
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
y
=
0
;
y
<
m_
h
;
y
++
)
for
(
int
y
=
0
;
y
<
m_
image
.
rows
;
y
++
)
{
for
(
int
x
=
0
;
x
<
m_w
;
x
++
)
{
float
*
hist
=
dst
+
(
y
*
m_w
+
x
)
*
m_hist_th_q_no
;
float
norm
=
l2norm
(
hist
,
m_hist_th_q_no
);
if
(
norm
!=
0.0
)
divide
(
hist
,
m_hist_th_q_no
,
norm
);
}
}
for
(
int
x
=
0
;
x
<
m_image
.
cols
;
x
++
)
{
float
*
hist
=
dst
+
(
y
*
m_image
.
cols
+
x
)
*
m_hist_th_q_no
;
float
norm
=
0.0
f
;
for
(
int
i
=
0
;
i
<
m_hist_th_q_no
;
i
++
)
norm
+=
sqrt
(
hist
[
i
]
*
hist
[
i
]
);
if
(
norm
!=
0.0
)
for
(
int
i
=
0
;
i
<
m_hist_th_q_no
;
i
++
)
hist
[
i
]
/=
norm
;
}
}
}
}
void
DAISY_Impl
::
compute_smoothed_gradient_layers
()
inline
void
DAISY_Impl
::
compute_smoothed_gradient_layers
()
{
float
*
prev_cube
=
m_smoothed_gradient_layers
;
float
*
prev_cube
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
;
float
*
cube
=
NULL
;
double
sigma
;
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
cube
=
m_smoothed_gradient_layers
+
(
r
+
1
)
*
m_cube_size
;
cube
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
(
r
+
1
)
*
m_cube_size
;
// incremental smoothing
if
(
r
==
0
)
sigma
=
m_cube_sigmas
[
0
];
else
sigma
=
sqrt
(
m_cube_sigmas
[
r
]
*
m_cube_sigmas
[
r
]
-
m_cube_sigmas
[
r
-
1
]
*
m_cube_sigmas
[
r
-
1
]
);
if
(
r
==
0
)
sigma
=
m_cube_sigmas
.
at
<
double
>
(
0
);
else
sigma
=
sqrt
(
m_cube_sigmas
.
at
<
double
>
(
r
)
*
m_cube_sigmas
.
at
<
double
>
(
r
)
-
m_cube_sigmas
.
at
<
double
>
(
r
-
1
)
*
m_cube_sigmas
.
at
<
double
>
(
r
-
1
)
);
int
fsz
=
filter_size
(
sigma
);
float
*
filter
=
new
float
[
fsz
];
gaussian_1d
(
filter
,
fsz
,
(
float
)
sigma
,
0
);
int
kernel_size
=
filter_size
(
sigma
);
float
kernel
[
kernel_size
];
gaussian_1d
(
kernel
,
kernel_size
,
(
float
)
sigma
,
0
);
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
th
=
0
;
th
<
m_hist_th_q_no
;
th
++
)
{
convolve_sym
(
prev_cube
+
th
*
m_layer_size
,
m_h
,
m_w
,
filter
,
fsz
,
cube
+
th
*
m_layer_size
);
Mat
cvI
(
m_image
.
rows
,
m_image
.
cols
,
CV_32FC1
,
(
float
*
)
prev_cube
+
th
*
m_layer_size
);
Mat
cvO
(
m_image
.
rows
,
m_image
.
cols
,
CV_32FC1
,
(
float
*
)
cube
+
th
*
m_layer_size
);
Mat
Kernel
(
1
,
kernel_size
,
CV_32FC1
,
(
float
*
)
kernel
);
filter2D
(
cvI
,
cvO
,
CV_32F
,
Kernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvO
,
cvO
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
}
deallocate
(
filter
);
prev_cube
=
cube
;
}
compute_histograms
();
}
void
DAISY_Impl
::
compute_oriented_grid_points
()
inline
void
DAISY_Impl
::
compute_oriented_grid_points
()
{
m_oriented_grid_points
=
allocate
<
double
>
(
g_grid_orientation_resolution
,
m_grid_point_number
*
2
);
m_oriented_grid_points
=
Mat
(
g_grid_orientation_resolution
,
m_grid_point_number
*
2
,
CV_64F
);
for
(
int
i
=
0
;
i
<
g_grid_orientation_resolution
;
i
++
)
{
...
...
@@ -1359,34 +932,34 @@ void DAISY_Impl::compute_oriented_grid_points()
double
kos
=
cos
(
angle
);
double
zin
=
sin
(
angle
);
double
*
point_list
=
m_oriented_grid_points
[
i
]
;
Mat
point_list
=
m_oriented_grid_points
.
row
(
i
)
;
for
(
int
k
=
0
;
k
<
m_grid_point_number
;
k
++
)
{
double
y
=
m_grid_points
[
k
][
0
]
;
double
x
=
m_grid_points
[
k
][
1
]
;
double
y
=
m_grid_points
.
at
<
double
>
(
k
,
0
)
;
double
x
=
m_grid_points
.
at
<
double
>
(
k
,
1
)
;
point_list
[
2
*
k
+
1
]
=
x
*
kos
+
y
*
zin
;
// x
point_list
[
2
*
k
]
=
-
x
*
zin
+
y
*
kos
;
// y
point_list
.
at
<
double
>
(
2
*
k
+
1
)
=
x
*
kos
+
y
*
zin
;
// x
point_list
.
at
<
double
>
(
2
*
k
)
=
-
x
*
zin
+
y
*
kos
;
// y
}
}
}
void
DAISY_Impl
::
smooth_histogram
(
float
*
hist
,
int
hsz
)
inline
void
DAISY_Impl
::
smooth_histogram
(
Mat
hist
,
int
hsz
)
{
int
i
;
float
prev
,
temp
;
prev
=
hist
[
hsz
-
1
]
;
prev
=
hist
.
at
<
float
>
(
hsz
-
1
)
;
for
(
i
=
0
;
i
<
hsz
;
i
++
)
{
temp
=
hist
[
i
]
;
hist
[
i
]
=
(
float
)
((
prev
+
hist
[
i
]
+
hist
[(
i
+
1
==
hsz
)
?
0
:
i
+
1
])
/
3.0
)
;
temp
=
hist
.
at
<
float
>
(
i
)
;
hist
.
at
<
float
>
(
i
)
=
(
prev
+
hist
.
at
<
float
>
(
i
)
+
hist
.
at
<
float
>
(
(
i
+
1
==
hsz
)
?
0
:
i
+
1
)
)
/
3.0
f
;
prev
=
temp
;
}
}
float
DAISY_Impl
::
interpolate_peak
(
float
left
,
float
center
,
float
right
)
inline
float
DAISY_Impl
::
interpolate_peak
(
float
left
,
float
center
,
float
right
)
{
if
(
center
<
0.0
)
{
...
...
@@ -1402,7 +975,7 @@ float DAISY_Impl::interpolate_peak(float left, float center, float right)
else
return
(
float
)
(
0.5
*
(
left
-
right
)
/
den
);
}
int
DAISY_Impl
::
filter_size
(
double
sigma
)
in
line
in
t
DAISY_Impl
::
filter_size
(
double
sigma
)
{
int
fsz
=
(
int
)(
5
*
sigma
);
...
...
@@ -1415,26 +988,32 @@ int DAISY_Impl::filter_size( double sigma )
return
fsz
;
}
void
DAISY_Impl
::
compute_scales
()
inline
void
DAISY_Impl
::
compute_scales
()
{
//###############################################################################
//# scale detection is work-in-progress! do not use it if you're not Engin Tola #
//###############################################################################
int
imsz
=
m_w
*
m_h
;
int
kernel_size
=
0
;
float
sigma
=
(
float
)
(
pow
(
g_sigma_step
,
g_scale_st
)
*
g_sigma_0
);
float
*
sim
=
blur_gaussian_2d
<
float
,
float
>
(
m_image
,
m_h
,
m_w
,
sigma
,
filter_size
(
sigma
),
false
);
if
(
kernel_size
==
0
)
kernel_size
=
(
int
)(
3
*
sigma
);
if
(
kernel_size
%
2
==
0
)
kernel_size
++
;
// kernel size must be odd
if
(
kernel_size
<
3
)
kernel_size
=
3
;
// kernel size cannot be smaller than 3
float
kernel
[
kernel_size
];
gaussian_1d
(
kernel
,
kernel_size
,
sigma
,
0
);
Mat
Kernel
(
1
,
kernel_size
,
CV_32F
,
(
float
*
)
kernel
);
float
*
next_sim
=
NULL
;
Mat
sim
,
next_sim
;
float
*
max_dog
=
allocate
<
float
>
(
imsz
);
// output gaussian image
filter2D
(
m_image
,
sim
,
CV_32F
,
Kernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
sim
,
sim
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
m_scale_map
=
allocate
<
float
>
(
imsz
);
Mat
max_dog
(
m_image
.
rows
,
m_image
.
cols
,
CV_32F
,
Scalar
(
0
)
);
m_scale_map
=
Mat
(
m_image
.
rows
,
m_image
.
cols
,
CV_32F
,
Scalar
(
0
)
);
memset
(
max_dog
,
0
,
imsz
*
sizeof
(
float
)
);
memset
(
m_scale_map
,
0
,
imsz
*
sizeof
(
float
)
);
int
i
;
float
sigma_prev
;
...
...
@@ -1448,54 +1027,79 @@ void DAISY_Impl::compute_scales()
sigma_inc
=
sqrt
(
sigma_new
*
sigma_new
-
sigma_prev
*
sigma_prev
);
sigma_prev
=
sigma_new
;
next_sim
=
blur_gaussian_2d
<
float
,
float
>
(
sim
,
m_h
,
m_w
,
sigma_inc
,
filter_size
(
sigma_inc
)
,
false
);
kernel_size
=
filter_size
(
sigma_inc
);
if
(
kernel_size
==
0
)
kernel_size
=
(
int
)(
3
*
sigma_inc
);
if
(
kernel_size
%
2
==
0
)
kernel_size
++
;
// kernel size must be odd
if
(
kernel_size
<
3
)
kernel_size
=
3
;
// kernel size cannot be smaller than 3
float
next_kernel
[
kernel_size
];
gaussian_1d
(
next_kernel
,
kernel_size
,
sigma_inc
,
0
);
Mat
NextKernel
(
1
,
kernel_size
,
CV_32F
,
(
float
*
)
next_kernel
);
// output gaussian image
filter2D
(
sim
,
next_sim
,
CV_32F
,
NextKernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
next_sim
,
next_sim
,
CV_32F
,
NextKernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
p
=
0
;
p
<
imsz
;
p
++
)
for
(
int
r
=
0
;
r
<
m_image
.
rows
;
r
++
)
{
float
dog
=
(
float
)
fabs
(
next_sim
[
p
]
-
sim
[
p
]
);
if
(
dog
>
max_dog
[
p
]
)
{
max_dog
[
p
]
=
dog
;
m_scale_map
[
p
]
=
(
float
)
i
;
}
for
(
int
c
=
0
;
c
<
m_image
.
cols
;
c
++
)
{
float
dog
=
(
float
)
fabs
(
next_sim
.
at
<
float
>
(
r
,
c
)
-
sim
.
at
<
float
>
(
r
,
c
)
);
if
(
dog
>
max_dog
.
at
<
float
>
(
r
,
c
)
)
{
max_dog
.
at
<
float
>
(
r
,
c
)
=
dog
;
m_scale_map
.
at
<
float
>
(
r
,
c
)
=
(
float
)
i
;
}
}
}
deallocate
(
sim
);
sim
.
release
();
sim
=
next_sim
;
}
blur_gaussian_2d
<
float
,
float
>
(
m_scale_map
,
m_h
,
m_w
,
10.0
,
filter_size
(
10
),
true
);
kernel_size
=
filter_size
(
10.0
f
);
if
(
kernel_size
==
0
)
kernel_size
=
(
int
)(
3
*
10.0
f
);
if
(
kernel_size
%
2
==
0
)
kernel_size
++
;
// kernel size must be odd
if
(
kernel_size
<
3
)
kernel_size
=
3
;
// kernel size cannot be smaller than 3
float
filter_kernel
[
kernel_size
];
gaussian_1d
(
filter_kernel
,
kernel_size
,
10.0
f
,
0
);
Mat
FilterKernel
(
1
,
kernel_size
,
CV_32F
,
(
float
*
)
filter_kernel
);
// output gaussian image
filter2D
(
m_scale_map
,
m_scale_map
,
CV_32F
,
FilterKernel
,
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
filter2D
(
m_scale_map
,
m_scale_map
,
CV_32F
,
FilterKernel
.
t
(),
Point
(
-
1.0
f
,
-
1.0
f
),
0
,
BORDER_REPLICATE
);
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
q
=
0
;
q
<
imsz
;
q
++
)
{
m_scale_map
[
q
]
=
(
float
)
round
(
m_scale_map
[
q
]
);
}
//save( m_scale_map, m_h, m_w, "scales.dat");
deallocate
(
sim
);
deallocate
(
max_dog
);
for
(
int
r
=
0
;
r
<
m_image
.
rows
;
r
++
)
{
for
(
int
c
=
0
;
c
<
m_image
.
cols
;
c
++
)
{
m_scale_map
.
at
<
float
>
(
r
,
c
)
=
(
float
)
round
(
m_scale_map
.
at
<
float
>
(
r
,
c
)
);
}
}
//save( m_scale_map, m_image.rows, m_image.cols, "scales.dat");
}
void
DAISY_Impl
::
compute_orientations
()
inline
void
DAISY_Impl
::
compute_orientations
()
{
//#####################################################################################
//# orientation detection is work-in-progress! do not use it if you're not Engin Tola #
//#####################################################################################
CV_Assert
(
m_image
!=
NULL
);
CV_Assert
(
!
m_image
.
empty
()
);
int
data_size
=
m_
w
*
m_h
;
float
*
rotation_layers
=
layered_gradient
(
m_image
,
m_h
,
m_w
,
m_orientation_resolution
);
int
data_size
=
m_
image
.
cols
*
m_image
.
rows
;
Mat
rotation_layers
=
layered_gradient
(
m_image
,
m_orientation_resolution
);
m_orientation_map
=
new
int
[
data_size
];
memset
(
m_orientation_map
,
0
,
sizeof
(
int
)
*
data_size
);
m_orientation_map
=
Mat
(
m_image
.
cols
,
m_image
.
rows
,
CV_16U
,
Scalar
(
0
));
int
ori
,
max_ind
;
int
ind
;
...
...
@@ -1506,33 +1110,34 @@ void DAISY_Impl::compute_orientations()
int
x
,
y
,
kk
;
float
*
hist
=
NULL
;
Mat
hist
;
float
sigma_inc
;
float
sigma_prev
=
0
;
float
sigma_prev
=
0
.0
f
;
float
sigma_new
;
for
(
int
scale
=
0
;
scale
<
g_scale_en
;
scale
++
)
{
sigma_new
=
(
float
)(
pow
(
g_sigma_step
,
scale
)
*
m_rad
/
3.0
);
sigma_inc
=
sqrt
(
sigma_new
*
sigma_new
-
sigma_prev
*
sigma_prev
);
sigma_prev
=
sigma_new
;
smooth_layers
(
rotation_layers
,
m_
h
,
m_w
,
m_orientation_resolution
,
sigma_inc
);
smooth_layers
(
rotation_layers
,
m_
image
.
rows
,
m_image
.
cols
,
m_orientation_resolution
,
sigma_inc
);
for
(
y
=
0
;
y
<
m_
h
;
y
++
)
for
(
y
=
0
;
y
<
m_
image
.
rows
;
y
++
)
{
hist
=
allocate
<
float
>
(
m_orientation_resolution
);
hist
=
Mat
(
1
,
m_orientation_resolution
,
CV_32F
);
for
(
x
=
0
;
x
<
m_
w
;
x
++
)
for
(
x
=
0
;
x
<
m_
image
.
cols
;
x
++
)
{
ind
=
y
*
m_
w
+
x
;
ind
=
y
*
m_
image
.
cols
+
x
;
if
(
m_scale_invariant
&&
m_scale_map
[
ind
]
!=
scale
)
continue
;
if
(
m_scale_invariant
&&
m_scale_map
.
at
<
float
>
(
y
,
x
)
!=
scale
)
continue
;
for
(
ori
=
0
;
ori
<
m_orientation_resolution
;
ori
++
)
{
hist
[
ori
]
=
rotation_layers
[
ori
*
data_size
+
ind
]
;
hist
.
at
<
float
>
(
ori
)
=
rotation_layers
.
at
<
float
>
(
ori
*
data_size
+
ind
)
;
}
for
(
kk
=
0
;
kk
<
6
;
kk
++
)
...
...
@@ -1542,9 +1147,9 @@ void DAISY_Impl::compute_orientations()
max_ind
=
0
;
for
(
ori
=
0
;
ori
<
m_orientation_resolution
;
ori
++
)
{
if
(
hist
[
ori
]
>
max_val
)
if
(
hist
.
at
<
float
>
(
ori
)
>
max_val
)
{
max_val
=
hist
[
ori
]
;
max_val
=
hist
.
at
<
float
>
(
ori
)
;
max_ind
=
ori
;
}
}
...
...
@@ -1557,7 +1162,7 @@ void DAISY_Impl::compute_orientations()
if
(
next
>=
m_orientation_resolution
)
next
-=
m_orientation_resolution
;
peak
=
interpolate_peak
(
hist
[
prev
],
hist
[
max_ind
],
hist
[
next
]
);
peak
=
interpolate_peak
(
hist
.
at
<
float
>
(
prev
),
hist
.
at
<
float
>
(
max_ind
),
hist
.
at
<
float
>
(
next
)
);
angle
=
(
float
)(
((
float
)
max_ind
+
peak
)
*
360.0
/
m_orientation_resolution
);
int
iangle
=
int
(
angle
);
...
...
@@ -1565,54 +1170,26 @@ void DAISY_Impl::compute_orientations()
if
(
iangle
<
0
)
iangle
+=
360
;
if
(
iangle
>=
360
)
iangle
-=
360
;
if
(
!
(
iangle
>=
0.0
&&
iangle
<
360.0
)
)
{
angle
=
0
;
}
m_orientation_map
[
ind
]
=
iangle
;
m_orientation_map
.
at
<
float
>
(
y
,
x
)
=
iangle
;
}
deallocate
(
hist
);
hist
.
release
(
);
}
}
deallocate
(
rotation_layers
);
compute_oriented_grid_points
();
}
void
DAISY_Impl
::
set_descriptor_memory
(
float
*
descriptor
,
long
int
d_size
)
{
CV_Assert
(
m_descriptor_memory
==
false
);
CV_Assert
(
m_h
*
m_w
!=
0
);
CV_Assert
(
m_roi
.
width
*
m_roi
.
height
!=
0
);
CV_Assert
(
d_size
>=
compute_descriptor_memory
()
);
m_dense_descriptors
=
descriptor
;
m_descriptor_memory
=
true
;
}
void
DAISY_Impl
::
set_workspace_memory
(
float
*
workspace
,
long
int
w_size
)
{
CV_Assert
(
m_workspace_memory
==
false
);
CV_Assert
(
m_h
*
m_w
!=
0
);
CV_Assert
(
m_roi
.
width
*
m_roi
.
height
!=
0
);
CV_Assert
(
w_size
>=
compute_workspace_memory
()
);
m_smoothed_gradient_layers
=
workspace
;
m_workspace_memory
=
true
;
}
// -------------------------------------------------
/* DAISY helper routines */
inline
void
DAISY_Impl
::
compute_histogram
(
float
*
hcube
,
int
y
,
int
x
,
float
*
histogram
)
{
if
(
is_outside
(
x
,
0
,
m_w
-
1
,
y
,
0
,
m_h
-
1
)
)
return
;
if
(
!
Point
(
x
,
y
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
return
;
float
*
spatial_shift
=
hcube
+
y
*
m_
w
+
x
;
int
data_size
=
m_
w
*
m_h
;
float
*
spatial_shift
=
hcube
+
y
*
m_
image
.
cols
+
x
;
int
data_size
=
m_
image
.
cols
*
m_image
.
rows
;
for
(
int
h
=
0
;
h
<
m_hist_th_q_no
;
h
++
)
histogram
[
h
]
=
*
(
spatial_shift
+
h
*
data_size
);
...
...
@@ -1631,19 +1208,19 @@ inline void DAISY_Impl::bi_get_histogram( float* histogram, double y, double x,
int
mnx
=
int
(
x
);
int
mny
=
int
(
y
);
if
(
mnx
>=
m_
w
-
2
||
mny
>=
m_h
-
2
)
if
(
mnx
>=
m_
image
.
cols
-
2
||
mny
>=
m_image
.
rows
-
2
)
{
memset
(
histogram
,
0
,
sizeof
(
float
)
*
m_hist_th_q_no
);
return
;
}
int
ind
=
mny
*
m_
w
+
mnx
;
int
ind
=
mny
*
m_
image
.
cols
+
mnx
;
// A C --> pixel positions
// B D
float
*
A
=
hcube
+
ind
*
m_hist_th_q_no
;
float
*
B
=
A
+
m_
w
*
m_hist_th_q_no
;
float
*
B
=
A
+
m_
image
.
cols
*
m_hist_th_q_no
;
float
*
C
=
A
+
m_hist_th_q_no
;
float
*
D
=
A
+
(
m_
w
+
1
)
*
m_hist_th_q_no
;
float
*
D
=
A
+
(
m_
image
.
cols
+
1
)
*
m_hist_th_q_no
;
double
alpha
=
mnx
+
1
-
x
;
double
beta
=
mny
+
1
-
y
;
...
...
@@ -1688,8 +1265,11 @@ inline void DAISY_Impl::ti_get_histogram( float* histogram, double y, double x,
inline
void
DAISY_Impl
::
ni_get_histogram
(
float
*
histogram
,
int
y
,
int
x
,
int
shift
,
float
*
hcube
)
const
{
if
(
is_outside
(
x
,
0
,
m_w
-
1
,
y
,
0
,
m_h
-
1
)
)
return
;
float
*
hptr
=
hcube
+
(
y
*
m_w
+
x
)
*
m_hist_th_q_no
;
if
(
!
Point
(
x
,
y
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
return
;
float
*
hptr
=
hcube
+
(
y
*
m_image
.
cols
+
x
)
*
m_hist_th_q_no
;
for
(
int
h
=
0
;
h
<
m_hist_th_q_no
;
h
++
)
{
...
...
@@ -1701,9 +1281,9 @@ inline void DAISY_Impl::ni_get_histogram( float* histogram, int y, int x, int sh
inline
void
DAISY_Impl
::
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
)
{
CV_Assert
(
m_dense_descriptors
!=
NULL
);
CV_Assert
(
y
<
m_
h
&&
x
<
m_w
&&
y
>=
0
&&
x
>=
0
);
descriptor
=
&
(
m_dense_descriptors
[(
y
*
m_w
+
x
)
*
m_descriptor_size
]
);
CV_Assert
(
!
m_dense_descriptors
.
empty
()
);
CV_Assert
(
y
<
m_
image
.
rows
&&
x
<
m_image
.
cols
&&
y
>=
0
&&
x
>=
0
);
descriptor
=
m_dense_descriptors
.
ptr
<
float
>
(
y
*
m_image
.
cols
+
x
);
}
inline
void
DAISY_Impl
::
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
const
...
...
@@ -1725,22 +1305,24 @@ inline void DAISY_Impl::i_get_descriptor( double y, double x, int orientation, f
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert
(
y
>=
0
&&
y
<
m_
h
);
CV_Assert
(
x
>=
0
&&
x
<
m_
w
);
CV_Assert
(
y
>=
0
&&
y
<
m_
image
.
rows
);
CV_Assert
(
x
>=
0
&&
x
<
m_
image
.
cols
);
CV_Assert
(
orientation
>=
0
&&
orientation
<
360
);
CV_Assert
(
m_smoothed_gradient_layers
);
CV_Assert
(
m_oriented_grid_points
);
CV_Assert
(
!
m_smoothed_gradient_layers
.
empty
()
);
CV_Assert
(
!
m_oriented_grid_points
.
empty
()
);
CV_Assert
(
descriptor
!=
NULL
);
double
shift
=
m_orientation_shift_table
[
orientation
];
i_get_histogram
(
descriptor
,
y
,
x
,
shift
,
m_smoothed_gradient_layers
+
g_selected_cubes
[
0
]
*
m_cube_size
);
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
i_get_histogram
(
descriptor
,
y
,
x
,
shift
,
ptr
+
g_selected_cubes
[
0
]
*
m_cube_size
);
int
r
,
rdt
,
region
;
double
yy
,
xx
;
float
*
histogram
=
0
;
double
*
grid
=
m_oriented_grid_points
[
orientation
];
Mat
grid
=
m_oriented_grid_points
.
row
(
orientation
);
// petals of the flower
for
(
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
...
...
@@ -1748,11 +1330,15 @@ inline void DAISY_Impl::i_get_descriptor( double y, double x, int orientation, f
rdt
=
r
*
m_th_q_no
+
1
;
for
(
region
=
rdt
;
region
<
rdt
+
m_th_q_no
;
region
++
)
{
yy
=
y
+
grid
[
2
*
region
];
xx
=
x
+
grid
[
2
*
region
+
1
];
if
(
is_outside
(
xx
,
0
,
m_w
-
1
,
yy
,
0
,
m_h
-
1
)
)
continue
;
yy
=
y
+
grid
.
at
<
double
>
(
2
*
region
);
xx
=
x
+
grid
.
at
<
double
>
(
2
*
region
+
1
);
if
(
!
Point
(
xx
,
yy
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
i_get_histogram
(
histogram
,
yy
,
xx
,
shift
,
m_smoothed_gradient_layers
+
g_selected_cubes
[
r
]
*
m_cube_size
);
i_get_histogram
(
histogram
,
yy
,
xx
,
shift
,
ptr
+
g_selected_cubes
[
r
]
*
m_cube_size
);
}
}
}
...
...
@@ -1764,12 +1350,12 @@ inline void DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert
(
y
>=
0
&&
y
<
m_
h
);
CV_Assert
(
x
>=
0
&&
x
<
m_
w
);
CV_Assert
(
y
>=
0
&&
y
<
m_
image
.
rows
);
CV_Assert
(
x
>=
0
&&
x
<
m_
image
.
cols
);
CV_Assert
(
orientation
>=
0
&&
orientation
<
360
);
CV_Assert
(
m_smoothed_gradient_layers
);
CV_Assert
(
m_oriented_grid_points
);
CV_Assert
(
!
m_smoothed_gradient_layers
.
empty
()
);
CV_Assert
(
!
m_oriented_grid_points
.
empty
()
);
CV_Assert
(
descriptor
!=
NULL
);
double
shift
=
m_orientation_shift_table
[
orientation
];
...
...
@@ -1780,27 +1366,30 @@ inline void DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
int
ix
=
(
int
)
x
;
if
(
x
-
ix
>
0.5
)
ix
++
;
// center
ni_get_histogram
(
descriptor
,
iy
,
ix
,
ishift
,
m_smoothed_gradient_layers
+
g_selected_cubes
[
0
]
*
m_cube_size
);
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
ni_get_histogram
(
descriptor
,
iy
,
ix
,
ishift
,
ptr
+
g_selected_cubes
[
0
]
*
m_cube_size
);
double
yy
,
xx
;
float
*
histogram
=
0
;
// petals of the flower
int
r
,
rdt
,
region
;
double
*
grid
=
m_oriented_grid_points
[
orientation
]
;
Mat
grid
=
m_oriented_grid_points
.
row
(
orientation
)
;
for
(
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
rdt
=
r
*
m_th_q_no
+
1
;
for
(
region
=
rdt
;
region
<
rdt
+
m_th_q_no
;
region
++
)
{
yy
=
y
+
grid
[
2
*
region
]
;
xx
=
x
+
grid
[
2
*
region
+
1
]
;
yy
=
y
+
grid
.
at
<
double
>
(
2
*
region
)
;
xx
=
x
+
grid
.
at
<
double
>
(
2
*
region
+
1
)
;
iy
=
(
int
)
yy
;
if
(
yy
-
iy
>
0.5
)
iy
++
;
ix
=
(
int
)
xx
;
if
(
xx
-
ix
>
0.5
)
ix
++
;
if
(
is_outside
(
ix
,
0
,
m_w
-
1
,
iy
,
0
,
m_h
-
1
)
)
continue
;
if
(
!
Point
(
xx
,
yy
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
ni_get_histogram
(
histogram
,
iy
,
ix
,
ishift
,
m_smoothed_gradient_layers
+
g_selected_cubes
[
r
]
*
m_cube_size
);
ni_get_histogram
(
histogram
,
iy
,
ix
,
ishift
,
ptr
+
g_selected_cubes
[
r
]
*
m_cube_size
);
}
}
}
...
...
@@ -1826,23 +1415,28 @@ inline bool DAISY_Impl::i_get_descriptor( double y, double x, int orientation, d
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert
(
orientation
>=
0
&&
orientation
<
360
);
CV_Assert
(
m_smoothed_gradient_layers
);
CV_Assert
(
!
m_smoothed_gradient_layers
.
empty
()
);
CV_Assert
(
descriptor
!=
NULL
);
int
hradius
[
MAX_CUBE_NO
];
double
hy
,
hx
,
ry
,
rx
;
point_transform_via_homography
(
H
,
x
,
y
,
hx
,
hy
);
if
(
is_outside
(
hx
,
0
,
m_w
,
hy
,
0
,
m_h
)
)
return
false
;
point_transform_via_homography
(
H
,
x
+
m_cube_sigmas
[
g_selected_cubes
[
0
]],
y
,
rx
,
ry
);
double
radius
=
l2norm
(
ry
,
rx
,
hy
,
hx
);
if
(
!
Point
(
hx
,
hy
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
return
false
;
point_transform_via_homography
(
H
,
x
+
m_cube_sigmas
.
at
<
double
>
(
g_selected_cubes
[
0
]),
y
,
rx
,
ry
);
double
d0
=
rx
-
hx
;
double
d1
=
ry
-
hy
;
double
radius
=
sqrt
(
d0
*
d0
+
d1
*
d1
);
hradius
[
0
]
=
quantize_radius
(
(
float
)
radius
);
double
shift
=
m_orientation_shift_table
[
orientation
];
i_get_histogram
(
descriptor
,
hy
,
hx
,
shift
,
m_smoothed_gradient_layers
+
hradius
[
0
]
*
m_cube_size
);
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
i_get_histogram
(
descriptor
,
hy
,
hx
,
shift
,
ptr
+
hradius
[
0
]
*
m_cube_size
);
double
gy
,
gx
;
int
r
,
rdt
,
th
,
region
;
...
...
@@ -1854,21 +1448,24 @@ inline bool DAISY_Impl::i_get_descriptor( double y, double x, int orientation, d
{
region
=
rdt
+
th
;
gy
=
y
+
m_grid_points
[
region
][
0
]
;
gx
=
x
+
m_grid_points
[
region
][
1
]
;
gy
=
y
+
m_grid_points
.
at
<
double
>
(
region
,
0
)
;
gx
=
x
+
m_grid_points
.
at
<
double
>
(
region
,
1
)
;
point_transform_via_homography
(
H
,
gx
,
gy
,
hx
,
hy
);
if
(
th
==
0
)
{
point_transform_via_homography
(
H
,
gx
+
m_cube_sigmas
[
g_selected_cubes
[
r
]],
gy
,
rx
,
ry
);
radius
=
l2norm
(
ry
,
rx
,
hy
,
hx
);
point_transform_via_homography
(
H
,
gx
+
m_cube_sigmas
.
at
<
double
>
(
g_selected_cubes
[
r
]),
gy
,
rx
,
ry
);
d0
=
rx
-
hx
;
d1
=
ry
-
hy
;
radius
=
sqrt
(
d0
*
d0
+
d1
+
d1
);
hradius
[
r
]
=
quantize_radius
(
(
float
)
radius
);
}
if
(
is_outside
(
hx
,
0
,
m_w
-
1
,
hy
,
0
,
m_h
-
1
)
)
continue
;
if
(
!
Point
(
hx
,
hy
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
i_get_histogram
(
histogram
,
hy
,
hx
,
shift
,
m_smoothed_gradient_layers
+
hradius
[
r
]
*
m_cube_size
);
i_get_histogram
(
histogram
,
hy
,
hx
,
shift
,
ptr
+
hradius
[
r
]
*
m_cube_size
);
}
}
return
true
;
...
...
@@ -1881,24 +1478,27 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
// i'm not changing the descriptor[] values if the gridpoint is outside
// the image. you should memset the descriptor array to 0 if you don't
// want to have stupid values there.
//
CV_Assert
(
orientation
>=
0
&&
orientation
<
360
);
CV_Assert
(
m_smoothed_gradient_layers
);
CV_Assert
(
!
m_smoothed_gradient_layers
.
empty
()
);
CV_Assert
(
descriptor
!=
NULL
);
int
hradius
[
MAX_CUBE_NO
];
double
radius
;
double
hy
,
hx
,
ry
,
rx
;
point_transform_via_homography
(
H
,
x
,
y
,
hx
,
hy
);
if
(
is_outside
(
hx
,
0
,
m_w
,
hy
,
0
,
m_h
)
)
return
false
;
if
(
!
Point
(
hx
,
hy
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
return
false
;
double
shift
=
m_orientation_shift_table
[
orientation
];
int
ishift
=
(
int
)
shift
;
if
(
shift
-
ishift
>
0.5
)
ishift
++
;
point_transform_via_homography
(
H
,
x
+
m_cube_sigmas
[
g_selected_cubes
[
0
]],
y
,
rx
,
ry
);
radius
=
l2norm
(
ry
,
rx
,
hy
,
hx
);
point_transform_via_homography
(
H
,
x
+
m_cube_sigmas
.
at
<
double
>
(
g_selected_cubes
[
0
]),
y
,
rx
,
ry
);
double
d0
=
rx
-
hx
;
double
d1
=
ry
-
hy
;
double
radius
=
sqrt
(
d0
*
d0
+
d1
*
d1
);
hradius
[
0
]
=
quantize_radius
(
(
float
)
radius
);
int
ihx
=
(
int
)
hx
;
if
(
hx
-
ihx
>
0.5
)
ihx
++
;
...
...
@@ -1907,7 +1507,8 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
int
r
,
rdt
,
th
,
region
;
double
gy
,
gx
;
float
*
histogram
=
0
;
ni_get_histogram
(
descriptor
,
ihy
,
ihx
,
ishift
,
m_smoothed_gradient_layers
+
hradius
[
0
]
*
m_cube_size
);
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
ni_get_histogram
(
descriptor
,
ihy
,
ihx
,
ishift
,
ptr
+
hradius
[
0
]
*
m_cube_size
);
for
(
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
rdt
=
r
*
m_th_q_no
+
1
;
...
...
@@ -1915,35 +1516,39 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
{
region
=
rdt
+
th
;
gy
=
y
+
m_grid_points
[
region
][
0
]
;
gx
=
x
+
m_grid_points
[
region
][
1
]
;
gy
=
y
+
m_grid_points
.
at
<
double
>
(
region
,
0
)
;
gx
=
x
+
m_grid_points
.
at
<
double
>
(
region
,
1
)
;
point_transform_via_homography
(
H
,
gx
,
gy
,
hx
,
hy
);
if
(
th
==
0
)
{
point_transform_via_homography
(
H
,
gx
+
m_cube_sigmas
[
g_selected_cubes
[
r
]],
gy
,
rx
,
ry
);
radius
=
l2norm
(
ry
,
rx
,
hy
,
hx
);
point_transform_via_homography
(
H
,
gx
+
m_cube_sigmas
.
at
<
double
>
(
g_selected_cubes
[
r
]),
gy
,
rx
,
ry
);
d0
=
rx
-
hx
;
d1
=
ry
-
hy
;
radius
=
sqrt
(
d0
*
d0
+
d1
*
d1
);
hradius
[
r
]
=
quantize_radius
(
(
float
)
radius
);
}
ihx
=
(
int
)
hx
;
if
(
hx
-
ihx
>
0.5
)
ihx
++
;
ihy
=
(
int
)
hy
;
if
(
hy
-
ihy
>
0.5
)
ihy
++
;
if
(
is_outside
(
ihx
,
0
,
m_w
-
1
,
ihy
,
0
,
m_h
-
1
)
)
continue
;
if
(
!
Point
(
ihx
,
ihy
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
ni_get_histogram
(
histogram
,
ihy
,
ihx
,
ishift
,
m_smoothed_gradient_layers
+
hradius
[
r
]
*
m_cube_size
);
ni_get_histogram
(
histogram
,
ihy
,
ihx
,
ishift
,
ptr
+
hradius
[
r
]
*
m_cube_size
);
}
}
return
true
;
}
void
DAISY_Impl
::
initialize_single_descriptor_mode
(
)
inline
void
DAISY_Impl
::
initialize_single_descriptor_mode
(
)
{
initialize
();
compute_smoothed_gradient_layers
();
}
void
DAISY_Impl
::
set_parameters
(
)
inline
void
DAISY_Impl
::
set_parameters
(
)
{
m_grid_point_number
=
m_rad_q_no
*
m_th_q_no
+
1
;
// +1 is for center pixel
m_descriptor_size
=
m_grid_point_number
*
m_hist_th_q_no
;
...
...
@@ -1952,7 +1557,7 @@ void DAISY_Impl::set_parameters( )
{
m_orientation_shift_table
[
i
]
=
i
/
360.0
*
m_hist_th_q_no
;
}
m_layer_size
=
m_
h
*
m_w
;
m_layer_size
=
m_
image
.
rows
*
m_image
.
cols
;
m_cube_size
=
m_layer_size
*
m_hist_th_q_no
;
compute_cube_sigmas
();
...
...
@@ -1961,48 +1566,29 @@ void DAISY_Impl::set_parameters( )
// set/convert image array for daisy internal routines
// daisy internals use CV_32F image with norm to 1.0f
void
DAISY_Impl
::
set_image
(
InputArray
_image
)
inline
void
DAISY_Impl
::
set_image
(
InputArray
_image
)
{
// release previous image
// and previous
daisies
workspace
// and previous workspace
reset
();
// fetch new image
Mat
image
=
_image
.
getMat
();
// image cannot be empty
CV_Assert
(
!
image
.
empty
()
);
// base size
m_h
=
image
.
rows
;
m_w
=
image
.
cols
;
// clone image for conversion
if
(
image
.
depth
()
!=
CV_32F
)
{
m_work_image
=
image
.
clone
();
m_image
=
image
.
clone
();
// convert to gray inplace
if
(
m_work_image
.
channels
()
>
1
)
cvtColor
(
m_work_image
,
m_work_image
,
COLOR_BGR2GRAY
);
// convert to float if it is necessary
if
(
m_work_image
.
depth
()
!=
CV_32F
)
{
// convert and normalize
m_work_image
.
convertTo
(
m_work_image
,
CV_32F
);
m_work_image
/=
255.0
f
;
}
else
CV_Error
(
Error
::
StsUnsupportedFormat
,
""
);
// use cloned work image
m_image
=
m_work_image
.
ptr
<
float
>
(
0
);
if
(
m_image
.
channels
()
>
1
)
cvtColor
(
m_image
,
m_image
,
COLOR_BGR2GRAY
);
// convert and normalize
m_image
.
convertTo
(
m_image
,
CV_32F
);
m_image
/=
255.0
f
;
}
else
// use original user supplied CV_32F image
// should be a normalized one (cannot check)
m_image
=
image
.
ptr
<
float
>
(
0
);
m_image
=
image
;
}
...
...
@@ -2019,7 +1605,7 @@ void DAISY_Impl::compute( InputArray _image, std::vector<KeyPoint>& keypoints, O
set_image
(
_image
);
// whole image
m_roi
=
Rect
(
0
,
0
,
m_
w
,
m_h
);
m_roi
=
Rect
(
0
,
0
,
m_
image
.
cols
,
m_image
.
rows
);
// get homography
Mat
H
=
m_h_matrix
;
...
...
@@ -2080,8 +1666,7 @@ void DAISY_Impl::compute( InputArray _image, Rect roi, OutputArray _descriptors
normalize_descriptors
();
Mat
descriptors
=
_descriptors
.
getMat
();
descriptors
=
Mat
(
m_roi
.
width
*
m_roi
.
height
,
m_descriptor_size
,
CV_32F
,
&
m_dense_descriptors
[
0
]
);
descriptors
=
m_dense_descriptors
;
release_auxiliary
();
}
...
...
@@ -2099,7 +1684,7 @@ void DAISY_Impl::compute( InputArray _image, OutputArray _descriptors )
set_image
(
_image
);
// whole image
m_roi
=
Rect
(
0
,
0
,
m_
w
,
m_h
);
m_roi
=
Rect
(
0
,
0
,
m_
image
.
cols
,
m_image
.
rows
);
set_parameters
();
initialize_single_descriptor_mode
();
...
...
@@ -2109,8 +1694,7 @@ void DAISY_Impl::compute( InputArray _image, OutputArray _descriptors )
normalize_descriptors
();
Mat
descriptors
=
_descriptors
.
getMat
();
descriptors
=
Mat
(
m_h
*
m_w
,
m_descriptor_size
,
CV_32F
,
&
m_dense_descriptors
[
0
]
);
descriptors
=
m_dense_descriptors
;
release_auxiliary
();
}
...
...
@@ -2121,31 +1705,25 @@ DAISY_Impl::DAISY_Impl( float _radius, int _q_radius, int _q_theta, int _q_hist,
:
m_rad
(
_radius
),
m_rad_q_no
(
_q_radius
),
m_th_q_no
(
_q_theta
),
m_hist_th_q_no
(
_q_hist
),
m_nrm_type
(
_norm
),
m_disable_interpolation
(
_interpolation
),
m_use_orientation
(
_use_orientation
)
{
m_w
=
0
;
m_h
=
0
;
m_image
=
0
;
m_grid_point_number
=
0
;
m_descriptor_size
=
0
;
m_smoothed_gradient_layers
=
NULL
;
m_dense_descriptors
=
NULL
;
m_grid_points
=
NULL
;
m_oriented_grid_points
=
NULL
;
m_grid_point_number
=
0
;
m_grid_points
.
release
();
m_dense_descriptors
.
release
();
m_smoothed_gradient_layers
.
release
();
m_oriented_grid_points
.
release
();
m_scale_invariant
=
false
;
m_rotation_invariant
=
false
;
m_scale_map
=
NULL
;
m_orientation_map
=
NULL
;
m_scale_map
.
release
()
;
m_orientation_map
.
release
()
;
m_orientation_resolution
=
36
;
m_scale_map
=
NULL
;
m_cube_sigmas
=
NULL
;
// unused features
m_descriptor_memory
=
false
;
m_workspace_memory
=
false
;
m_cube_sigmas
.
release
();
m_cube_size
=
0
;
m_layer_size
=
0
;
...
...
@@ -2158,12 +1736,11 @@ DAISY_Impl::DAISY_Impl( float _radius, int _q_radius, int _q_theta, int _q_hist,
// destructor
DAISY_Impl
::~
DAISY_Impl
()
{
if
(
!
m_workspace_memory
)
deallocate
(
m_smoothed_gradient_layers
);
deallocate
(
m_grid_points
,
m_grid_point_number
);
deallocate
(
m_oriented_grid_points
,
g_grid_orientation_resolution
);
deallocate
(
m_orientation_map
);
deallocate
(
m_scale_map
);
deallocate
(
m_cube_sigmas
);
m_scale_map
.
release
();
m_grid_points
.
release
();
m_orientation_map
.
release
();
m_oriented_grid_points
.
release
();
m_smoothed_gradient_layers
.
release
();
}
Ptr
<
DAISY
>
DAISY
::
create
(
float
radius
,
int
q_radius
,
int
q_theta
,
int
q_hist
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment