Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
67c825c0
Commit
67c825c0
authored
Jun 13, 2016
by
Vitaliy Lyudvichenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Adding of perf test for DNN module.
parent
b1c87936
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
412 additions
and
70 deletions
+412
-70
FindMKL.cmake
modules/dnn/cmake/FindMKL.cmake
+102
-0
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+1
-1
perf_convolution.cpp
modules/dnn/perf/perf_convolution.cpp
+81
-0
perf_main.cpp
modules/dnn/perf/perf_main.cpp
+3
-0
perf_precomp.hpp
modules/dnn/perf/perf_precomp.hpp
+17
-0
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+4
-64
convolution_layer.hpp
modules/dnn/src/layers/convolution_layer.hpp
+0
-4
op_blas.cpp
modules/dnn/src/layers/op_blas.cpp
+85
-0
op_blas.hpp
modules/dnn/src/layers/op_blas.hpp
+60
-0
op_im2col.cpp
modules/dnn/src/layers/op_im2col.cpp
+1
-1
op_im2col.hpp
modules/dnn/src/layers/op_im2col.hpp
+0
-0
test_layers.cpp
modules/dnn/test/test_layers.cpp
+58
-0
No files found.
modules/dnn/cmake/FindMKL.cmake
0 → 100644
View file @
67c825c0
# - Find the MKL libraries
# Modified from Armadillo's ARMA_FindMKL.cmake
# This module defines
# MKL_INCLUDE_DIR, the directory for the MKL headers
# MKL_LIB_DIR, the directory for the MKL library files
# MKL_COMPILER_LIB_DIR, the directory for the MKL compiler library files
# MKL_LIBRARIES, the libraries needed to use Intel's implementation of BLAS & LAPACK.
# MKL_FOUND, If false, do not try to use MKL; if true, the macro definition USE_MKL is added.
# Set the include path
# TODO: what if MKL is not installed in /opt/intel/mkl?
# try to find at /opt/intel/mkl
# in windows, try to find MKL at C:/Program Files (x86)/Intel/Composer XE/mkl
if
(
WIN32
)
if
(
NOT DEFINED ENV{MKLROOT_PATH}
)
#set(MKLROOT_PATH "C:/Program Files (x86)/Intel/Composer XE" CACHE PATH "Where the MKL are stored")
set
(
MKLROOT_PATH
"C:/Program Files (x86)/IntelSWTools/compilers_and_libraries/windows"
CACHE PATH
"Where the MKL are stored"
)
endif
(
NOT DEFINED ENV{MKLROOT_PATH}
)
else
(
WIN32
)
set
(
MKLROOT_PATH
"/opt/intel"
CACHE PATH
"Where the MKL are stored"
)
endif
(
WIN32
)
if
(
EXISTS
${
MKLROOT_PATH
}
/mkl
)
SET
(
MKL_FOUND TRUE
)
message
(
"MKL is found at
${
MKLROOT_PATH
}
/mkl"
)
IF
(
CMAKE_SIZEOF_VOID_P EQUAL 8
)
set
(
USE_MKL_64BIT On
)
if
(
ARMADILLO_FOUND
)
if
(
ARMADILLO_BLAS_LONG_LONG
)
set
(
USE_MKL_64BIT_LIB On
)
ADD_DEFINITIONS
(
-DMKL_ILP64
)
message
(
"MKL is linked against ILP64 interface ... "
)
endif
(
ARMADILLO_BLAS_LONG_LONG
)
endif
(
ARMADILLO_FOUND
)
ELSE
(
CMAKE_SIZEOF_VOID_P EQUAL 8
)
set
(
USE_MKL_64BIT Off
)
ENDIF
(
CMAKE_SIZEOF_VOID_P EQUAL 8
)
else
(
EXISTS
${
MKLROOT_PATH
}
/mkl
)
SET
(
MKL_FOUND FALSE
)
message
(
"MKL is NOT found ... "
)
endif
(
EXISTS
${
MKLROOT_PATH
}
/mkl
)
if
(
MKL_FOUND
)
set
(
MKL_INCLUDE_DIR
"
${
MKLROOT_PATH
}
/mkl/include"
)
ADD_DEFINITIONS
(
-DUSE_MKL
)
if
(
USE_MKL_64BIT
)
set
(
MKL_LIB_DIR
"
${
MKLROOT_PATH
}
/mkl/lib/intel64"
)
set
(
MKL_COMPILER_LIB_DIR
"
${
MKLROOT_PATH
}
/compiler/lib/intel64"
)
set
(
MKL_COMPILER_LIB_DIR
${
MKL_COMPILER_LIB_DIR
}
"
${
MKLROOT_PATH
}
/lib/intel64"
)
if
(
USE_MKL_64BIT_LIB
)
if
(
WIN32
)
set
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel_ilp64
)
else
(
WIN32
)
set
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel_ilp64
)
endif
(
WIN32
)
else
(
USE_MKL_64BIT_LIB
)
if
(
WIN32
)
set
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel_lp64
)
else
(
WIN32
)
set
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel_lp64
)
endif
(
WIN32
)
endif
(
USE_MKL_64BIT_LIB
)
else
(
USE_MKL_64BIT
)
set
(
MKL_LIB_DIR
"
${
MKLROOT_PATH
}
/mkl/lib/ia32"
)
set
(
MKL_COMPILER_LIB_DIR
"
${
MKLROOT_PATH
}
/compiler/lib/ia32"
)
set
(
MKL_COMPILER_LIB_DIR
${
MKL_COMPILER_LIB_DIR
}
"
${
MKLROOT_PATH
}
/lib/ia32"
)
if
(
WIN32
)
set
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel_c
)
else
(
WIN32
)
set
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel
)
endif
(
WIN32
)
endif
(
USE_MKL_64BIT
)
if
(
WIN32
)
SET
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_intel_thread
)
SET
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_core
)
SET
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
libiomp5md
)
else
(
WIN32
)
SET
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_gnu_thread
)
SET
(
MKL_LIBRARIES
${
MKL_LIBRARIES
}
mkl_core
)
endif
(
WIN32
)
endif
(
MKL_FOUND
)
IF
(
MKL_FOUND
)
IF
(
NOT MKL_FIND_QUIETLY
)
MESSAGE
(
STATUS
"Found MKL libraries:
${
MKL_LIBRARIES
}
"
)
MESSAGE
(
STATUS
"MKL_INCLUDE_DIR:
${
MKL_INCLUDE_DIR
}
"
)
MESSAGE
(
STATUS
"MKL_LIB_DIR:
${
MKL_LIB_DIR
}
"
)
MESSAGE
(
STATUS
"MKL_COMPILER_LIB_DIR:
${
MKL_COMPILER_LIB_DIR
}
"
)
ENDIF
(
NOT MKL_FIND_QUIETLY
)
INCLUDE_DIRECTORIES
(
${
MKL_INCLUDE_DIR
}
)
LINK_DIRECTORIES
(
${
MKL_LIB_DIR
}
${
MKL_COMPILER_LIB_DIR
}
)
ELSE
(
MKL_FOUND
)
IF
(
MKL_FIND_REQUIRED
)
MESSAGE
(
FATAL_ERROR
"Could not find MKL libraries"
)
ENDIF
(
MKL_FIND_REQUIRED
)
ENDIF
(
MKL_FOUND
)
# MARK_AS_ADVANCED(MKL_LIBRARY)
\ No newline at end of file
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
67c825c0
...
...
@@ -116,7 +116,7 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
String
type
;
//!< Type name which was used for creating layer by layer factory.
Layer
();
explicit
Layer
(
const
LayerParams
&
params
);
//!< Initialize only #name, #type and #blobs fields.
explicit
Layer
(
const
LayerParams
&
params
);
//!< Initialize
s
only #name, #type and #blobs fields.
virtual
~
Layer
();
};
...
...
modules/dnn/perf/perf_convolution.cpp
0 → 100644
View file @
67c825c0
#include "perf_precomp.hpp"
namespace
cvtest
{
using
std
::
tr1
::
tuple
;
using
std
::
tr1
::
get
;
using
std
::
tr1
::
make_tuple
;
using
std
::
make_pair
;
using
namespace
perf
;
using
namespace
testing
;
using
namespace
cv
;
using
namespace
cv
::
dnn
;
enum
{
STRIDE_OFF
=
1
,
STRIDE_ON
=
2
};
CV_ENUM
(
StrideSize
,
STRIDE_OFF
,
STRIDE_ON
);
enum
{
GROUP_OFF
=
1
,
GROUP_2
=
2
};
CV_ENUM
(
GroupSize
,
GROUP_OFF
,
GROUP_2
);
//Squared Size
#define SSZ(n) cv::Size(n, n)
typedef
std
::
pair
<
BlobShape
,
int
>
InpShapeNumOut
;
typedef
tuple
<
Size
,
InpShapeNumOut
,
GroupSize
,
StrideSize
>
ConvParam
;
//kernel_size, inp shape, groups, stride
typedef
TestBaseWithParam
<
ConvParam
>
ConvolutionPerfTest
;
PERF_TEST_P
(
ConvolutionPerfTest
,
perf
,
Combine
(
Values
(
Size
(
1
,
1
),
Size
(
3
,
3
),
Size
(
5
,
5
),
Size
(
11
,
11
)),
Values
(
make_pair
(
BlobShape
(
1
,
4
,
224
,
224
),
64
),
make_pair
(
BlobShape
(
1
,
64
,
112
,
122
),
128
),
make_pair
(
BlobShape
(
1
,
256
,
28
,
28
),
512
)),
GroupSize
::
all
(),
StrideSize
::
all
())
)
{
RNG
rng
(
0
);
ConvParam
params
=
GetParam
();
int
ksz
=
get
<
0
>
(
params
).
width
;
BlobShape
inpShape
=
get
<
1
>
(
params
).
first
;
int
outCn
=
get
<
1
>
(
params
).
second
;
int
groups
=
get
<
2
>
(
params
);
int
stride
=
(
ksz
>=
11
)
?
4
:
get
<
3
>
(
params
);
int
inpCn
=
inpShape
[
1
];
Blob
wgtBlob
(
BlobShape
(
outCn
,
inpCn
/
groups
,
ksz
,
ksz
)),
biasBlob
(
BlobShape
(
outCn
,
1
,
1
,
1
));
Blob
inpBlob
(
inpShape
);
rng
.
fill
(
biasBlob
.
matRef
(),
RNG
::
UNIFORM
,
-
1
,
+
1
);
rng
.
fill
(
wgtBlob
.
matRef
(),
RNG
::
UNIFORM
,
-
1
,
+
1
);
rng
.
fill
(
inpBlob
.
matRef
(),
RNG
::
UNIFORM
,
-
1
,
+
1
);
LayerParams
lp
;
lp
.
set
(
"num_output"
,
outCn
);
lp
.
set
(
"group"
,
groups
);
lp
.
set
(
"stride"
,
stride
);
lp
.
set
(
"kernel_size"
,
ksz
);
lp
.
blobs
.
reserve
(
2
);
lp
.
blobs
.
push_back
(
wgtBlob
);
lp
.
blobs
.
push_back
(
biasBlob
);
std
::
vector
<
Blob
*>
inpBlobs
(
1
,
&
inpBlob
);
std
::
vector
<
Blob
>
outBlobs
;
cv
::
setNumThreads
(
cv
::
getNumberOfCPUs
());
Ptr
<
Layer
>
layer
=
cv
::
dnn
::
LayerFactory
::
createLayerInstance
(
"Convolution"
,
lp
);
layer
->
allocate
(
inpBlobs
,
outBlobs
);
declare
.
in
(
inpBlob
.
matRef
(),
wgtBlob
.
matRef
(),
WARMUP_RNG
).
out
(
outBlobs
[
0
].
matRef
()).
tbb_threads
(
cv
::
getNumThreads
());
TEST_CYCLE_N
(
10
)
{
layer
->
forward
(
inpBlobs
,
outBlobs
);
}
SANITY_CHECK_NOTHING
();
}
}
\ No newline at end of file
modules/dnn/perf/perf_main.cpp
0 → 100644
View file @
67c825c0
#include "perf_precomp.hpp"
CV_PERF_TEST_MAIN
(
dnn
)
modules/dnn/perf/perf_precomp.hpp
0 → 100644
View file @
67c825c0
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include <opencv2/ts.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
#endif
modules/dnn/src/layers/convolution_layer.cpp
View file @
67c825c0
...
...
@@ -43,13 +43,10 @@
#include <opencv2/core/ocl.hpp>
#include "layers_common.hpp"
#include "convolution_layer.hpp"
#include "im2col.hpp"
#include "op_im2col.hpp"
#include "op_blas.hpp"
#include <iostream>
#if HAVE_CBLAS
#include "cblas.h"
#endif
namespace
cv
{
namespace
dnn
...
...
@@ -78,17 +75,12 @@ namespace dnn
//TBD
useOpenCL
=
params
.
has
(
"use_opencl"
);
//init BLAS
#if HAVE_CBLAS
{
#ifdef OPENBLAS_VERSION
if
(
openblas_get_num_threads
()
!=
cv
::
getNumThreads
())
if
(
getBlasThreads
()
!=
cv
::
getThreadNum
())
{
openblas_set_num_threads
(
cv
::
getNumThreads
());
goto_set_num_threads
(
cv
::
getNumThreads
());
setBlasThreads
(
cv
::
getThreadNum
());
}
//std::cout << "OpenBLAS threads " << openblas_get_num_threads() << "/" << openblas_get_num_procs() << "\n";
#endif
}
#endif
}
...
...
@@ -265,57 +257,5 @@ namespace dnn
if
(
dstMat
.
type
()
==
CV_64F
)
col2im_cpu
((
double
*
)
colMat
.
ptr
(),
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
(
double
*
)
dstMat
.
ptr
());
}
void
gemm
(
InputArray
A
,
InputArray
B
,
double
alpha
,
InputOutputArray
C
,
double
beta
,
int
flags
/*= 0*/
)
{
cv
::
gemm
(
A
,
B
,
alpha
,
C
,
beta
,
C
,
flags
);
}
inline
void
SwapRowCols
(
const
Mat
&
A
,
int
&
rows
,
int
&
cols
,
bool
transA
=
false
)
{
rows
=
(
transA
)
?
A
.
cols
:
A
.
rows
;
cols
=
(
transA
)
?
A
.
rows
:
A
.
cols
;
}
void
gemmCPU
(
const
Mat
&
A
,
const
Mat
&
B
,
double
alpha
,
Mat
&
C
,
double
beta
,
int
flags
/*= 0*/
)
{
#if HAVE_CBLAS
bool
transA
=
flags
&
GEMM_1_T
;
bool
transB
=
flags
&
GEMM_2_T
;
bool
transC
=
flags
&
GEMM_3_T
;
int
Arows
,
Acols
,
Brows
,
Bcols
,
Crows
,
Ccols
;
SwapRowCols
(
A
,
Arows
,
Acols
,
transA
);
SwapRowCols
(
B
,
Brows
,
Bcols
,
transB
);
SwapRowCols
(
C
,
Crows
,
Ccols
,
transC
);
CV_DbgAssert
(
!
(
flags
&
GEMM_3_T
));
CV_Assert
(
Acols
==
Brows
&&
Arows
==
Crows
&&
Bcols
==
Ccols
);
CV_DbgAssert
(
A
.
isContinuous
()
&&
B
.
isContinuous
()
&&
C
.
isContinuous
());
CV_DbgAssert
(
A
.
type
()
==
CV_32F
||
A
.
type
()
==
CV_64F
);
CV_DbgAssert
(
A
.
type
()
==
B
.
type
()
&&
B
.
type
()
==
C
.
type
());
if
(
C
.
type
()
==
CV_32F
)
{
cblas_sgemm
(
CblasRowMajor
,
transA
?
CblasTrans
:
CblasNoTrans
,
transB
?
CblasTrans
:
CblasNoTrans
,
Arows
,
Bcols
,
Acols
,
(
float
)
alpha
,
A
.
ptr
<
float
>
(),
A
.
cols
,
B
.
ptr
<
float
>
(),
B
.
cols
,
(
float
)
beta
,
C
.
ptr
<
float
>
(),
C
.
cols
);
}
else
if
(
C
.
type
()
==
CV_64F
)
{
//TODO: Should be tested
cblas_dgemm
(
CblasRowMajor
,
transA
?
CblasTrans
:
CblasNoTrans
,
transB
?
CblasTrans
:
CblasNoTrans
,
Arows
,
Bcols
,
Acols
,
alpha
,
A
.
ptr
<
double
>
(),
A
.
cols
,
B
.
ptr
<
double
>
(),
B
.
cols
,
beta
,
C
.
ptr
<
double
>
(),
C
.
cols
);
}
#else
cv
::
gemm
(
A
,
B
,
alpha
,
C
,
beta
,
C
,
flags
);
#endif
}
}
}
modules/dnn/src/layers/convolution_layer.hpp
View file @
67c825c0
...
...
@@ -87,10 +87,6 @@ namespace dnn
DeConvolutionLayer
(
LayerParams
&
params
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
void
gemm
(
InputArray
A
,
InputArray
B
,
double
alpha
,
InputOutputArray
C
,
double
beta
,
int
flags
=
0
);
void
gemmCPU
(
const
Mat
&
A
,
const
Mat
&
B
,
double
alpha
,
Mat
&
C
,
double
beta
,
int
flags
=
0
);
}
}
#endif
modules/dnn/src/layers/op_blas.cpp
0 → 100644
View file @
67c825c0
#include "op_blas.hpp"
#if HAVE_CBLAS
#include "cblas.h"
#endif
namespace
cv
{
namespace
dnn
{
void
gemm
(
InputArray
A
,
InputArray
B
,
double
alpha
,
InputOutputArray
C
,
double
beta
,
int
flags
/*= 0*/
)
{
cv
::
gemm
(
A
,
B
,
alpha
,
C
,
beta
,
C
,
flags
);
}
inline
void
SwapRowCols
(
const
Mat
&
A
,
int
&
rows
,
int
&
cols
,
bool
transA
)
{
rows
=
(
transA
)
?
A
.
cols
:
A
.
rows
;
cols
=
(
transA
)
?
A
.
rows
:
A
.
cols
;
}
void
gemmCPU
(
const
Mat
&
A
,
const
Mat
&
B
,
double
alpha
,
Mat
&
C
,
double
beta
,
int
flags
/*= 0*/
)
{
#if HAVE_CBLAS
int
transA
=
flags
&
GEMM_1_T
;
int
transB
=
flags
&
GEMM_2_T
;
int
transC
=
flags
&
GEMM_3_T
;
int
Arows
,
Acols
,
Brows
,
Bcols
,
Crows
,
Ccols
;
SwapRowCols
(
A
,
Arows
,
Acols
,
transA
);
SwapRowCols
(
B
,
Brows
,
Bcols
,
transB
);
SwapRowCols
(
C
,
Crows
,
Ccols
,
transC
);
CV_DbgAssert
(
!
(
flags
&
GEMM_3_T
));
CV_Assert
(
Acols
==
Brows
&&
Arows
==
Crows
&&
Bcols
==
Ccols
);
CV_DbgAssert
(
A
.
isContinuous
()
&&
B
.
isContinuous
()
&&
C
.
isContinuous
());
CV_DbgAssert
(
A
.
type
()
==
CV_32F
||
A
.
type
()
==
CV_64F
);
CV_DbgAssert
(
A
.
type
()
==
B
.
type
()
&&
B
.
type
()
==
C
.
type
());
if
(
C
.
type
()
==
CV_32F
)
{
cblas_sgemm
(
CblasRowMajor
,
transA
?
CblasTrans
:
CblasNoTrans
,
transB
?
CblasTrans
:
CblasNoTrans
,
Arows
,
Bcols
,
Acols
,
(
float
)
alpha
,
A
.
ptr
<
float
>
(),
A
.
cols
,
B
.
ptr
<
float
>
(),
B
.
cols
,
(
float
)
beta
,
C
.
ptr
<
float
>
(),
C
.
cols
);
}
else
if
(
C
.
type
()
==
CV_64F
)
{
//TODO: Should be tested
cblas_dgemm
(
CblasRowMajor
,
transA
?
CblasTrans
:
CblasNoTrans
,
transB
?
CblasTrans
:
CblasNoTrans
,
Arows
,
Bcols
,
Acols
,
alpha
,
A
.
ptr
<
double
>
(),
A
.
cols
,
B
.
ptr
<
double
>
(),
B
.
cols
,
beta
,
C
.
ptr
<
double
>
(),
C
.
cols
);
}
#else
cv
::
gemm
(
A
,
B
,
alpha
,
C
,
beta
,
C
,
flags
);
#endif
}
int
getBlasThreads
()
{
#ifdef OPENBLAS_VERSION
return
openblas_get_num_threads
();
#else
return
1
;
#endif
}
void
setBlasThreads
(
int
numThreads
)
{
#ifdef OPENBLAS_VERSION
openblas_set_num_threads
(
numThreads
);
goto_set_num_threads
(
numThreads
);
#else
numThreads
=
0
;
//suppress compiler's warning
#endif
}
}
}
\ No newline at end of file
modules/dnn/src/layers/op_blas.hpp
0 → 100644
View file @
67c825c0
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_LAYERS_OP_BLAS_HPP__
#define __OPENCV_DNN_LAYERS_OP_BLAS_HPP__
#include "../precomp.hpp"
namespace
cv
{
namespace
dnn
{
int
getBlasThreads
();
void
setBlasThreads
(
int
numThreads
);
void
gemm
(
InputArray
A
,
InputArray
B
,
double
alpha
,
InputOutputArray
C
,
double
beta
,
int
flags
=
0
);
void
gemmCPU
(
const
Mat
&
A
,
const
Mat
&
B
,
double
alpha
,
Mat
&
C
,
double
beta
,
int
flags
=
0
);
}
}
#endif
\ No newline at end of file
modules/dnn/src/layers/im2col.cpp
→
modules/dnn/src/layers/
op_
im2col.cpp
View file @
67c825c0
...
...
@@ -41,7 +41,7 @@
#include "../precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include "im2col.hpp"
#include "
op_
im2col.hpp"
#include "opencl_kernels_dnn.hpp"
namespace
cv
...
...
modules/dnn/src/layers/im2col.hpp
→
modules/dnn/src/layers/
op_
im2col.hpp
View file @
67c825c0
File moved
modules/dnn/test/test_layers.cpp
View file @
67c825c0
...
...
@@ -43,6 +43,7 @@
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cvtest
{
...
...
@@ -174,4 +175,61 @@ TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
normAssert
(
input
,
output
);
}
class
Layer_LSTM_Test
:
public
::
testing
::
Test
{
public
:
int
Nx
,
Nc
;
Blob
Wh
,
Wx
,
b
;
Ptr
<
LSTMLayer
>
lstm
;
std
::
vector
<
Blob
>
inputs
;
std
::
vector
<
Blob
>
outputs
;
std
::
vector
<
Blob
*>
inputsPtr
;
Layer_LSTM_Test
(
int
_Nx
=
31
,
int
_Nc
=
100
)
{
Nx
=
_Nx
;
Nc
=
_Nc
;
Wh
=
Blob
(
BlobShape
(
Vec2i
(
4
*
Nc
,
Nc
)));
Wx
=
Blob
(
BlobShape
(
Vec2i
(
4
*
Nc
,
Nx
)));
b
=
Blob
(
BlobShape
(
Vec2i
(
4
*
Nc
,
1
)));
lstm
=
LSTMLayer
::
create
();
lstm
->
setWeights
(
Wh
,
Wx
,
b
);
}
void
allocateAndForward
()
{
inputsPtr
.
clear
();
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
inputsPtr
.
push_back
(
&
inputs
[
i
]);
lstm
->
allocate
(
inputsPtr
,
outputs
);
lstm
->
forward
(
inputsPtr
,
outputs
);
}
};
TEST_F
(
Layer_LSTM_Test
,
BasicTest_1
)
{
inputs
.
push_back
(
Blob
(
BlobShape
(
1
,
2
,
3
,
Nx
)));
allocateAndForward
();
EXPECT_EQ
(
outputs
.
size
(),
2
);
EXPECT_EQ
(
outputs
[
0
].
shape
(),
BlobShape
(
1
,
2
,
3
,
Nc
));
EXPECT_EQ
(
outputs
[
1
].
shape
(),
BlobShape
(
1
,
2
,
3
,
Nc
));
}
TEST_F
(
Layer_LSTM_Test
,
BasicTest_2
)
{
inputs
.
push_back
(
Blob
(
BlobShape
(
1
,
2
,
3
,
Nx
)));
inputs
.
push_back
(
Blob
(
BlobShape
(
1
,
2
,
3
,
Nc
)));
inputs
.
push_back
(
Blob
(
BlobShape
(
1
,
2
,
3
,
Nc
)));
allocateAndForward
();
EXPECT_EQ
(
outputs
.
size
(),
2
);
EXPECT_EQ
(
outputs
[
0
].
shape
(),
BlobShape
(
1
,
2
,
3
,
Nc
));
EXPECT_EQ
(
outputs
[
1
].
shape
(),
BlobShape
(
1
,
2
,
3
,
Nc
));
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment