Commit 7297f022 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

added optimized anisotropic diffusion filter (rewrite of…

added optimized anisotropic diffusion filter (rewrite of https://github.com/opencv/opencv/pull/8362)
parent 5e4d9b0b
......@@ -122,6 +122,27 @@ The function transforms a binary blob image into a skeletized form using the tec
*/
CV_EXPORTS_W void thinning( InputArray src, OutputArray dst, int thinningType = THINNING_ZHANGSUEN);
/** @brief Performs anisotropic diffusian on an image.
The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
\f[{\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\f]
Suggested functions for c(x,y,t) are:
\f[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\f]
or
\f[ c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \f]
@param src Grayscale Source image.
@param dst Destination image of the same size and the same number of channels as src .
@param alpha The amount of time to step forward by on each iteration (normally, it's between 0 and 1).
@param K sensitivity to the edges
@param niters The number of iterations
*/
CV_EXPORTS_W void anisotropicDiffusion(InputArray src, OutputArray dst, float alpha, float K, int niters );
//! @}
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/ximgproc.hpp"
#include <stdio.h>
using namespace cv;
using namespace std;
int main( int argc, const char** argv)
{
float alpha = 1.0f;
float sigma = 0.02f;
int rows0 = 480;
int niters = 10;
Mat frame, src, dst;
const char* window_name = "Anisodiff : Exponential Flux";
VideoCapture cap;
if( argc > 1 )
cap.open(argv[1]);
else
cap.open(0);
if (!cap.isOpened())
{
printf("Cannot initialize video capturing\n");
return 0;
}
// Create a window
namedWindow(window_name, 1);
// create a toolbar
createTrackbar("No. of time steps", window_name, &niters, 30, 0);
for(;;)
{
cap >> frame;
if( frame.empty() )
break;
if( frame.rows <= rows0 )
src = frame;
else
resize(frame, src, Size(cvRound(480.*frame.cols/frame.rows), 480));
float t = (float)getTickCount();
ximgproc::anisotropicDiffusion(src, dst, alpha, sigma, niters);
t = (float)getTickCount() - t;
printf("time: %.1fms\n", t*1000./getTickFrequency());
imshow(window_name, dst);
// Wait for a key stroke; the same function arranges events processing
char c = (char)waitKey(30);
if(c >= 0)
break;
}
return 0;
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* the reference code has been contributed by Chris Sav */
#include "precomp.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "opencl_kernels_ximgproc.hpp"
namespace cv {
namespace ximgproc {
#if CV_SIMD128
inline void v_expand_s(const v_uint8x16& a, v_int16x8& b, v_int16x8& c)
{
v_uint16x8 t0, t1;
v_expand(a, t0, t1);
b = v_reinterpret_as_s16(t0);
c = v_reinterpret_as_s16(t1);
}
inline void v_expand_f32(const v_int16x8& a, v_float32x4& b, v_float32x4& c)
{
v_int32x4 t0, t1;
v_expand(a, t0, t1);
b = v_cvt_f32(t0);
c = v_cvt_f32(t1);
}
inline v_uint8x16 v_finalize_pix_ch(const v_int16x8& c0, const v_int16x8& c1,
const v_float32x4& s0, const v_float32x4& s1,
const v_float32x4& s2, const v_float32x4& s3,
const v_float32x4& alpha)
{
v_float32x4 f0, f1, f2, f3;
v_expand_f32(c0, f0, f1);
v_expand_f32(c1, f2, f3);
v_int16x8 d0 = v_pack(v_round(s0*alpha + f0), v_round(s1*alpha + f1));
v_int16x8 d1 = v_pack(v_round(s2*alpha + f2), v_round(s3*alpha + f3));
return v_pack_u(d0, d1);
}
#endif
class ADBody : public ParallelLoopBody
{
public:
ADBody(const Mat* src_, Mat* dst_, const float* exptab, float alpha)
{
src = src_;
dst = dst_;
exptab_ = exptab;
alpha_ = alpha;
}
void operator()(const Range& range) const
{
const int cn = 3;
int cols = src->cols;
int step = (int)src->step;
int tab[] = { -cn, cn, -step-cn, -step, -step+cn, step-cn, step, step+cn };
float alpha = alpha_;
const float* exptab = exptab_;
for( int i = range.start; i < range.end; i++ )
{
const uchar* psrc0 = src->ptr<uchar>(i);
uchar* pdst = dst->ptr<uchar>(i);
int j = 0;
#if CV_SIMD128
v_float32x4 v_alpha = v_setall_f32(alpha);
for( ; j <= cols - 16; j += 16 )
{
v_uint8x16 c0, c1, c2;
v_load_deinterleave(psrc0 + j*3, c0, c1, c2);
v_int16x8 c00, c01, c10, c11, c20, c21;
v_expand_s(c0, c00, c01);
v_expand_s(c1, c10, c11);
v_expand_s(c2, c20, c21);
v_float32x4 s00 = v_setzero_f32(), s01 = s00, s02 = s00, s03 = s00;
v_float32x4 s10 = v_setzero_f32(), s11 = s00, s12 = s00, s13 = s00;
v_float32x4 s20 = v_setzero_f32(), s21 = s00, s22 = s00, s23 = s00;
v_float32x4 fd0, fd1, fd2, fd3;
for( int k = 0; k < 8; k++ )
{
const uchar* psrc1 = psrc0 + j*3 + tab[k];
v_uint8x16 p0, p1, p2;
v_int16x8 p00, p01, p10, p11, p20, p21;
v_load_deinterleave(psrc1, p0, p1, p2);
v_expand_s(p0, p00, p01);
v_expand_s(p1, p10, p11);
v_expand_s(p2, p20, p21);
v_int16x8 d00 = p00 - c00, d01 = p01 - c01;
v_int16x8 d10 = p10 - c10, d11 = p11 - c11;
v_int16x8 d20 = p20 - c20, d21 = p21 - c21;
v_uint16x8 n0 = v_abs(d00) + v_abs(d10) + v_abs(d20);
v_uint16x8 n1 = v_abs(d01) + v_abs(d11) + v_abs(d21);
ushort CV_DECL_ALIGNED(16) nbuf[16];
v_store(nbuf, n0);
v_store(nbuf + 8, n1);
v_float32x4 w0(exptab[nbuf[0]], exptab[nbuf[1]], exptab[nbuf[2]], exptab[nbuf[3]]);
v_float32x4 w1(exptab[nbuf[4]], exptab[nbuf[5]], exptab[nbuf[6]], exptab[nbuf[7]]);
v_float32x4 w2(exptab[nbuf[8]], exptab[nbuf[9]], exptab[nbuf[10]], exptab[nbuf[11]]);
v_float32x4 w3(exptab[nbuf[12]], exptab[nbuf[13]], exptab[nbuf[14]], exptab[nbuf[15]]);
v_expand_f32(d00, fd0, fd1);
v_expand_f32(d01, fd2, fd3);
s00 += fd0*w0; s01 += fd1*w1; s02 += fd2*w2; s03 += fd3*w3;
v_expand_f32(d10, fd0, fd1);
v_expand_f32(d11, fd2, fd3);
s10 += fd0*w0; s11 += fd1*w1; s12 += fd2*w2; s13 += fd3*w3;
v_expand_f32(d20, fd0, fd1);
v_expand_f32(d21, fd2, fd3);
s20 += fd0*w0; s21 += fd1*w1; s22 += fd2*w2; s23 += fd3*w3;
}
c0 = v_finalize_pix_ch(c00, c01, s00, s01, s02, s03, v_alpha);
c1 = v_finalize_pix_ch(c10, c11, s10, s11, s12, s13, v_alpha);
c2 = v_finalize_pix_ch(c20, c21, s20, s21, s22, s23, v_alpha);
v_store_interleave(pdst + j*3, c0, c1, c2);
}
j *= 3;
#endif
for( ; j < cols*cn; j += cn )
{
int c0 = psrc0[j], c1 = psrc0[j+1], c2 = psrc0[j+2];
float s0 = 0.f, s1 = 0.f, s2 = 0.f;
for( int k = 0; k < 8; k++ )
{
const uchar* psrc1 = psrc0 + j + tab[k];
int delta0 = psrc1[0] - c0;
int delta1 = psrc1[1] - c1;
int delta2 = psrc1[2] - c2;
int nabla = std::abs(delta0) + std::abs(delta1) + std::abs(delta2);
float w = exptab[nabla];
s0 += delta0*w;
s1 += delta1*w;
s2 += delta2*w;
}
pdst[j] = saturate_cast<uchar>(c0 + alpha*s0);
pdst[j+1] = saturate_cast<uchar>(c1 + alpha*s1);
pdst[j+2] = saturate_cast<uchar>(c2 + alpha*s2);
}
}
}
const Mat* src;
Mat* dst;
const float* exptab_;
float alpha_;
};
#ifdef HAVE_OPENCL
static bool ocl_anisotropicDiffusion(InputArray src_, OutputArray dst_,
float alpha, int niters,
const std::vector<float>& exptab)
{
UMat src0 = src_.getUMat(), dst0 = dst_.getUMat();
int type = src0.type();
int rows = src0.rows, cols = src0.cols;
ocl::Kernel k("anisodiff", ocl::ximgproc::anisodiff_oclsrc, "");
if (k.empty())
return false;
UMat temp0x(rows + 2, cols + 2, type);
UMat temp1x(rows + 2, cols + 2, type);
UMat temp0(temp0x, Rect(1, 1, cols, rows));
UMat temp1(temp1x, Rect(1, 1, cols, rows));
int tabsz = (int)exptab.size();
UMat uexptab = Mat(1, tabsz, CV_32F, (void*)&exptab[0]).getUMat(ACCESS_READ);
for (int t = 0; t < niters; t++)
{
UMat src = temp0, dst = t == niters-1 ? dst0 : temp1;
copyMakeBorder(t == 0 ? src0 : src, temp0x, 1, 1, 1, 1, BORDER_REPLICATE);
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst),
ocl::KernelArg::PtrReadOnly(uexptab), alpha);
size_t globalsize[] = { cols, rows };
if(!k.run(2, globalsize, NULL, true))
return false;
std::swap(temp0, temp1);
std::swap(temp0x, temp1x);
}
return true;
}
#endif
void anisotropicDiffusion(InputArray src_, OutputArray dst_, float alpha, float K, int niters )
{
if( niters == 0 )
{
src_.copyTo(dst_);
return;
}
int type = src_.type();
CV_Assert(src_.dims() == 2 && type == CV_8UC3);
CV_Assert(K != 0);
CV_Assert(alpha > 0);
CV_Assert(niters >= 0);
const int cn = 3;
float sigma = K * cn * 255.f;
float isigma2 = 1 / (sigma * sigma);
std::vector<float> exptab_(255*3);
float* exptab = &exptab_[0];
for( int k = 0; k < 255*3; k++ )
exptab[k] = std::exp(-k*k*isigma2);
dst_.create(src_.size(), type);
CV_OCL_RUN(dst_.isUMat(),
ocl_anisotropicDiffusion(src_, dst_, alpha, niters, exptab_));
Mat src0 = src_.getMat();
int rows = src0.rows, cols = src0.cols;
Mat dst0 = dst_.getMat();
Mat temp0x(rows + 2, cols + 2, type);
Mat temp1x(rows + 2, cols + 2, type);
Mat temp0(temp0x, Rect(1, 1, cols, rows));
Mat temp1(temp1x, Rect(1, 1, cols, rows));
for (int t = 0; t < niters; t++)
{
Mat src = temp0, dst = t == niters-1 ? dst0 : temp1;
copyMakeBorder(t == 0 ? src0 : src, temp0x, 1, 1, 1, 1, BORDER_REPLICATE);
ADBody body(&src, &dst, exptab, alpha);
parallel_for_(Range(0, rows), body, 8);
std::swap(temp0, temp1);
std::swap(temp0x, temp1x);
}
}
}
}
__kernel void anisodiff(__global const uchar * srcptr, int srcstep, int srcoffset,
__global uchar * dstptr, int dststep, int dstoffset,
int rows, int cols, __constant float* exptab, float alpha)
{
int x = get_global_id(0);
int y = get_global_id(1);
if( x < cols && y < rows )
{
int yofs = y*dststep + x*3;
int xofs = y*srcstep + x*3;
float4 s = 0.f;
float4 c = (float4)(srcptr[xofs], srcptr[xofs+1], srcptr[xofs+2], 0.f);
float4 delta, adelta;
float w;
#define UPDATE_SUM(xofs1) \
delta = (float4)(srcptr[xofs + xofs1], srcptr[xofs + xofs1 + 1], srcptr[xofs + xofs1 + 2], 0.f) - c; \
adelta = fabs(delta); \
w = exptab[convert_int(adelta.x + adelta.y + adelta.z)]; \
s += delta*w
UPDATE_SUM(3);
UPDATE_SUM(-3);
UPDATE_SUM(-srcstep-3);
UPDATE_SUM(-srcstep);
UPDATE_SUM(-srcstep+3);
UPDATE_SUM(srcstep-3);
UPDATE_SUM(srcstep);
UPDATE_SUM(srcstep+3);
s = s*alpha + c;
uchar4 d = convert_uchar4_sat(convert_int4_rte(s));
dstptr[yofs] = d.x;
dstptr[yofs+1] = d.y;
dstptr[yofs+2] = d.z;
}
}
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
TEST(ximgproc_AnisotropicDiffusion, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
string original_path = folder + "fruits.png";
Mat original = imread(original_path, IMREAD_COLOR);
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
ASSERT_EQ(3, original.channels()) << "Load color input image " << original_path;
Mat result;
float alpha = 1.0f;
float K = 0.02f;
int niters = 10;
ximgproc::anisotropicDiffusion(original, result, alpha, K, niters);
double adiff_psnr = cvtest::PSNR(original, result);
//printf("psnr=%.2f\n", adiff_psnr);
ASSERT_GT(adiff_psnr, 25.0);
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment