Commit 660174e8 authored by Kurnianggoro's avatar Kurnianggoro

Remove whitespaces

parent 261086b1
...@@ -83,13 +83,13 @@ ...@@ -83,13 +83,13 @@
year = {2012}, year = {2012},
} }
@INPROCEEDINGS{KCF_CN, @INPROCEEDINGS{KCF_CN,
author={Danelljan, M. and Khan, F.S. and Felsberg, M. and van de Weijer, J.}, author={Danelljan, M. and Khan, F.S. and Felsberg, M. and van de Weijer, J.},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on}, booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
title={Adaptive Color Attributes for Real-Time Visual Tracking}, title={Adaptive Color Attributes for Real-Time Visual Tracking},
year={2014}, year={2014},
month={June}, month={June},
pages={1090-1097}, pages={1090-1097},
keywords={computer vision;feature extraction;image colour analysis;image representation;image sequences;adaptive color attributes;benchmark color sequences;color features;color representations;computer vision;image description;real-time visual tracking;tracking-by-detection framework;Color;Computational modeling;Covariance matrices;Image color analysis;Kernel;Target tracking;Visualization;Adaptive Dimensionality Reduction;Appearance Model;Color Features;Visual Tracking}, keywords={computer vision;feature extraction;image colour analysis;image representation;image sequences;adaptive color attributes;benchmark color sequences;color features;color representations;computer vision;image description;real-time visual tracking;tracking-by-detection framework;Color;Computational modeling;Covariance matrices;Image color analysis;Kernel;Target tracking;Visualization;Adaptive Dimensionality Reduction;Appearance Model;Color Features;Visual Tracking},
doi={10.1109/CVPR.2014.143}, doi={10.1109/CVPR.2014.143},
} }
...@@ -1191,8 +1191,8 @@ class CV_EXPORTS_W TrackerTLD : public Tracker ...@@ -1191,8 +1191,8 @@ class CV_EXPORTS_W TrackerTLD : public Tracker
/** @brief KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed. /** @brief KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
* This tracking method is an implementation of @cite KCF_ECCV which is extended to KFC with color-names features (@cite KCF_CN). * This tracking method is an implementation of @cite KCF_ECCV which is extended to KFC with color-names features (@cite KCF_CN).
* The original paper of KCF is available at <http://home.isr.uc.pt/~henriques/circulant/index.html> * The original paper of KCF is available at <http://home.isr.uc.pt/~henriques/circulant/index.html>
* as well as the matlab implementation. For more information about KCF with color-names features, please refer to * as well as the matlab implementation. For more information about KCF with color-names features, please refer to
* <http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html>. * <http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html>.
*/ */
class CV_EXPORTS_W TrackerKCF : public Tracker class CV_EXPORTS_W TrackerKCF : public Tracker
...@@ -1202,21 +1202,21 @@ class CV_EXPORTS_W TrackerKCF : public Tracker ...@@ -1202,21 +1202,21 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
struct CV_EXPORTS Params struct CV_EXPORTS Params
{ {
Params(); Params();
/** /**
* \brief Read parameters from file, currently unused * \brief Read parameters from file, currently unused
*/ */
void read( const FileNode& /*fn*/ ); void read( const FileNode& /*fn*/ );
/** /**
* \brief Read parameters from file, currently unused * \brief Read parameters from file, currently unused
*/ */
void write( FileStorage& /*fs*/ ) const; void write( FileStorage& /*fs*/ ) const;
double sigma; //!< gaussian kernel bandwidth double sigma; //!< gaussian kernel bandwidth
double lambda; //!< regularization double lambda; //!< regularization
double interp_factor; //!< linear interpolation factor for adaptation double interp_factor; //!< linear interpolation factor for adaptation
double output_sigma_factor; //!< spatial bandwidth (proportional to target) double output_sigma_factor; //!< spatial bandwidth (proportional to target)
double pca_learning_rate; //!< compression learning rate double pca_learning_rate; //!< compression learning rate
bool resize; //!< activate the resize feature to improve the processing speed bool resize; //!< activate the resize feature to improve the processing speed
bool splitCoeff; //!< split the training coefficients into two matrices bool splitCoeff; //!< split the training coefficients into two matrices
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment