Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
67da3f06
Commit
67da3f06
authored
Aug 14, 2014
by
lluis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
adds class OCRHMMDecoder API interface and implementation
parent
36a31161
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
651 additions
and
1 deletion
+651
-1
ocr.hpp
modules/text/include/opencv2/text/ocr.hpp
+48
-1
ocr_hmm_decoder.cpp
modules/text/src/ocr_hmm_decoder.cpp
+603
-0
No files found.
modules/text/include/opencv2/text/ocr.hpp
View file @
67da3f06
...
...
@@ -52,7 +52,6 @@ namespace cv
namespace
text
{
enum
{
OCR_LEVEL_WORD
,
...
...
@@ -69,6 +68,8 @@ public:
int
component_level
=
0
)
=
0
;
};
/* OCR Tesseract */
class
CV_EXPORTS
OCRTesseract
:
public
BaseOCR
{
public
:
...
...
@@ -81,6 +82,52 @@ public:
};
/* OCR HMM Decoder */
enum
decoder_mode
{
OCR_DECODER_VITERBI
=
0
// Other algorithms may be added
};
class
CV_EXPORTS
OCRHMMDecoder
:
public
BaseOCR
{
public
:
//! callback with the character classifier is made a class. This way we hide the feature extractor and the classifier itself
class
CV_EXPORTS
ClassifierCallback
{
public
:
virtual
~
ClassifierCallback
()
{
}
//! The classifier must return a (ranked list of) class(es) id('s)
virtual
void
eval
(
InputArray
image
,
std
::
vector
<
int
>&
out_class
,
std
::
vector
<
double
>&
out_confidence
);
};
public
:
//! Decode a group of regions and output the most likely sequence of characters
virtual
void
run
(
Mat
&
image
,
std
::
string
&
output_text
,
std
::
vector
<
Rect
>*
component_rects
=
NULL
,
std
::
vector
<
std
::
string
>*
component_texts
=
NULL
,
std
::
vector
<
float
>*
component_confidences
=
NULL
,
int
component_level
=
0
);
static
Ptr
<
OCRHMMDecoder
>
create
(
const
Ptr
<
OCRHMMDecoder
::
ClassifierCallback
>
classifier
,
// The character classifier with built in feature extractor
const
std
::
string
&
vocabulary
,
// The language vocabulary (chars when ascii english text)
// size() must be equal to the number of classes
InputArray
transition_probabilities_table
,
// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
InputArray
emission_probabilities_table
,
// Table with observation emission probabilities
// cols == rows == vocabulari.size()
decoder_mode
mode
=
OCR_DECODER_VITERBI
);
// HMM Decoding algorithm (only Viterbi for the moment)
protected
:
Ptr
<
OCRHMMDecoder
::
ClassifierCallback
>
classifier
;
std
::
string
vocabulary
;
Mat
transition_p
;
Mat
emission_p
;
decoder_mode
mode
;
};
CV_EXPORTS
Ptr
<
OCRHMMDecoder
::
ClassifierCallback
>
loadOCRHMMClassifierNM
(
const
std
::
string
&
filename
);
}
}
#endif // _OPENCV_TEXT_OCR_HPP_
modules/text/src/ocr_hmm_decoder.cpp
0 → 100644
View file @
67da3f06
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/ml.hpp"
#include <iostream>
#include <fstream>
#include <queue>
namespace
cv
{
namespace
text
{
using
namespace
std
;
using
namespace
cv
::
ml
;
/* OCR HMM Decoder */
void
OCRHMMDecoder
::
run
(
Mat
&
image
,
string
&
output_text
,
vector
<
Rect
>*
component_rects
,
vector
<
string
>*
component_texts
,
vector
<
float
>*
component_confidences
,
int
component_level
)
{
CV_Assert
(
(
image
.
type
()
==
CV_8UC1
)
||
(
image
.
type
()
==
CV_8UC3
)
);
CV_Assert
(
(
component_level
==
OCR_LEVEL_TEXTLINE
)
||
(
component_level
==
OCR_LEVEL_WORD
)
);
output_text
.
clear
();
if
(
component_rects
!=
NULL
)
component_rects
->
clear
();
if
(
component_texts
!=
NULL
)
component_texts
->
clear
();
if
(
component_confidences
!=
NULL
)
component_confidences
->
clear
();
}
void
OCRHMMDecoder
::
ClassifierCallback
::
eval
(
InputArray
image
,
vector
<
int
>&
out_class
,
vector
<
double
>&
out_confidence
)
{
CV_Assert
((
image
.
getMat
().
type
()
==
CV_8UC3
)
||
(
image
.
getMat
().
type
()
==
CV_8UC1
));
out_class
.
clear
();
out_confidence
.
clear
();
}
bool
sort_rect_horiz
(
Rect
a
,
Rect
b
);
bool
sort_rect_horiz
(
Rect
a
,
Rect
b
)
{
return
(
a
.
x
<
b
.
x
);
}
class
OCRHMMDecoderImpl
:
public
OCRHMMDecoder
{
public
:
//Default constructor
OCRHMMDecoderImpl
(
Ptr
<
OCRHMMDecoder
::
ClassifierCallback
>
_classifier
,
const
string
&
_vocabulary
,
InputArray
transition_probabilities_table
,
InputArray
emission_probabilities_table
,
decoder_mode
_mode
)
{
classifier
=
_classifier
;
transition_p
=
transition_probabilities_table
.
getMat
();
emission_p
=
emission_probabilities_table
.
getMat
();
vocabulary
=
_vocabulary
;
mode
=
_mode
;
}
~
OCRHMMDecoderImpl
()
{
}
void
run
(
Mat
&
image
,
string
&
out_sequence
,
vector
<
Rect
>*
component_rects
,
vector
<
string
>*
component_texts
,
vector
<
float
>*
component_confidences
,
int
component_level
)
{
CV_Assert
(
(
image
.
type
()
==
CV_8UC1
)
||
(
image
.
type
()
==
CV_8UC3
)
);
CV_Assert
(
(
image
.
cols
>
0
)
&&
(
image
.
rows
>
0
)
);
CV_Assert
(
component_level
==
OCR_LEVEL_WORD
);
out_sequence
.
clear
();
if
(
component_rects
!=
NULL
)
component_rects
->
clear
();
if
(
component_texts
!=
NULL
)
component_texts
->
clear
();
if
(
component_confidences
!=
NULL
)
component_confidences
->
clear
();
// First we split a line into words
vector
<
Mat
>
words_mask
;
vector
<
Rect
>
words_rect
;
/// Find contours
vector
<
vector
<
Point
>
>
contours
;
vector
<
Vec4i
>
hierarchy
;
Mat
tmp
;
image
.
copyTo
(
tmp
);
findContours
(
tmp
,
contours
,
hierarchy
,
RETR_EXTERNAL
,
CHAIN_APPROX_SIMPLE
,
Point
(
0
,
0
)
);
if
(
contours
.
size
()
<
6
)
{
//do not split lines with less than 6 characters
words_mask
.
push_back
(
image
);
words_rect
.
push_back
(
Rect
(
0
,
0
,
image
.
cols
,
image
.
rows
));
}
else
{
Mat_
<
float
>
vector_w
((
int
)
image
.
cols
,
1
);
reduce
(
image
,
vector_w
,
0
,
REDUCE_SUM
,
-
1
);
vector
<
int
>
spaces
;
vector
<
int
>
spaces_start
;
vector
<
int
>
spaces_end
;
int
space_count
=
0
;
int
last_one_idx
;
int
s_init
=
0
,
s_end
=
vector_w
.
cols
;
for
(
int
s
=
0
;
s
<
vector_w
.
cols
;
s
++
)
{
if
(
vector_w
.
at
<
float
>
(
0
,
s
)
==
0
)
s_init
=
s
+
1
;
else
break
;
}
for
(
int
s
=
vector_w
.
cols
-
1
;
s
>=
0
;
s
--
)
{
if
(
vector_w
.
at
<
float
>
(
0
,
s
)
==
0
)
s_end
=
s
;
else
break
;
}
for
(
int
s
=
s_init
;
s
<
s_end
;
s
++
)
{
if
(
vector_w
.
at
<
float
>
(
0
,
s
)
==
0
)
{
space_count
++
;
}
else
{
if
(
space_count
!=
0
)
{
spaces
.
push_back
(
space_count
);
spaces_start
.
push_back
(
last_one_idx
);
spaces_end
.
push_back
(
s
-
1
);
}
space_count
=
0
;
last_one_idx
=
s
;
}
}
Scalar
mean_space
,
std_space
;
meanStdDev
(
Mat
(
spaces
),
mean_space
,
std_space
);
int
num_word_spaces
=
0
;
int
last_word_space_end
=
0
;
for
(
int
s
=
0
;
s
<
(
int
)
spaces
.
size
();
s
++
)
{
if
(
spaces_end
.
at
(
s
)
-
spaces_start
.
at
(
s
)
>
mean_space
[
0
]
+
(
mean_space
[
0
]
*
1.1
))
//this 1.1 is a param?
{
if
(
num_word_spaces
==
0
)
{
//cout << " we have a word from 0 to " << spaces_start.at(s) << endl;
Mat
word_mask
;
Rect
word_rect
=
Rect
(
0
,
0
,
spaces_start
.
at
(
s
),
image
.
rows
);
image
(
word_rect
).
copyTo
(
word_mask
);
words_mask
.
push_back
(
word_mask
);
words_rect
.
push_back
(
word_rect
);
}
else
{
//cout << " we have a word from " << last_word_space_end << " to " << spaces_start.at(s) << endl;
Mat
word_mask
;
Rect
word_rect
=
Rect
(
last_word_space_end
,
0
,
spaces_start
.
at
(
s
)
-
last_word_space_end
,
image
.
rows
);
image
(
word_rect
).
copyTo
(
word_mask
);
words_mask
.
push_back
(
word_mask
);
words_rect
.
push_back
(
word_rect
);
}
num_word_spaces
++
;
last_word_space_end
=
spaces_end
.
at
(
s
);
}
}
//cout << " we have a word from " << last_word_space_end << " to " << vector_w.cols << endl << endl << endl;
Mat
word_mask
;
Rect
word_rect
=
Rect
(
last_word_space_end
,
0
,
vector_w
.
cols
-
last_word_space_end
,
image
.
rows
);
image
(
word_rect
).
copyTo
(
word_mask
);
words_mask
.
push_back
(
word_mask
);
words_rect
.
push_back
(
word_rect
);
}
for
(
int
w
=
0
;
w
<
(
int
)
words_mask
.
size
();
w
++
)
{
vector
<
vector
<
int
>
>
observations
;
vector
<
vector
<
double
>
>
confidences
;
vector
<
int
>
obs
;
// First find contours and sort by x coordinate of bbox
words_mask
[
w
].
copyTo
(
tmp
);
if
(
tmp
.
empty
())
continue
;
contours
.
clear
();
hierarchy
.
clear
();
/// Find contours
findContours
(
tmp
,
contours
,
hierarchy
,
RETR_EXTERNAL
,
CHAIN_APPROX_SIMPLE
,
Point
(
0
,
0
)
);
vector
<
Rect
>
contours_rect
;
for
(
int
i
=
0
;
i
<
(
int
)
contours
.
size
();
i
++
)
{
contours_rect
.
push_back
(
boundingRect
(
contours
[
i
]));
}
sort
(
contours_rect
.
begin
(),
contours_rect
.
end
(),
sort_rect_horiz
);
// Do character recognition foreach contour
for
(
int
i
=
0
;
i
<
(
int
)
contours
.
size
();
i
++
)
{
Mat
tmp_mask
;
words_mask
[
w
](
contours_rect
.
at
(
i
)).
copyTo
(
tmp_mask
);
vector
<
int
>
out_class
;
vector
<
double
>
out_conf
;
classifier
->
eval
(
tmp_mask
,
out_class
,
out_conf
);
if
(
!
out_class
.
empty
())
obs
.
push_back
(
out_class
[
0
]);
observations
.
push_back
(
out_class
);
confidences
.
push_back
(
out_conf
);
}
//This must be extracted from dictionary, or just assumed to be equal for all characters
vector
<
double
>
start_p
(
vocabulary
.
size
());
for
(
int
i
=
0
;
i
<
(
int
)
vocabulary
.
size
();
i
++
)
start_p
[
i
]
=
1.0
/
vocabulary
.
size
();
Mat
V
=
Mat
::
zeros
(
observations
.
size
(),
vocabulary
.
size
(),
CV_64FC1
);
vector
<
string
>
path
(
vocabulary
.
size
());
// Initialize base cases (t == 0)
for
(
int
i
=
0
;
i
<
(
int
)
vocabulary
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
(
int
)
observations
[
0
].
size
();
j
++
)
{
emission_p
.
at
<
double
>
(
observations
[
0
][
j
],
obs
[
0
])
=
confidences
[
0
][
j
];
}
V
.
at
<
double
>
(
0
,
i
)
=
start_p
[
i
]
*
emission_p
.
at
<
double
>
(
i
,
obs
[
0
]);
path
[
i
]
=
vocabulary
.
at
(
i
);
}
// Run Viterbi for t > 0
for
(
int
t
=
1
;
t
<
(
int
)
obs
.
size
();
t
++
)
{
//Dude this has to be done each time!!
emission_p
=
Mat
::
eye
(
62
,
62
,
CV_64FC1
);
for
(
int
e
=
0
;
e
<
(
int
)
observations
[
t
].
size
();
e
++
)
{
emission_p
.
at
<
double
>
(
observations
[
t
][
e
],
obs
[
t
])
=
confidences
[
t
][
e
];
}
vector
<
string
>
newpath
(
vocabulary
.
size
());
for
(
int
i
=
0
;
i
<
(
int
)
vocabulary
.
size
();
i
++
)
{
double
max_prob
=
0
;
int
best_idx
=
0
;
for
(
int
j
=
0
;
j
<
(
int
)
vocabulary
.
size
();
j
++
)
{
double
prob
=
V
.
at
<
double
>
(
t
-
1
,
j
)
*
transition_p
.
at
<
double
>
(
j
,
i
)
*
emission_p
.
at
<
double
>
(
i
,
obs
[
t
]);
if
(
prob
>
max_prob
)
{
max_prob
=
prob
;
best_idx
=
j
;
}
}
V
.
at
<
double
>
(
t
,
i
)
=
max_prob
;
newpath
[
i
]
=
path
[
best_idx
]
+
vocabulary
.
at
(
i
);
}
// Don't need to remember the old paths
path
.
swap
(
newpath
);
}
double
max_prob
=
0
;
int
best_idx
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
vocabulary
.
size
();
i
++
)
{
double
prob
=
V
.
at
<
double
>
(
obs
.
size
()
-
1
,
i
);
if
(
prob
>
max_prob
)
{
max_prob
=
prob
;
best_idx
=
i
;
}
}
//cout << path[best_idx] << endl;
out_sequence
=
out_sequence
+
" "
+
path
[
best_idx
];
if
(
component_rects
!=
NULL
)
component_rects
->
push_back
(
words_rect
[
w
]);
if
(
component_texts
!=
NULL
)
component_texts
->
push_back
(
path
[
best_idx
]);
if
(
component_confidences
!=
NULL
)
component_confidences
->
push_back
(
max_prob
);
}
return
;
}
};
Ptr
<
OCRHMMDecoder
>
OCRHMMDecoder
::
create
(
Ptr
<
OCRHMMDecoder
::
ClassifierCallback
>
_classifier
,
const
string
&
_vocabulary
,
InputArray
transition_p
,
InputArray
emission_p
,
decoder_mode
_mode
)
{
return
makePtr
<
OCRHMMDecoderImpl
>
(
_classifier
,
_vocabulary
,
transition_p
,
emission_p
,
_mode
);
}
class
CV_EXPORTS
OCRHMMClassifierKNN
:
public
OCRHMMDecoder
::
ClassifierCallback
{
public
:
//constructor
OCRHMMClassifierKNN
(
const
std
::
string
&
filename
);
// Destructor
~
OCRHMMClassifierKNN
()
{}
void
eval
(
InputArray
mask
,
vector
<
int
>&
out_class
,
vector
<
double
>&
out_confidence
);
private
:
Ptr
<
KNearest
>
knn
;
};
OCRHMMClassifierKNN
::
OCRHMMClassifierKNN
(
const
string
&
filename
)
{
knn
=
KNearest
::
create
();
if
(
ifstream
(
filename
.
c_str
()))
{
Mat
hus
,
labels
;
cv
::
FileStorage
storage
(
filename
.
c_str
(),
cv
::
FileStorage
::
READ
);
storage
[
"hus"
]
>>
hus
;
storage
[
"labels"
]
>>
labels
;
storage
.
release
();
knn
->
train
(
hus
,
ROW_SAMPLE
,
labels
);
}
else
CV_Error
(
Error
::
StsBadArg
,
"Default classifier data file not found!"
);
}
void
OCRHMMClassifierKNN
::
eval
(
InputArray
_mask
,
vector
<
int
>&
out_class
,
vector
<
double
>&
out_confidence
)
{
CV_Assert
(
_mask
.
getMat
().
type
()
==
CV_8UC1
);
out_class
.
clear
();
out_confidence
.
clear
();
int
image_height
=
35
;
int
image_width
=
35
;
int
num_features
=
200
;
Mat
img
=
_mask
.
getMat
();
Mat
tmp
;
img
.
copyTo
(
tmp
);
vector
<
vector
<
Point
>
>
contours
;
vector
<
Vec4i
>
hierarchy
;
/// Find contours
findContours
(
tmp
,
contours
,
hierarchy
,
RETR_EXTERNAL
,
CHAIN_APPROX_SIMPLE
,
Point
(
0
,
0
)
);
if
(
contours
.
empty
())
return
;
int
idx
=
0
;
if
(
contours
.
size
()
>
1
)
{
// this is to make sure we have the mask with a single contour
// e.g "i" and "j" have two contours, but it may be also a part of a neighbour character
// we take the larger one and clean the outside in order to have a single contour
int
max_area
=
0
;
for
(
int
cc
=
0
;
cc
<
(
int
)
contours
.
size
();
cc
++
)
{
int
area_c
=
boundingRect
(
contours
[
cc
]).
area
();
if
(
area_c
>
max_area
)
{
idx
=
cc
;
max_area
=
area_c
;
}
}
// clean-up the outside of the contour
Mat
tmp_c
=
Mat
::
zeros
(
tmp
.
rows
,
tmp
.
cols
,
CV_8UC1
);
drawContours
(
tmp_c
,
contours
,
idx
,
Scalar
(
255
),
FILLED
);
img
=
img
&
tmp_c
;
}
Rect
bbox
=
boundingRect
(
contours
[
idx
]);
//Crop to fit the exact rect of the contour and resize to a fixed-sized matrix of 35 x 35 pixel, while retaining the centroid of the region and aspect ratio.
Mat
mask
=
Mat
::
zeros
(
image_height
,
image_width
,
CV_8UC1
);
img
(
bbox
).
copyTo
(
tmp
);
if
(
tmp
.
cols
>
tmp
.
rows
)
{
int
height
=
image_width
*
tmp
.
rows
/
tmp
.
cols
;
resize
(
tmp
,
tmp
,
Size
(
image_width
,
height
));
tmp
.
copyTo
(
mask
(
Rect
(
0
,(
image_height
-
height
)
/
2
,
image_width
,
height
)));
}
else
{
int
width
=
image_height
*
tmp
.
cols
/
tmp
.
rows
;
resize
(
tmp
,
tmp
,
Size
(
width
,
image_height
));
tmp
.
copyTo
(
mask
(
Rect
((
image_width
-
width
)
/
2
,
0
,
width
,
image_height
)));
}
//find contours again (now resized)
mask
.
copyTo
(
tmp
);
findContours
(
tmp
,
contours
,
hierarchy
,
RETR_LIST
,
CHAIN_APPROX_SIMPLE
,
Point
(
0
,
0
)
);
vector
<
Mat
>
maps
;
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
Mat
map
=
Mat
::
zeros
(
image_height
,
image_width
,
CV_8UC1
);
maps
.
push_back
(
map
);
}
for
(
int
c
=
0
;
c
<
(
int
)
contours
.
size
();
c
++
)
{
for
(
int
i
=
0
;
i
<
(
int
)
contours
[
c
].
size
();
i
++
)
{
//cout << contours[c][i] << " -- " << contours[c][(i+1)%contours[c].size()] << endl;
double
dy
=
contours
[
c
][
i
].
y
-
contours
[
c
][(
i
+
1
)
%
contours
[
c
].
size
()].
y
;
double
dx
=
contours
[
c
][
i
].
x
-
contours
[
c
][(
i
+
1
)
%
contours
[
c
].
size
()].
x
;
double
angle
=
atan2
(
dy
,
dx
)
*
180
/
3.14159265
;
//cout << " angle = " << angle << endl;
int
idx_a
=
0
;
if
((
angle
>=
157.5
)
||
(
angle
<=-
157.5
))
idx_a
=
0
;
else
if
((
angle
>=-
157.5
)
&&
(
angle
<=-
112.5
))
idx_a
=
1
;
else
if
((
angle
>=-
112.5
)
&&
(
angle
<=-
67.5
))
idx_a
=
2
;
else
if
((
angle
>=-
67.5
)
&&
(
angle
<=-
22.5
))
idx_a
=
3
;
else
if
((
angle
>=-
22.5
)
&&
(
angle
<=
22.5
))
idx_a
=
4
;
else
if
((
angle
>=
22.5
)
&&
(
angle
<=
67.5
))
idx_a
=
5
;
else
if
((
angle
>=
67.5
)
&&
(
angle
<=
112.5
))
idx_a
=
6
;
else
if
((
angle
>=
112.5
)
&&
(
angle
<=
157.5
))
idx_a
=
7
;
line
(
maps
[
idx_a
],
contours
[
c
][
i
],
contours
[
c
][(
i
+
1
)
%
contours
[
c
].
size
()],
Scalar
(
255
));
}
}
//On each bitmap a regular 7x7 Gaussian masks are evenly placed
for
(
int
i
=
0
;
i
<
(
int
)
maps
.
size
();
i
++
)
{
copyMakeBorder
(
maps
[
i
],
maps
[
i
],
7
,
7
,
7
,
7
,
BORDER_CONSTANT
,
Scalar
(
0
));
GaussianBlur
(
maps
[
i
],
maps
[
i
],
Size
(
7
,
7
),
2
,
2
);
normalize
(
maps
[
i
],
maps
[
i
],
0
,
255
,
NORM_MINMAX
);
resize
(
maps
[
i
],
maps
[
i
],
Size
(
image_width
,
image_height
));
}
//Generate features for each bitmap
Mat
sample
=
Mat
(
1
,
num_features
,
CV_32FC1
);
Mat
patch
;
for
(
int
i
=
0
;
i
<
(
int
)
maps
.
size
();
i
++
)
{
for
(
int
y
=
0
;
y
<
image_height
;
y
=
y
+
7
)
{
for
(
int
x
=
0
;
x
<
image_width
;
x
=
x
+
7
)
{
maps
[
i
](
Rect
(
x
,
y
,
7
,
7
)).
copyTo
(
patch
);
Scalar
mean
,
std
;
meanStdDev
(
patch
,
mean
,
std
);
sample
.
at
<
float
>
(
0
,
i
*
25
+
((
int
)
x
/
7
)
+
((
int
)
y
/
7
)
*
5
)
=
mean
[
0
]
/
255
;
//cout << " avg " << mean[0] << " in patch " << x << "," << y << " channel " << i << " idx = " << i*25+((int)x/7)+((int)y/7)*5<< endl;
}
}
}
Mat
responses
,
dists
,
predictions
;
knn
->
findNearest
(
sample
,
11
,
predictions
,
responses
,
dists
);
Scalar
dist_sum
=
sum
(
dists
);
Mat
class_predictions
=
Mat
::
zeros
(
1
,
62
,
CV_64FC1
);
//static const char* ascii[62] = {"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z","0","1","2","3","4","5","6","7","8","9"};
vector
<
vector
<
int
>
>
equivalency_mat
(
62
);
equivalency_mat
[
2
].
push_back
(
28
);
// c -> C
equivalency_mat
[
28
].
push_back
(
2
);
// C -> c
equivalency_mat
[
8
].
push_back
(
34
);
// i -> I
equivalency_mat
[
8
].
push_back
(
11
);
// i -> l
equivalency_mat
[
11
].
push_back
(
8
);
// l -> i
equivalency_mat
[
11
].
push_back
(
34
);
// l -> I
equivalency_mat
[
34
].
push_back
(
8
);
// I -> i
equivalency_mat
[
34
].
push_back
(
11
);
// I -> l
equivalency_mat
[
9
].
push_back
(
35
);
// j -> J
equivalency_mat
[
35
].
push_back
(
9
);
// J -> j
equivalency_mat
[
14
].
push_back
(
40
);
// o -> O
equivalency_mat
[
14
].
push_back
(
52
);
// o -> 0
equivalency_mat
[
40
].
push_back
(
14
);
// O -> o
equivalency_mat
[
40
].
push_back
(
52
);
// O -> 0
equivalency_mat
[
52
].
push_back
(
14
);
// 0 -> o
equivalency_mat
[
52
].
push_back
(
40
);
// 0 -> O
equivalency_mat
[
15
].
push_back
(
41
);
// p -> P
equivalency_mat
[
41
].
push_back
(
15
);
// P -> p
equivalency_mat
[
18
].
push_back
(
44
);
// s -> S
equivalency_mat
[
44
].
push_back
(
18
);
// S -> s
equivalency_mat
[
20
].
push_back
(
46
);
// u -> U
equivalency_mat
[
46
].
push_back
(
20
);
// U -> u
equivalency_mat
[
21
].
push_back
(
47
);
// v -> V
equivalency_mat
[
47
].
push_back
(
21
);
// V -> v
equivalency_mat
[
22
].
push_back
(
48
);
// w -> W
equivalency_mat
[
48
].
push_back
(
22
);
// W -> w
equivalency_mat
[
23
].
push_back
(
49
);
// x -> X
equivalency_mat
[
49
].
push_back
(
23
);
// X -> x
equivalency_mat
[
25
].
push_back
(
51
);
// z -> Z
equivalency_mat
[
51
].
push_back
(
25
);
// Z -> z
for
(
int
j
=
0
;
j
<
responses
.
cols
;
j
++
)
{
if
(
responses
.
at
<
float
>
(
0
,
j
)
<
0
)
continue
;
class_predictions
.
at
<
double
>
(
0
,(
int
)
responses
.
at
<
float
>
(
0
,
j
))
+=
dists
.
at
<
float
>
(
0
,
j
);
for
(
int
e
=
0
;
e
<
(
int
)
equivalency_mat
[(
int
)
responses
.
at
<
float
>
(
0
,
j
)].
size
();
e
++
)
{
class_predictions
.
at
<
double
>
(
0
,
equivalency_mat
[(
int
)
responses
.
at
<
float
>
(
0
,
j
)][
e
])
+=
dists
.
at
<
float
>
(
0
,
j
);
dist_sum
[
0
]
+=
dists
.
at
<
float
>
(
0
,
j
);
}
}
class_predictions
=
class_predictions
/
dist_sum
[
0
];
out_class
.
push_back
((
int
)
predictions
.
at
<
float
>
(
0
,
0
));
out_confidence
.
push_back
(
class_predictions
.
at
<
double
>
(
0
,(
int
)
predictions
.
at
<
float
>
(
0
,
0
)));
for
(
int
i
=
0
;
i
<
class_predictions
.
cols
;
i
++
)
{
if
((
class_predictions
.
at
<
double
>
(
0
,
i
)
>
0
)
&&
(
i
!=
out_class
[
0
]))
{
out_class
.
push_back
(
i
);
out_confidence
.
push_back
(
class_predictions
.
at
<
double
>
(
0
,
i
));
}
}
//printf("\n !! The char sample is predicted as: %s \n\n", ascii[(int)predictions.at<float>(0,0)]);
}
Ptr
<
OCRHMMDecoder
::
ClassifierCallback
>
loadOCRHMMClassifierNM
(
const
std
::
string
&
filename
)
{
return
makePtr
<
OCRHMMClassifierKNN
>
(
filename
);
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment