Commit 67c825c0 authored by Vitaliy Lyudvichenko's avatar Vitaliy Lyudvichenko

Adding of perf test for DNN module.

parent b1c87936
# - Find the MKL libraries
# Modified from Armadillo's ARMA_FindMKL.cmake
# This module defines
# MKL_INCLUDE_DIR, the directory for the MKL headers
# MKL_LIB_DIR, the directory for the MKL library files
# MKL_COMPILER_LIB_DIR, the directory for the MKL compiler library files
# MKL_LIBRARIES, the libraries needed to use Intel's implementation of BLAS & LAPACK.
# MKL_FOUND, If false, do not try to use MKL; if true, the macro definition USE_MKL is added.
# Set the include path
# TODO: what if MKL is not installed in /opt/intel/mkl?
# try to find at /opt/intel/mkl
# in windows, try to find MKL at C:/Program Files (x86)/Intel/Composer XE/mkl
if ( WIN32 )
if(NOT DEFINED ENV{MKLROOT_PATH})
#set(MKLROOT_PATH "C:/Program Files (x86)/Intel/Composer XE" CACHE PATH "Where the MKL are stored")
set(MKLROOT_PATH "C:/Program Files (x86)/IntelSWTools/compilers_and_libraries/windows" CACHE PATH "Where the MKL are stored")
endif(NOT DEFINED ENV{MKLROOT_PATH})
else ( WIN32 )
set(MKLROOT_PATH "/opt/intel" CACHE PATH "Where the MKL are stored")
endif ( WIN32 )
if (EXISTS ${MKLROOT_PATH}/mkl)
SET(MKL_FOUND TRUE)
message("MKL is found at ${MKLROOT_PATH}/mkl")
IF(CMAKE_SIZEOF_VOID_P EQUAL 8)
set( USE_MKL_64BIT On )
if ( ARMADILLO_FOUND )
if ( ARMADILLO_BLAS_LONG_LONG )
set( USE_MKL_64BIT_LIB On )
ADD_DEFINITIONS(-DMKL_ILP64)
message("MKL is linked against ILP64 interface ... ")
endif ( ARMADILLO_BLAS_LONG_LONG )
endif ( ARMADILLO_FOUND )
ELSE(CMAKE_SIZEOF_VOID_P EQUAL 8)
set( USE_MKL_64BIT Off )
ENDIF(CMAKE_SIZEOF_VOID_P EQUAL 8)
else (EXISTS ${MKLROOT_PATH}/mkl)
SET(MKL_FOUND FALSE)
message("MKL is NOT found ... ")
endif (EXISTS ${MKLROOT_PATH}/mkl)
if (MKL_FOUND)
set(MKL_INCLUDE_DIR "${MKLROOT_PATH}/mkl/include")
ADD_DEFINITIONS(-DUSE_MKL)
if ( USE_MKL_64BIT )
set(MKL_LIB_DIR "${MKLROOT_PATH}/mkl/lib/intel64")
set(MKL_COMPILER_LIB_DIR "${MKLROOT_PATH}/compiler/lib/intel64")
set(MKL_COMPILER_LIB_DIR ${MKL_COMPILER_LIB_DIR} "${MKLROOT_PATH}/lib/intel64")
if ( USE_MKL_64BIT_LIB )
if (WIN32)
set(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel_ilp64)
else (WIN32)
set(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel_ilp64)
endif (WIN32)
else ( USE_MKL_64BIT_LIB )
if (WIN32)
set(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel_lp64)
else (WIN32)
set(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel_lp64)
endif (WIN32)
endif ( USE_MKL_64BIT_LIB )
else ( USE_MKL_64BIT )
set(MKL_LIB_DIR "${MKLROOT_PATH}/mkl/lib/ia32")
set(MKL_COMPILER_LIB_DIR "${MKLROOT_PATH}/compiler/lib/ia32")
set(MKL_COMPILER_LIB_DIR ${MKL_COMPILER_LIB_DIR} "${MKLROOT_PATH}/lib/ia32")
if ( WIN32 )
set(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel_c)
else ( WIN32 )
set(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel)
endif ( WIN32 )
endif ( USE_MKL_64BIT )
if (WIN32)
SET(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_intel_thread)
SET(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_core)
SET(MKL_LIBRARIES ${MKL_LIBRARIES} libiomp5md)
else (WIN32)
SET(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_gnu_thread)
SET(MKL_LIBRARIES ${MKL_LIBRARIES} mkl_core)
endif (WIN32)
endif (MKL_FOUND)
IF (MKL_FOUND)
IF (NOT MKL_FIND_QUIETLY)
MESSAGE(STATUS "Found MKL libraries: ${MKL_LIBRARIES}")
MESSAGE(STATUS "MKL_INCLUDE_DIR: ${MKL_INCLUDE_DIR}")
MESSAGE(STATUS "MKL_LIB_DIR: ${MKL_LIB_DIR}")
MESSAGE(STATUS "MKL_COMPILER_LIB_DIR: ${MKL_COMPILER_LIB_DIR}")
ENDIF (NOT MKL_FIND_QUIETLY)
INCLUDE_DIRECTORIES( ${MKL_INCLUDE_DIR} )
LINK_DIRECTORIES( ${MKL_LIB_DIR} ${MKL_COMPILER_LIB_DIR} )
ELSE (MKL_FOUND)
IF (MKL_FIND_REQUIRED)
MESSAGE(FATAL_ERROR "Could not find MKL libraries")
ENDIF (MKL_FIND_REQUIRED)
ENDIF (MKL_FOUND)
# MARK_AS_ADVANCED(MKL_LIBRARY)
\ No newline at end of file
...@@ -116,7 +116,7 @@ namespace dnn //! This namespace is used for dnn module functionlaity. ...@@ -116,7 +116,7 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
String type; //!< Type name which was used for creating layer by layer factory. String type; //!< Type name which was used for creating layer by layer factory.
Layer(); Layer();
explicit Layer(const LayerParams &params); //!< Initialize only #name, #type and #blobs fields. explicit Layer(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
virtual ~Layer(); virtual ~Layer();
}; };
......
#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using std::tr1::make_tuple;
using std::make_pair;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::dnn;
enum {STRIDE_OFF = 1, STRIDE_ON = 2};
CV_ENUM(StrideSize, STRIDE_OFF, STRIDE_ON);
enum {GROUP_OFF = 1, GROUP_2 = 2};
CV_ENUM(GroupSize, GROUP_OFF, GROUP_2);
//Squared Size
#define SSZ(n) cv::Size(n, n)
typedef std::pair<BlobShape, int> InpShapeNumOut;
typedef tuple<Size, InpShapeNumOut, GroupSize, StrideSize> ConvParam; //kernel_size, inp shape, groups, stride
typedef TestBaseWithParam<ConvParam> ConvolutionPerfTest;
PERF_TEST_P( ConvolutionPerfTest, perf, Combine(
Values(Size(1, 1), Size(3, 3), Size(5, 5), Size(11, 11)),
Values(make_pair(BlobShape(1, 4, 224, 224), 64),
make_pair(BlobShape(1, 64, 112, 122), 128),
make_pair(BlobShape(1, 256, 28, 28), 512)),
GroupSize::all(),
StrideSize::all())
)
{
RNG rng(0);
ConvParam params = GetParam();
int ksz = get<0>(params).width;
BlobShape inpShape = get<1>(params).first;
int outCn = get<1>(params).second;
int groups = get<2>(params);
int stride = (ksz >= 11) ? 4 : get<3>(params);
int inpCn = inpShape[1];
Blob wgtBlob(BlobShape(outCn, inpCn/groups, ksz, ksz)), biasBlob(BlobShape(outCn, 1, 1, 1));
Blob inpBlob(inpShape);
rng.fill(biasBlob.matRef(), RNG::UNIFORM, -1, +1);
rng.fill(wgtBlob.matRef(), RNG::UNIFORM, -1, +1);
rng.fill(inpBlob.matRef(), RNG::UNIFORM, -1, +1);
LayerParams lp;
lp.set("num_output", outCn);
lp.set("group", groups);
lp.set("stride", stride);
lp.set("kernel_size", ksz);
lp.blobs.reserve(2);
lp.blobs.push_back(wgtBlob);
lp.blobs.push_back(biasBlob);
std::vector<Blob*> inpBlobs(1, &inpBlob);
std::vector<Blob> outBlobs;
cv::setNumThreads(cv::getNumberOfCPUs());
Ptr<Layer> layer = cv::dnn::LayerFactory::createLayerInstance("Convolution", lp);
layer->allocate(inpBlobs, outBlobs);
declare.in(inpBlob.matRef(), wgtBlob.matRef(), WARMUP_RNG).out(outBlobs[0].matRef()).tbb_threads(cv::getNumThreads());
TEST_CYCLE_N(10)
{
layer->forward(inpBlobs, outBlobs);
}
SANITY_CHECK_NOTHING();
}
}
\ No newline at end of file
#include "perf_precomp.hpp"
CV_PERF_TEST_MAIN(dnn)
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include <opencv2/ts.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
#endif
...@@ -43,13 +43,10 @@ ...@@ -43,13 +43,10 @@
#include <opencv2/core/ocl.hpp> #include <opencv2/core/ocl.hpp>
#include "layers_common.hpp" #include "layers_common.hpp"
#include "convolution_layer.hpp" #include "convolution_layer.hpp"
#include "im2col.hpp" #include "op_im2col.hpp"
#include "op_blas.hpp"
#include <iostream> #include <iostream>
#if HAVE_CBLAS
#include "cblas.h"
#endif
namespace cv namespace cv
{ {
namespace dnn namespace dnn
...@@ -78,17 +75,12 @@ namespace dnn ...@@ -78,17 +75,12 @@ namespace dnn
//TBD //TBD
useOpenCL = params.has("use_opencl"); useOpenCL = params.has("use_opencl");
//init BLAS
#if HAVE_CBLAS #if HAVE_CBLAS
{ {
#ifdef OPENBLAS_VERSION if (getBlasThreads() != cv::getThreadNum())
if (openblas_get_num_threads() != cv::getNumThreads())
{ {
openblas_set_num_threads(cv::getNumThreads()); setBlasThreads(cv::getThreadNum());
goto_set_num_threads(cv::getNumThreads());
} }
//std::cout << "OpenBLAS threads " << openblas_get_num_threads() << "/" << openblas_get_num_procs() << "\n";
#endif
} }
#endif #endif
} }
...@@ -265,57 +257,5 @@ namespace dnn ...@@ -265,57 +257,5 @@ namespace dnn
if (dstMat.type() == CV_64F) if (dstMat.type() == CV_64F)
col2im_cpu((double*)colMat.ptr(), inpGroupCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (double*)dstMat.ptr()); col2im_cpu((double*)colMat.ptr(), inpGroupCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (double*)dstMat.ptr());
} }
void gemm(InputArray A, InputArray B, double alpha, InputOutputArray C, double beta, int flags /*= 0*/)
{
cv::gemm(A, B, alpha, C, beta, C, flags);
}
inline void SwapRowCols(const Mat &A, int &rows, int &cols, bool transA = false)
{
rows = (transA) ? A.cols : A.rows;
cols = (transA) ? A.rows : A.cols;
}
void gemmCPU(const Mat &A, const Mat &B, double alpha, Mat &C, double beta, int flags /*= 0*/)
{
#if HAVE_CBLAS
bool transA = flags & GEMM_1_T;
bool transB = flags & GEMM_2_T;
bool transC = flags & GEMM_3_T;
int Arows, Acols, Brows, Bcols, Crows, Ccols;
SwapRowCols(A, Arows, Acols, transA);
SwapRowCols(B, Brows, Bcols, transB);
SwapRowCols(C, Crows, Ccols, transC);
CV_DbgAssert(!(flags & GEMM_3_T));
CV_Assert(Acols == Brows && Arows == Crows && Bcols == Ccols);
CV_DbgAssert(A.isContinuous() && B.isContinuous() && C.isContinuous());
CV_DbgAssert(A.type() == CV_32F || A.type() == CV_64F);
CV_DbgAssert(A.type() == B.type() && B.type() == C.type());
if (C.type() == CV_32F)
{
cblas_sgemm(CblasRowMajor, transA ? CblasTrans : CblasNoTrans, transB ? CblasTrans : CblasNoTrans,
Arows, Bcols, Acols,
(float)alpha, A.ptr<float>(), A.cols,
B.ptr<float>(), B.cols,
(float)beta, C.ptr<float>(), C.cols);
}
else if (C.type() == CV_64F)
{
//TODO: Should be tested
cblas_dgemm(CblasRowMajor, transA ? CblasTrans : CblasNoTrans, transB ? CblasTrans : CblasNoTrans,
Arows, Bcols, Acols,
alpha, A.ptr<double>(), A.cols,
B.ptr<double>(), B.cols,
beta, C.ptr<double>(), C.cols);
}
#else
cv::gemm(A, B, alpha, C, beta, C, flags);
#endif
}
} }
} }
...@@ -87,10 +87,6 @@ namespace dnn ...@@ -87,10 +87,6 @@ namespace dnn
DeConvolutionLayer(LayerParams &params); DeConvolutionLayer(LayerParams &params);
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs); void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
}; };
void gemm(InputArray A, InputArray B, double alpha, InputOutputArray C, double beta, int flags = 0);
void gemmCPU(const Mat &A, const Mat &B, double alpha, Mat &C, double beta, int flags = 0);
} }
} }
#endif #endif
#include "op_blas.hpp"
#if HAVE_CBLAS
#include "cblas.h"
#endif
namespace cv
{
namespace dnn
{
void gemm(InputArray A, InputArray B, double alpha, InputOutputArray C, double beta, int flags /*= 0*/)
{
cv::gemm(A, B, alpha, C, beta, C, flags);
}
inline void SwapRowCols(const Mat &A, int &rows, int &cols, bool transA)
{
rows = (transA) ? A.cols : A.rows;
cols = (transA) ? A.rows : A.cols;
}
void gemmCPU(const Mat &A, const Mat &B, double alpha, Mat &C, double beta, int flags /*= 0*/)
{
#if HAVE_CBLAS
int transA = flags & GEMM_1_T;
int transB = flags & GEMM_2_T;
int transC = flags & GEMM_3_T;
int Arows, Acols, Brows, Bcols, Crows, Ccols;
SwapRowCols(A, Arows, Acols, transA);
SwapRowCols(B, Brows, Bcols, transB);
SwapRowCols(C, Crows, Ccols, transC);
CV_DbgAssert(!(flags & GEMM_3_T));
CV_Assert(Acols == Brows && Arows == Crows && Bcols == Ccols);
CV_DbgAssert(A.isContinuous() && B.isContinuous() && C.isContinuous());
CV_DbgAssert(A.type() == CV_32F || A.type() == CV_64F);
CV_DbgAssert(A.type() == B.type() && B.type() == C.type());
if (C.type() == CV_32F)
{
cblas_sgemm(CblasRowMajor, transA ? CblasTrans : CblasNoTrans, transB ? CblasTrans : CblasNoTrans,
Arows, Bcols, Acols,
(float)alpha, A.ptr<float>(), A.cols,
B.ptr<float>(), B.cols,
(float)beta, C.ptr<float>(), C.cols);
}
else if (C.type() == CV_64F)
{
//TODO: Should be tested
cblas_dgemm(CblasRowMajor, transA ? CblasTrans : CblasNoTrans, transB ? CblasTrans : CblasNoTrans,
Arows, Bcols, Acols,
alpha, A.ptr<double>(), A.cols,
B.ptr<double>(), B.cols,
beta, C.ptr<double>(), C.cols);
}
#else
cv::gemm(A, B, alpha, C, beta, C, flags);
#endif
}
int getBlasThreads()
{
#ifdef OPENBLAS_VERSION
return openblas_get_num_threads();
#else
return 1;
#endif
}
void setBlasThreads(int numThreads)
{
#ifdef OPENBLAS_VERSION
openblas_set_num_threads(numThreads);
goto_set_num_threads(numThreads);
#else
numThreads = 0; //suppress compiler's warning
#endif
}
}
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_LAYERS_OP_BLAS_HPP__
#define __OPENCV_DNN_LAYERS_OP_BLAS_HPP__
#include "../precomp.hpp"
namespace cv
{
namespace dnn
{
int getBlasThreads();
void setBlasThreads(int numThreads);
void gemm(InputArray A, InputArray B, double alpha, InputOutputArray C, double beta, int flags = 0);
void gemmCPU(const Mat &A, const Mat &B, double alpha, Mat &C, double beta, int flags = 0);
}
}
#endif
\ No newline at end of file
...@@ -41,7 +41,7 @@ ...@@ -41,7 +41,7 @@
#include "../precomp.hpp" #include "../precomp.hpp"
#include <opencv2/core/ocl.hpp> #include <opencv2/core/ocl.hpp>
#include "im2col.hpp" #include "op_im2col.hpp"
#include "opencl_kernels_dnn.hpp" #include "opencl_kernels_dnn.hpp"
namespace cv namespace cv
......
...@@ -43,6 +43,7 @@ ...@@ -43,6 +43,7 @@
#include <opencv2/core/ocl.hpp> #include <opencv2/core/ocl.hpp>
#include <iostream> #include <iostream>
#include "npy_blob.hpp" #include "npy_blob.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace cvtest namespace cvtest
{ {
...@@ -174,4 +175,61 @@ TEST(Layer_Test_Reshape_Split_Slice, Accuracy) ...@@ -174,4 +175,61 @@ TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
normAssert(input, output); normAssert(input, output);
} }
class Layer_LSTM_Test : public ::testing::Test
{
public:
int Nx, Nc;
Blob Wh, Wx, b;
Ptr<LSTMLayer> lstm;
std::vector<Blob> inputs;
std::vector<Blob> outputs;
std::vector<Blob*> inputsPtr;
Layer_LSTM_Test(int _Nx = 31, int _Nc = 100)
{
Nx = _Nx;
Nc = _Nc;
Wh = Blob(BlobShape(Vec2i(4 * Nc, Nc)));
Wx = Blob(BlobShape(Vec2i(4 * Nc, Nx)));
b = Blob(BlobShape(Vec2i(4 * Nc, 1)));
lstm = LSTMLayer::create();
lstm->setWeights(Wh, Wx, b);
}
void allocateAndForward()
{
inputsPtr.clear();
for (size_t i = 0; i < inputs.size(); i++)
inputsPtr.push_back(&inputs[i]);
lstm->allocate(inputsPtr, outputs);
lstm->forward(inputsPtr, outputs);
}
};
TEST_F(Layer_LSTM_Test, BasicTest_1)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, Nc));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc));
}
TEST_F(Layer_LSTM_Test, BasicTest_2)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
inputs.push_back(Blob(BlobShape(1, 2, 3, Nc)));
inputs.push_back(Blob(BlobShape(1, 2, 3, Nc)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, Nc));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc));
}
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment